ADVANCED ELECTRICAL CIRCUIT BETI 1333
 TRANSFER FUNCTION AND SERIES RESONANCE

Suziana binti Ahmad ${ }^{1}$, Halyani binti Mohd Yassim²
${ }^{1}$ suziana@utem.edu.my, ${ }^{2}$ halyani@utem.edu.my,

LESSON OUTCOMES

At the end of this chapter, students are able:

to describe transfer function and determine characteristics of series resonance
to illustrate frequency response of transfer function

SUBTOPICS

Transfer Function

Series Resonance

INTRODUCTION

TRANSFER FUNCTION

TRANSFER FUNCTION

EXAMPLE 1

Find the transfer function $\mathrm{V}_{0} / \mathrm{V}_{\mathrm{i}}$ and frequency response of circuit below.

SOLUTION 1

STEP 1 :

The transfer function:
$H(\omega)=\frac{V_{o}}{V_{i}}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{1+j \omega R C}$
$H(\omega)=\frac{1}{1+j \omega 0.001}$

STEP 2 :

The magnitude:

$$
\begin{aligned}
& |H(\omega)|=\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega 0}\right)^{2}}} \\
& |H(\omega)|=\frac{1}{\sqrt{1+\left(\frac{\omega}{1000}\right)^{2}}}
\end{aligned}
$$

STEP 3 :

The phase:

$$
\begin{aligned}
\phi & =-\tan ^{-1} \frac{\omega}{\omega_{o}} \\
\phi & =-\tan ^{-1} \frac{\omega}{1000}
\end{aligned}
$$

$j \omega R C=j \omega(1 k \Omega)(1 \mu F)=j \omega 0.001$

Angular frequency:
$\omega_{\mathrm{o}}=\frac{1}{R C}=\frac{1}{1000 \Omega(1 \mu F)}=1000$

SOLUTION 1

Frequency response for the RC circuit:

EXAMPLE 2

Find the transfer function V_{0} / V_{i} and frequency response of circuit below.

SOLUTION 2

STEP 1 :

The transfer function:
$H(\omega)=\frac{V_{o}}{V_{i}}=\frac{j \omega L}{R+j \omega L}=\frac{1}{1+\frac{R}{j \omega L}}$
$H(\omega)=\frac{1}{1+\frac{1000}{j \omega 0.001}}$
$\frac{R}{j \omega L}=\frac{1000}{j \omega 0.001}$

STEP 2 :

The magnitude:

$$
\begin{aligned}
& |H(\omega)|=\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega 0}\right)^{2}}} \\
& |H(\omega)|=\frac{1}{\sqrt{1+\left(\frac{\omega}{1000}\right)^{2}}}
\end{aligned}
$$

STEP 3 :

The phase:

$$
\phi=\angle 90^{\circ}-\tan ^{-1} \frac{\omega}{\omega_{o}}
$$

$$
\phi=\angle 90^{\circ}-\tan ^{-1} \frac{\omega}{1000000}
$$

$$
\omega_{\mathrm{o}}=\frac{R}{L}=\frac{1000}{0.001}=1000000
$$

SOLUTION 2

Frequency response for the RL circuit:

SERIES RESONANCE

SERIES RESONANCE

$\omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{s} \quad f_{0}=\frac{1}{2 \pi \sqrt{L C}} \mathrm{~Hz}$

$$
Z=R+j\left(\omega L-\frac{1}{\omega C}\right)
$$

SERIES RESONANCE

SERIES RESONANCE

Bandwidth (B)

The current's of frequency response is

$$
\mathrm{I}=|\mathrm{I}|=\frac{\mathrm{V}_{\mathrm{m}}}{\sqrt{\mathrm{R}^{2}+(\omega \mathrm{L}-1 / \omega \mathrm{C})^{2}}}
$$

From RLC circuit, the average power is :

$$
\mathrm{P}(\omega)=\frac{1}{2} \mathrm{I}^{2} \mathrm{R}
$$

So, the highest power dissipated at resonance is :

$$
\mathrm{P}\left(\omega_{o}\right)=\frac{1}{2} \frac{\mathrm{~V}_{\mathrm{m}}^{2}}{\mathrm{R}}
$$

SERIES RESONANCE

$\Rightarrow \omega_{1} \& \omega_{2}=$ Half-power frequencies at power dissipated is half the maximum value :

$$
\mathrm{P}\left(\omega_{1}\right)=\mathrm{P}\left(\omega_{2}\right)=\frac{1}{2} \frac{\left(\mathrm{~V}_{\mathrm{m}} / \sqrt{2}\right)^{2}}{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{m}}^{2}}{4 \mathrm{R}}
$$

\Rightarrow with set up $Z=\sqrt{2} R$, then the half-power frequencies :

$$
\omega_{1}=-\frac{\mathrm{R}}{2 \mathrm{~L}}+\sqrt{\left(\frac{\mathrm{R}}{2 \mathrm{~L}}\right)^{2}+\frac{1}{\mathrm{LC}}} \quad \omega_{2}=\frac{\mathrm{R}}{2 \mathrm{~L}}+\sqrt{\left(\frac{\mathrm{R}}{2 \mathrm{~L}}\right)^{2}+\frac{1}{\mathrm{LC}}} \quad \omega_{o}=\sqrt{\omega_{1} \omega_{2}}
$$

$$
\therefore \text { Bandwidth: } \mathrm{B}=\omega_{2}-\omega_{1}
$$

SERIES RESONANCE

Quality factor, Q :
$Q=\frac{\omega_{o} L}{R}=\frac{1}{\omega_{o} C R}$

Bandwidth, B:

$$
B=\frac{R}{L}=\frac{\omega_{o}}{Q}=\omega_{o}^{2} C R
$$

For $Q \geq 10$:
$\omega_{1}=\omega_{0}-\frac{B}{2}$

$$
\omega_{1}=\omega_{0}-\frac{B}{2}
$$

EXAMPLE 3

Given circuit in Figure 1:
a) Calculate the resonant frequency
b) Find the quality factor and bandwidth
c) Determine half power frequencies

Figure 1

SOLUTION 3

a) Resonant frequency:

$$
\begin{aligned}
& \omega_{0}=\frac{1}{\sqrt{L C}} \\
& \therefore \omega_{0}=20 \mathrm{krad} / \mathrm{s}
\end{aligned}
$$

b) Bandwidth:

$$
B=\frac{R}{L}
$$

$$
\therefore B=1000 \mathrm{rad} / \mathrm{s}
$$

Quality Factor:

$$
\begin{aligned}
& Q=\frac{\omega_{0}}{B} \\
& \therefore Q=20
\end{aligned}
$$

SOLUTION 3

c) Half-power frequencies:

$$
\begin{aligned}
& \omega_{1}=\omega_{0}-\frac{B}{2} \\
& \therefore \omega_{1}=19.5 \mathrm{krad} / \mathrm{s} \\
& \omega_{1}=\omega_{0}-\frac{B}{2} \\
& \therefore \omega_{2}=20.5 \mathrm{krad} / \mathrm{s}
\end{aligned}
$$

SELF REVIEW QUESTIONS

1. The transfer function is a ratio of a phasor output to a phasor input.

TRUF
FALSE
2. The impedance for an inductor is \qquad .
3. Given $R=5 \Omega$ and $L=10 \mathrm{H}$ are arranged in series. What is the angular frequency for this RL circuit?
a) 0.5 s
b) 1 s
c) 2 s
d) 10 s
4. Identify the difference between the halfpower frequencies:
a) quality factor
b) resonant frequency
c) bandwidth
d) cutoff frequency
5. Give one (1) of the characteristics in series resonance.

Answer: \qquad

ANSWERS

1. TRUE
2. $j \omega L$
3. a
4. c
5. i) $Z=R$
ii) Vs \& I in phase ; $\quad \cos \theta=1$
iii) $H(\omega)=Z(\omega)$ is minimum
iv) inductor (L) \& capacitor C > Vs
**choose any of the answer above
