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Terminology: Theorem, Lemma, Proposition, and Proof

Theorem, Lemma, and Proposition
Theorem
A theorem usually denotes a (mathematical) statement that can be shown to be
true and somewhat important or (very) useful. Theorems can also be referred to
as mathematical facts or results.

Lemma
A lemma (“little theorem”) usually denotes a less important theorem/
mathematical fact/result that is important in the proof of other results/ more
important fact (lemma is rarely stand-alone). Complicated proofs are usually
easier to understand when they are proved using series of “lemma”.

Proposition
A proposition usually denotes a statement that is less important than theorems.
Sometimes propositions is stand-alone. However, propositions are also used in the
inference of more complicated proofs.
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Mathematical Proofs
Proof : a valid argument that establish the truth of particular theorems, lemmas,
or proposition. The statements used in proof can include axioms or postulates
(the statements that are assumed to be true). A proof is obtained from a valid
inference from a collection of premises. We usually mark the end of a proof with
following symbol: �, �, or Q.E.D.
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Why do we need to learn mathematical proofs?

Reason 1: to avoid deriving incorrect mathematical statements.

“Theorem”
1 = 2

“Proof”

Suppose a and b are two equal integers, then
Step Reason

(1) a = b Given assumption.
(2) a2 = ab By multiplying both sides of (1) with a.
(3) a2 − b2 = ab− b2 By subtracting both sides of (2) with b2.
(4) (a− b) (a+ b) = b (a− b) Algebraic factorization of each sides of (3).
(5) a+ b = b By dividing each sides of (4) with a− b.
(6) 2b = b By substituting a with b in (5),

because we have a = b in (1).
(7) 2 = 1 By dividing each sides of (6) with b.
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Reason 2: to guarantee that our arguments apply in general setting.

Theorem
The sum of two odd integers is an even integer.

“Proof”

Take two arbitrary odd integers, suppose these integers are a and b. Assume that
a = 1 and b = 3. It is obvious that a and b are odd integers. We have
a+ b = 1 + 3 = 4, hence a+ b is an even integer. Based on this argument, the
sum of two odd integers is an even integer.
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Reason 3: to understand the correct and effective elementary proof methods.
Reason 4:

because proof methods are used in more advanced course such as:

proving the correctness of an algorithm —which will be learned in Complexity
Analysis of Algorithm class (a compulsory course for undergraduate
informatics major)

providing undeniable facts in particular systems —which is used extensively in
several elective course such as Cryptography and Formal Methods.
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Mathematical proving in computer science. . .

Source: Abstruse Goose.

.
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Benefits for Computer Science Major

The methods of proof are important not only because they are used to prove
mathematical theorems, but also for their many applications to computer science.
These applications include:

1 verifying that computer programs are correct,
2 establishing that operating systems are secure,
3 making inferences in artificial intelligence, and
4 showing that system specifications are consistent.
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Assumption and Prerequisite

Assumption and Prerequisite
Familiarity with algebraic manipulations taught in high school.

Properties of equality (=), i.e.: (1) A = A, (2) if A = B then B = A, and
(3) if A = B and B = C, then A = C.

There is no integer between 0 and 1.

The set of integers is closed under addition, subtraction, and multiplication.
This means that for all integers a and b, the numbers a+ b, a− b, and ab are
also integers.
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Sentence and Language in Theorem and Proofs

Theorems and mathematical proofs can be expressed formally using predicate
logic (as we learned in the inference system for predicate logic). However, formal
proofs of useful theorems can be extremely long and hard to follow. In practice,
proofs of theorems designed for human consumption are almost always informal
proofs, which usually described in natural language sentences (e.g.: English,
Bahasa Indonesia, etc.).
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Many theorems assert that particular property holds for all elements in a domain
(such as integers or real numbers). In these theorem, a universal quantification is
usually not explicitly mentioned (although sometimes we need to use universal
quantification for precisely explaining a statement). In the proofs of such
theorems, universal instantiation (taking an arbitrary element c of a particular
domain) is used implicitly.

For example, the following theorem:

Theorem

If x > y, where x and y are positive real numbers greater than 1, then x2 > y2.

actually means:

Theorem
For all positive real numbers x and y that are greater than 1, if x > y, then
x2 > y2.
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Direct Proofs

Simple Direct Proof
Suppose we have a theorem (or lemma/ proposition) in a conditional statement:
“if p then q”, or p→ q.
A direct proof of this theorem is constructed as follows:

first, assume that p is true;
construct subsequent statements using rules of inference until. . . q is true.

Quantified Direct Proof
Suppose we have a theorem (or lemma/ proposition) of the form: “for all x ∈ D,
if P (x) then Q (x)”, or ∀x (P (x)→ Q (x)).
A direct proof of this theorem is constructed as follows:

pick arbitrary element c ∈ D;
assume that P (c) is true, and construct subsequent statements using rules
of inference until . . . Q (c) is true.
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Mathematical Definition

Mathematical definitions are precise statements that are used to describe
mathematical object. Definitions are also facts that are assumed to be true.

Definition

An integer n is even if there is an integer k such that n = 2k; and n is odd if
there is an integer k such that n = 2k + 1.

Example
The numbers −2, −4, 0, and 2020 are even. We have −2 = 2 (−1), −4 = 2 (−2),
0 = 2 (0), and 2020 = 2 (1010). The numbers −3, −7, 1, and 2021 are odd. We
have −3 = 2 (−2) + 1, −7 = 2 (−4) + 1, 1 = (2) (0) + 1, and
2021 = 2 (1010) + 1.
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2021 = 2 (1010) + 1.
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Definition
An integer n is called a perfect square if there exists an integer b such that n = b2.

Example
The numbers 4, 9, and 49 are perfect squares, because 4 =

22, 9 = 32, and
49 = 72. The numbers 7, 8, and 11 are not perfect squares, because there are no
integers a, b, and c such that 7 = a2, 8 = b2, and 11 = c2.
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Examples of Direct Proofs

Now we are going to prove following theorems.

Theorem
If n is an odd integer, then n2 is odd.

Proof

1 Let n be an integer.
2 Assume that n is odd, then according to the definition n = 2k + 1, for some
integer k.

3 We have n2 = (2k + 1)
2
= 4k2 + 4k + 1 = 2

(
2k2 + 2k

)
+ 1 = 2`+ 1, for

some integer ` = 2k2 + 2k.
4 Therefore n2 is odd.

(Because n2 can be expressed as 2 (· · · ) + 1.)
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Theorem
Suppose m and n are integers. If m and n are both perfect squares, then mn is
also a perfect square.

Proof

1 Let m and n be integers.
2 Suppose m and n are both perfect square, then m = b2, for some integer b;
and n = c2, for some integer c.

3 We have mn = b2c2 = (bc)2, for some integer bc.
4 Therefore mn is also a perfect square.

(Because mn can be expressed as (· · · )2.)
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Writing a neat and correct proof

Some mathematical proofs are not usually written in separate step-by-step
arguments as in our previous example. In many occasions, mathematical proofs
are written as narrative arguments that consist of several sentences or paragraphs.
Each of these sentences is started with capital letters and ended by a period (.),
unless if the beginning of the sentence is a mathematical symbol/notation.
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The proofs of our previous theorem can be conveyed as follows:

Proof (If n is odd, then n2 is also odd.)

Let n be an integer. If n is odd, then according to the definition n = 2k + 1, for
some integer k. We have
n2 = (2k + 1)

2
= 4k2 + 4k + 1 = 2

(
2k2 + 2k

)
+ 1 = 2`+ 1, for some integer

` = 2k2 + 2k. Therefore, n is odd.

Proof (If m and n are perfect squares, then mn is also a perfect
square.)

Let m and n be integers. Suppose m and n are perfect squares, then m = b2, for
some integer b; and n = c2, for some integer c. We have mn = b2c2 = (bc)2, for
some integer bc. Therefore, mn is also a perfect square.
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Exercise 1
Theorem (Theorem 1.1)
The sum of two odd integers is even.

Theorem (Theorem 1.2)
If a, b, c are integers such that: a+ b and b+ c are both even, then a+ c is also
even.

Proof (Proof of Theorem 1.1)

Let a and b be integers. If a and b are odd, then there are integers k and ` such
that a = 2k + 1 and b = 2`+ 1. We have a+ b = 2 (k + `) + 2 = 2 (k + `+ 1).
Therefore, a+ b is even.

Proof (Proof of Theorem 1.2)
Let a, b, and c be integers. If a+ b and b+ c are even, then there are integers k
and ` such that a+ b = 2k and b+ c = 2`. Observe that a = 2k − b and
c = 2`− b. As a result, a+ c = 2k + 2`− 2b = 2 (k + `− b). Therefore, a+ c is
even.
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Exercise 2

Definition
A real number r is rational if there exists integers a and b with b 6= 0 such that
r = a

b . A real number that is not rational is called irrational.

Theorem (Theorem 2)
The sum of two rational numbers is rational.

Proof (Proof of Theorem 2)

Let q and r be two rational numbers, then q = a
b and r =

c
d where a, b, c, d are

integers, b and d are nonzero. Observe that q + r = a
b +

c
d =

ad+bc
bd , with ad+ bc

and bd are integers. Since b and d are nonzero, then bd 6= 0. Therefore q + r is
rational.
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b +

c
d =

ad+bc
bd , with ad+ bc

and bd are integers. Since b and d are nonzero, then bd 6= 0.

Therefore q + r is
rational.
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Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof (?)

Since n2 is odd, then n2 = 2k+ 1, for some integer k. We obtain n = ±
√
2k + 1.

What’s next???

Direct proof method cannot be used to prove the above theorem.
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Indirect Proof by Contraposition
Suppose we have a theorem (or lemma/proposition) in a conditional
statement: “if p then q”, or p→ q.

Observe that p→ q is equivalent to ¬q → ¬p. Therefore, to prove p→ q is
true, we can instead prove that its contrapositive ¬q → ¬p is true.

An indirect proof by contraposition of p→ q is equivalent to the direct proof of
¬q → ¬p, which is constructed as follows:

first, assume that ¬q is true;
construct subsequent statements using rules of inference until . . . ¬p is true.
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Examples of Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof

The statement in the theorem is equivalent to its contrapositive: if n is not odd,
then n2 is not odd. Because for every integer n we have either n is odd or even
(but not both), then the contrapositive of the statement is equivalent to: if n is
even, then n2 is even. Suppose n is even, then n = 2k, for some integer k.
Consequently, n2 = (2k)2 = 4k2 = 2

(
2k2

)
. Thus, n2 is even.

MZI (SoC Tel-U) Proof Methods (1) November-December 2023 30 / 31



Examples of Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof
The statement in the theorem is equivalent to its contrapositive:

if n is not odd,
then n2 is not odd. Because for every integer n we have either n is odd or even
(but not both), then the contrapositive of the statement is equivalent to: if n is
even, then n2 is even. Suppose n is even, then n = 2k, for some integer k.
Consequently, n2 = (2k)2 = 4k2 = 2

(
2k2

)
. Thus, n2 is even.

MZI (SoC Tel-U) Proof Methods (1) November-December 2023 30 / 31



Examples of Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof
The statement in the theorem is equivalent to its contrapositive: if n is not odd,
then n2 is not odd.

Because for every integer n we have either n is odd or even
(but not both), then the contrapositive of the statement is equivalent to: if n is
even, then n2 is even. Suppose n is even, then n = 2k, for some integer k.
Consequently, n2 = (2k)2 = 4k2 = 2

(
2k2

)
. Thus, n2 is even.

MZI (SoC Tel-U) Proof Methods (1) November-December 2023 30 / 31



Examples of Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof
The statement in the theorem is equivalent to its contrapositive: if n is not odd,
then n2 is not odd. Because for every integer n we have either n is odd or even
(but not both), then the contrapositive of the statement is equivalent to:

if n is
even, then n2 is even. Suppose n is even, then n = 2k, for some integer k.
Consequently, n2 = (2k)2 = 4k2 = 2

(
2k2

)
. Thus, n2 is even.

MZI (SoC Tel-U) Proof Methods (1) November-December 2023 30 / 31



Examples of Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof
The statement in the theorem is equivalent to its contrapositive: if n is not odd,
then n2 is not odd. Because for every integer n we have either n is odd or even
(but not both), then the contrapositive of the statement is equivalent to: if n is
even, then n2 is even.

Suppose n is even, then n = 2k, for some integer k.
Consequently, n2 = (2k)2 = 4k2 = 2

(
2k2

)
. Thus, n2 is even.

MZI (SoC Tel-U) Proof Methods (1) November-December 2023 30 / 31



Examples of Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof
The statement in the theorem is equivalent to its contrapositive: if n is not odd,
then n2 is not odd. Because for every integer n we have either n is odd or even
(but not both), then the contrapositive of the statement is equivalent to: if n is
even, then n2 is even. Suppose n is even,

then n = 2k, for some integer k.
Consequently, n2 = (2k)2 = 4k2 = 2

(
2k2

)
. Thus, n2 is even.

MZI (SoC Tel-U) Proof Methods (1) November-December 2023 30 / 31



Examples of Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof
The statement in the theorem is equivalent to its contrapositive: if n is not odd,
then n2 is not odd. Because for every integer n we have either n is odd or even
(but not both), then the contrapositive of the statement is equivalent to: if n is
even, then n2 is even. Suppose n is even, then n = 2k, for some integer k.

Consequently, n2 = (2k)2 = 4k2 = 2
(
2k2

)
. Thus, n2 is even.

MZI (SoC Tel-U) Proof Methods (1) November-December 2023 30 / 31



Examples of Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof
The statement in the theorem is equivalent to its contrapositive: if n is not odd,
then n2 is not odd. Because for every integer n we have either n is odd or even
(but not both), then the contrapositive of the statement is equivalent to: if n is
even, then n2 is even. Suppose n is even, then n = 2k, for some integer k.
Consequently, n2 = (2k)2 = 4k2 = 2

(
2k2

)
.

Thus, n2 is even.

MZI (SoC Tel-U) Proof Methods (1) November-December 2023 30 / 31



Examples of Indirect Proofs by Contraposition

Theorem
Let n be an integer. If n2 is odd, then n is odd.

Proof
The statement in the theorem is equivalent to its contrapositive: if n is not odd,
then n2 is not odd. Because for every integer n we have either n is odd or even
(but not both), then the contrapositive of the statement is equivalent to: if n is
even, then n2 is even. Suppose n is even, then n = 2k, for some integer k.
Consequently, n2 = (2k)2 = 4k2 = 2

(
2k2

)
. Thus, n2 is even.

MZI (SoC Tel-U) Proof Methods (1) November-December 2023 30 / 31



Exercise 3

Theorem (Theorem 3.1)
If n is an integer and 3n+ 2 is odd, then n is odd.

Theorem (Theorem 3.2)

If a, b, and n are positive numbers such that n = ab, then a ≤
√
n or b ≤

√
n.

Proof (Proof of Theorem 3.1)

The contrapositive of Theorem 3.1 is: if n is even, then 3n+2 is even. Suppose n
is even, then n = 2k, for some integer k. Consequently,
3n+ 2 = 3 (2k) + 2 = 2 (3k + 1). Thus, 3n+ 2 is even.

Proof (Proof of Theorem 3.2)

The contrapositive of Theorem 3.2 is: if a, b, n are integers such that a >
√
n and

b >
√
n, then n 6= ab. Suppose a and b are integers such that a >

√
n and

b >
√
n, then ab > (

√
n)
2
= n, which means ab > n. Therefore, ab 6= n.
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