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Graph Isomorphism: Motivation
Observe the two following graphs:

Are G1 and G2 the same graph?

No, because
VG1

= {a, b, c, d} 6= {u, v, w, x} = VG2
.

Can G2 be redrawn so that G1 “similar” to G2? Yes.
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Graph Isomorphism: Definition

Informally, two graphs G1 and G2 are called isomorphic if graph G2 can be
redrawn so that G2 becomes similar to G1, or vice versa (G1 becomes similar to
G2).

Graph Isomorphism that is discussed in this course involves graphs (directed or
undirected) that have no multiple edges.

Definition
Given two graphs G1 = (V1, E1) and G2 = (V2, E2) where both of them have no
multiple edges, G1 and G2 are called isomorphic, written as G1 ∼= G2, if there is
an injective total function f : V1 → V2 with the properties

{a, b} ∈ E1 ⇔ {f (a) , f (b)} ∈ E2 (for undirected graph)
(a, b) ∈ E1 ⇔ (f (a) , f (b)) ∈ E2 (for directed graph).

The total function f is called as isomorphism.

Therefore, two graphs are called isomorphic if there is a one-to-one correspondence
between the vertices in the two graphs that preserves the adjacency relationship.
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Properties of Two Graphs that are Isomorphic

Theorem
Suppose G1 = (V1, E1) and G2 = (V1, E2) are two isomorphic graphs (with
isomorphism f), then

1 |V1| = |V2| and |E1| = |E2|,
2 for every a ∈ V1 we have deg (a) = deg (f (a)).

That means two isomorphic graphs G1 and G2 have following characteristics:

1 The number of vertices in G1 is identical to the number of vertices in G2.
2 The number of edges in G1 is identical to the number of edges in G2.
3 The degree of each vertex that corresponds to each other in the two graphs is
identical.
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Identifying Isomorphic Graph

Are F and G isomorphic?

Observe that |VF | = |VG| = 5 and |EF | = |EG| = 6.
So F and G are potentially isomorphic. Then notice that the mapping
f : VF → VG is an isomorphism: f (a) = u, f (b) = w, f (c) = y, f (d) = v,
f (e) = x. We have: {a, b} ∈ EF ⇔ {f (a) , f (b)} = {u,w} ∈ EG,
{b, c} ∈ EF ⇔ {f (b) , f (c)} = {w, y} ∈ EG,
{c, d} ∈ EF ⇔ {f (c) , f (d)} = {y, v} ∈ EG,
{d, e} ∈ EF ⇔ {f (d) , f (e)} = {v, x} ∈ EG,
{e, c} ∈ EF ⇔ {f (e) , f (c)} = {x, y} ∈ EG,
{e, a} ∈ EF ⇔ {f (e) , f (a)} = {x, u} ∈ EG.
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Are G and H isomorphic?

Observe that |VG| = |VH | = 5 and |EG| = |EH | = 6.
However, notice that in H there is vertex e of degree 1, while in G there is no
vertex of degree 1. Moreover, in H there is vertex a of degree 4 while in G there
is no vertex of degree 4. Therefore G 6∼= H.
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Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have

|V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) = b,
f (3) = c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4,

|E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) = b,
f (3) = c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4,

so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) = b,
f (3) = c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) =

a, f (2) = b,
f (3) = c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) =

b,
f (3) = c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) = b,
f (3) =

c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) = b,
f (3) = c, f (4) =

d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) = b,
f (3) = c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) = b,
f (3) = c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.

{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) = b,
f (3) = c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.

{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Suppose G1 = (V1, E1), G2 = (V2, E2), G3 = (V3, E3) (from left to right) are the
following graphs respectively.

3

4

1 2

d c

a b

v w

x y

We have |V1| = |V2| = |V3| = 4, |E1| = |E2| = 6, |E3| = 4, so G1 are potentially
isomorphic with G2, but it is clear that G1 6∼= G3 and G2 6∼= G3. Then notice that
the following mapping f : VE1 → VE2 is an isomorphism: f (1) = a, f (2) = b,
f (3) = c, f (4) = d. We have

{1, 2} ∈ E1 ⇔ {a, b} ∈ E2, {1, 3} ∈ E1 ⇔ {a, c} ∈ E2,
{1, 4} ∈ E1 ⇔ {a, d} ∈ E2.
{2, 3} ∈ E1 ⇔ {b, c} ∈ E2, {2, 4} ∈ E1 ⇔ {b, d} ∈ E2.
{3, 4} ∈ E1 ⇔ {c, d} ∈ E2.

MZI (SoC Tel-U) Graph (Part 2) May 2023 10 / 54



Identifying Isomorphic Graphs via Adjacency Matrix

Suppose G and H are the two following graphs (from left to right respectively).

z

d

c

a

b

e

x

v w

y

To check whether G ∼= H, we can form an adjacency matrix for each graph,
namely AG and AH , and see whether the row and column of AH can be
permuted so that AH = AG.
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We have

AG =

a b c d e
a 0 1 1 1 0
b 1 0 1 0 0
c 1 1 0 1 0
d 1 0 1 0 1
e 0 0 0 1 0

and AH =

v w x y z
v 0 1 1 0 1
w 1 0 1 1 0
x 1 1 0 1 0
y 0 1 1 0 0
z 1 0 0 0 0

, AH =

x y w v z
x 0 1 1 1 0
y 1 0 1 0 0
w 1 1 0 1 0
v 1 0 1 0 1
z 0 0 0 1 0

,

observe that the function f (a) = x, f (b) = y, f (c) = w, f (d) = v, and
f (e) = z is an isomorphism, hence G ∼= H.
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More about Graph Isomorphism

We have already seen that graphs G1 and G2 that are isomorphic have following
characteristics: the number of vertices in G1 is identical to the number of vertices
in G2, the number of edges in G1 is identical to the number of edges in G2, and
the degree of each vertex that corresponds to each other on the two graphs are
identical.

However, sometimes the above characteristics are not enough and we need to
draw G1 and G2 to verify the isomorphism visually. Suppose G1 = (V1, E1) and
G2 = (V2, E2) are two graphs as follows (from left to right respectively).

x

u

v

w

y

Although |V1| = |V2| and |E1| = |E2|, we have G1 6∼= G2. Suppose G1 ∼= G2, then
the only possible isomorphism must make f (x) = y. In G1, vertex x is adjacent
to two pendant vertices, namely u and v. Meanwhile, in G2, vertex y only
adjacent with one pendant vertex.
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G2 = (V2, E2) are two graphs as follows (from left to right respectively).

x

u

v

w

y

Although |V1| = |V2| and |E1| = |E2|, we have G1 6∼= G2. Suppose G1 ∼= G2, then
the only possible isomorphism must make f (x) = y. In G1, vertex x is adjacent
to two pendant vertices, namely u and v.

Meanwhile, in G2, vertex y only
adjacent with one pendant vertex.
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Graph Isomorphism Problem

Graph isomorphism problem is the following computational problem.

Graph Isomorphism Problem
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), check whether G1 ∼= G2.

Not all of graph isomorphism problems can be solved easily. Furthermore, until
now, there is no effi cient algorithm to solve this problem. Manual verification of
graph isomorphism needs meticulousness and specific insights.
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Some Examples of Isomorphic Graphs

The two following graphs are isomorphic graphs.

These following three graphs are isomorphic graphs.
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Exercise 1: Graph Isomorphism

Exercise
1 Check whether the following graphs G and H are isomorphic.

Graph G and H
2 Check whether the following graphs G and H are isomorphic.

Graph G and H
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Connectivity: Motivation

Notice the following graph:

1 Can we go from vertex a to all other vertices?
2 Is there any “path” from vertex a to vertex b that passes through all of the
edges in the graph exactly once except the edge {b, d}?

3 Can we visit all vertices and back to the initial vertex where each vertex is
visited only once?
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Path Definition

Definition (Path Definition)
Given an undirected graph G = (V,E, f) and an integer n ≥ 0, a path of length n
from vertex u to v is a sequence of n edges

e1, e2, . . . , en, where

f (e1) = {t0, t1} , f (e2) = {t1, t2} , . . . , f (en) = {tn−1, tn} , t0 = u and tn = v.

When G is a simple graph (no multiple edges neither loop), then a path of length
n as explained before can be written as t0, t1, . . . , tn. Usually, this path is written
as 〈t0, t1, . . . , tn〉.

Definition
A path is called pass through vertices x1, x2, . . . , xn−1 or traverse the edges
e1, e2, . . . , en.

Path definition for directed graphs is analogous to the above definition.
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Example of Path

Notice the following graph:

In the above graph: 〈a, e, f, c〉 is a path of length

3, 〈a, e, b, c, a〉 is a path of
length 4, 〈a, e, f, e, f〉 is a path of length 4, and 〈a, e, c, a, e, a〉 is a path of length
5.
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Definition and Example of Circuit

Definition (Definition of Circuit or Cycle)
A path 〈t0, t1, . . . , tn〉 is called a circuit or cycle if t0 = tn and its length is not
zero.

Notice the following graph:

In the above graph: 〈e, f, b, c, e〉 is a circuit of length

4, 〈a, e, f, c, a〉 is a circuit of
length 4, 〈a, e, c, a, e, a〉 is a circuit of length 5, and 〈d, b, e, f, b, d〉 is a circuit of
length 5.
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Simple and Elementary Circuit

Definition (Definition of Simple and Elementary Path/Circuit)
A path (or circuit) is called simple if the path (or circuit) has no (or not pass
through) same edges more than once. Furthermore, a path (or circuit) is called
elementary if it has no (or not pass through) same vertex more than once.
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Example of Simple and Elementary Circuit

Notice the following graph:

In the above graph: 〈a, e, a, e, a〉

is not a simple path and not an elementary path,
〈a, e, b, f, e〉 is a simple path but not an elementary path, and 〈a, e, f, b, d〉 is a
simple path as well as an elementary path. Is there any elementary path that is
not simple on the above graph?
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Connectedness Definition

Definition (Connectedness for Undirected Graphs)
Suppose G = (V,E, f) is an undirected graph. Two vertices u and v are called
connected if there is a path from u to v. Afterwards, G is called connected if
there is a path from u to v for every u, v ∈ V where u 6= v.

Definition (Connectedness for Directed Graphs)
Suppose G = (V,E, f) is a directed graph. Vertex u is called connected to v (or
vertex v is connected from u) if there is a path from u to v. Then

1 G is called strongly connected if there is a path from u to v and from v to u
for every u, v ∈ V where u 6= v,

2 G is called weakly connected if the undirected graph G0 that is obtained
from graph G by eliminating its direction is a connected graph.

If G is not a connected graph, then G is called as a disconnected graph.
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The example of a disconnected graph is as follows.

1

2

3

4
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6

78
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The example of strongly connected directed graph is as follows.

1

2 3

The example of weakly connected directed graph is as follows.

1

2

3 4
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Exercise 2: Connectivity

Exercise
Classify the following graphs based on their connectivity!

Graph G1 Graph G2

Graph G3 Graph G4
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Connected Component

Definition (Connected Component on Undirected Graphs)
Connected component of a graph G is a subgraph of G that is connected and it is
not a proper subgraph of other connected subgraph.

Notice the following illustration.

The above graph is a graph H that contains three connected components, namely
H1, H2, and H3.
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Definition (Strongly Connected Component on Directed Graphs)
A strongly connected component of a graph G is a subgraph of G that is strongly
connected and it is not a proper subgraph of other connected subgraph.

For example, the following graph G has two strongly connected components (the
leftmost subgraph and the rightmost subgraph).

2 3

4

5

1
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Cut Set

Definition (Cut Set of Connected Graph)
Suppose G = (V,E) is a connected undirected graph, the set of edges C ⊆ E is
called a cut set if

1 eliminating edges in C causes G become disconnected,
2 there is no D ⊂ C that can cause G become disconnected by eliminating the
edges on D.

Intuitively, a cut set cannot contain another cut set as its proper subset.
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Notice the following illustration:

1

2 3

4

5

6

51

2

4

3

6

Set C = {{1, 5} , {1, 4} , {2, 3} , {2, 4}} is a cut set. Some of the other cut sets
are:

1 C = {{1, 5} , {4, 5}}, notice that all of proper subset of C is not a cut set;
2 C = {{1, 2} , {1, 4} , {1, 5}}, notice that all of proper subset of C is not a cut
set;

3 C = {{5, 6}}, notice that all of proper subset of C is not a cut set.
Set {{1, 5} , {4, 5} , {3, 4}} is not a cut set because {{1, 5} , {4, 5}} is already a
cut set.
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Counting the Number of Paths Between Two Vertices

The number of paths of particular length between two vertices in a graph can be
obtained through its adjacency matrix.

Theorem
Suppose G = (V,E, f) is a graph (either directed or undirected, may have
multiple edges or loop) where V = {v1, v2, . . . , vn} with adjacency matrix AG. If
AG [i, j] is the number of edges from vi to vj , then the number of different paths
of length r (r = 1, 2, . . .) from vi to vj is equal to [i, j]-th entry of the matrix Ar

G.
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Suppose G is the following graph.

Graph G

Suppose we want to know the number of paths in G with length of 4 from c to b.
In the graph G, with the vertices order a, b, c, d, we have

AG =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , A4
G =


8 0 0 8
0 8 8 0
0 8 8 0
8 0 0 8


So there are 8 paths with length of 4 from c to b.
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Motivation: Euler Path and Circuit

Can the pattern in the following picture be drawn using a pencil with continuous
movement (without lifting the pencil) and every line is drawn only once?
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Definition of Euler Path and Circuit

Definition (Multigraph)
An undirected graph G = (V,E, f) is called a multigraph if G may have multiple
edges but has no loop.

Definition (Euler Path and Circuit)
Suppose G = (V,E, f) is a multigraph or directed graph that has no loop, an
Euler path is a simple path that contain every edge in G. Then, an Euler circuit is
an Euler path that starts and ends on the same vertex .

Therefore, an Euler path of a graph is a path that traverses every edge on the
graph exactly once. In addition an Euler circuit of a graph is a circuit that
traverses every edge on the graph exactly once.
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Eulerian Graph and Semi-Eulerian Graph

Definition (Eulerian Graph and Semi-Eulerian Graph)
A graph that has an Euler circuit is called an Eulerian graph. If the graph has no
Euler circuit but has Euler path, then the graph is called as a semi-Eulerian graph.

Remark
Every graph that has an Euler circuit obviously has an Euler path, but not vice
versa.
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Suppose G1, G2, and G3 are the following graphs (a), (b), and (c) respectively.

12

3 4

1 2

3

4

5 6

1

2 3

4

5

6 7

(a) (b) (c)

1 Graph G1 has an Euler path, one of them is 〈1, 2, 3, 1, 4, 3〉. However, G1 has
no Euler circuit (check it).

2 Graph G2 has an Euler path, one of them is 〈1, 2, 4, 6, 2, 3, 6, 5, 1, 3, 5〉.
However, G2 has no Euler circuit (check it).

3 Graph G3 has an Euler circuit, one of them is 〈1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 38 / 54



Suppose G1, G2, and G3 are the following graphs (a), (b), and (c) respectively.

12

3 4

1 2

3

4

5 6

1

2 3

4

5

6 7

(a) (b) (c)

1 Graph G1 has an Euler path, one of them is

〈1, 2, 3, 1, 4, 3〉. However, G1 has
no Euler circuit (check it).

2 Graph G2 has an Euler path, one of them is 〈1, 2, 4, 6, 2, 3, 6, 5, 1, 3, 5〉.
However, G2 has no Euler circuit (check it).

3 Graph G3 has an Euler circuit, one of them is 〈1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 38 / 54



Suppose G1, G2, and G3 are the following graphs (a), (b), and (c) respectively.

12

3 4

1 2

3

4

5 6

1

2 3

4

5

6 7

(a) (b) (c)

1 Graph G1 has an Euler path, one of them is 〈1, 2, 3, 1, 4, 3〉.

However, G1 has
no Euler circuit (check it).

2 Graph G2 has an Euler path, one of them is 〈1, 2, 4, 6, 2, 3, 6, 5, 1, 3, 5〉.
However, G2 has no Euler circuit (check it).

3 Graph G3 has an Euler circuit, one of them is 〈1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 38 / 54



Suppose G1, G2, and G3 are the following graphs (a), (b), and (c) respectively.

12

3 4

1 2

3

4

5 6

1

2 3

4

5

6 7

(a) (b) (c)

1 Graph G1 has an Euler path, one of them is 〈1, 2, 3, 1, 4, 3〉. However, G1 has
no Euler circuit (check it).

2 Graph G2 has an Euler path, one of them is 〈1, 2, 4, 6, 2, 3, 6, 5, 1, 3, 5〉.
However, G2 has no Euler circuit (check it).

3 Graph G3 has an Euler circuit, one of them is 〈1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 38 / 54



Suppose G1, G2, and G3 are the following graphs (a), (b), and (c) respectively.

12

3 4

1 2

3

4

5 6

1

2 3

4

5

6 7

(a) (b) (c)

1 Graph G1 has an Euler path, one of them is 〈1, 2, 3, 1, 4, 3〉. However, G1 has
no Euler circuit (check it).

2 Graph G2 has an Euler path, one of them is

〈1, 2, 4, 6, 2, 3, 6, 5, 1, 3, 5〉.
However, G2 has no Euler circuit (check it).

3 Graph G3 has an Euler circuit, one of them is 〈1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 38 / 54



Suppose G1, G2, and G3 are the following graphs (a), (b), and (c) respectively.

12

3 4

1 2

3

4

5 6

1

2 3

4

5

6 7

(a) (b) (c)

1 Graph G1 has an Euler path, one of them is 〈1, 2, 3, 1, 4, 3〉. However, G1 has
no Euler circuit (check it).

2 Graph G2 has an Euler path, one of them is 〈1, 2, 4, 6, 2, 3, 6, 5, 1, 3, 5〉.

However, G2 has no Euler circuit (check it).
3 Graph G3 has an Euler circuit, one of them is 〈1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 38 / 54



Suppose G1, G2, and G3 are the following graphs (a), (b), and (c) respectively.

12

3 4

1 2

3

4

5 6

1

2 3

4

5

6 7

(a) (b) (c)

1 Graph G1 has an Euler path, one of them is 〈1, 2, 3, 1, 4, 3〉. However, G1 has
no Euler circuit (check it).

2 Graph G2 has an Euler path, one of them is 〈1, 2, 4, 6, 2, 3, 6, 5, 1, 3, 5〉.
However, G2 has no Euler circuit (check it).

3 Graph G3 has an Euler circuit, one of them is 〈1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 38 / 54



Suppose G1, G2, and G3 are the following graphs (a), (b), and (c) respectively.

12

3 4

1 2

3

4

5 6

1

2 3

4

5

6 7

(a) (b) (c)

1 Graph G1 has an Euler path, one of them is 〈1, 2, 3, 1, 4, 3〉. However, G1 has
no Euler circuit (check it).

2 Graph G2 has an Euler path, one of them is 〈1, 2, 4, 6, 2, 3, 6, 5, 1, 3, 5〉.
However, G2 has no Euler circuit (check it).

3 Graph G3 has an Euler circuit, one of them is

〈1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 38 / 54



Suppose G1, G2, and G3 are the following graphs (a), (b), and (c) respectively.

12

3 4

1 2

3

4

5 6

1

2 3

4

5

6 7

(a) (b) (c)

1 Graph G1 has an Euler path, one of them is 〈1, 2, 3, 1, 4, 3〉. However, G1 has
no Euler circuit (check it).

2 Graph G2 has an Euler path, one of them is 〈1, 2, 4, 6, 2, 3, 6, 5, 1, 3, 5〉.
However, G2 has no Euler circuit (check it).

3 Graph G3 has an Euler circuit, one of them is 〈1, 2, 3, 4, 7, 3, 5, 7, 6, 5, 2, 6, 1〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 38 / 54



Suppose G4, G5, and G6 are the following graphs (d), (e), and (f) respectively.
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(d) (e) (f)

1 Graph G4 has an Euler circuit, one of them is 〈a, c, f, e, c, b, d, e, a, d, f, b, a〉.
2 Graph G5 has no Euler circuit and path.
3 Graph G6 has an Euler path, one of them is 〈a, b, e, d, c, a, d, b〉.
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Theorem about Euler Path and Circuit for Undirected
Graphs

Theorem
A multigraph G = (V,E, f) has an Euler circuit if and only if G is connected and
every vertex has an even degree.

Theorem
A multigraph G = (V,E, f) has an Euler path but has no Euler circuit if and only
if G is connected and it has exactly two vertices of odd degree.
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Exercise 3: Euler Path & Circuit of Undirected Graphs
Exercise
Check whether the following graphs have Eulerian circuit? If no, then check
whether the graph has Euler path.

Solution:
Graph G1

has an Euler circuit, because the degree of each vertex is even, one
of the circuit is 〈a, b, e, c, d, e, a〉.
Graph G2 has no Euler path, because there are four vertices with odd degree,
namely deg (a) = deg (b) = deg (c) = deg (d) = 3.
Graph G3 has no Euler circuit but it has Euler path, one of the path is
〈a, b, e, d, c, a, d, b〉.
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Exercise 4: Eulerian and Semi-Eulerian Graph

Exercise
Check whether the following graphs are Eulerian graph, semi-Eulerian graph, or
neither.
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(a) (b) (c)

(d) (e) (f)

Solution:

a) semi-Eulerian graph, b) semi-Eulerian graph, c) Eulerian graph, d)
Eulerian graph, e) neither, f) semi-Eulerian graph.
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Theorem about Euler Path and Circuit for Directed Graph

Theorem
A directed graph G = (V,E) has an Euler circuit if and only if G is connected and
every vertex has identical in-degree and out-degree, in other words
degin (v) = degout (v) or deg

− (v) = deg+ (v) for every v ∈ V .

Theorem
A directed graph G = (V,E) has an Euler path but has no Euler circuit if and
only if G is connected and every vertex has identical in-degree and out-degree,
except for two vertices a and b with the following properties:

1 degout (a) = degin (a) + 1, or deg
+ (a) = deg− (a) + 1

2 degin (b) = degout (b) + 1, or deg
− (b) = deg+ (b) + 1.

This means there are exactly two vertices, the first vertex has the out-degree one
greater than the in-degree, the second vertex has the in-degree one greater than
the out-degree.
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Exercise 5: Euler Path & Circuit of Directed Graphs

Exercise
Check whether the following graphs have Euler circuit? If not, check whether the
graph has Euler path.

Solution:

1 Graph H1 has no Euler path, because deg
+ (a) = 2 but deg− (a) = 0.

2 Graph H2 has an Euler circuit, one of the circuit is 〈a, g, c, b, g, e, d, f, a〉.
3 Graph H3 has no Euler circuit but it has an Euler path, one of the path is
〈c, a, b, c, d, b〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 44 / 54



Exercise 5: Euler Path & Circuit of Directed Graphs

Exercise
Check whether the following graphs have Euler circuit? If not, check whether the
graph has Euler path.

Solution:

1 Graph H1 has no Euler path, because deg
+ (a) = 2 but deg− (a) = 0.

2 Graph H2 has an Euler circuit, one of the circuit is 〈a, g, c, b, g, e, d, f, a〉.
3 Graph H3 has no Euler circuit but it has an Euler path, one of the path is
〈c, a, b, c, d, b〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 44 / 54



Exercise 5: Euler Path & Circuit of Directed Graphs

Exercise
Check whether the following graphs have Euler circuit? If not, check whether the
graph has Euler path.

Solution:

1 Graph H1 has no Euler path, because deg
+ (a) = 2 but deg− (a) = 0.

2 Graph H2 has an Euler circuit, one of the circuit is 〈a, g, c, b, g, e, d, f, a〉.

3 Graph H3 has no Euler circuit but it has an Euler path, one of the path is
〈c, a, b, c, d, b〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 44 / 54



Exercise 5: Euler Path & Circuit of Directed Graphs

Exercise
Check whether the following graphs have Euler circuit? If not, check whether the
graph has Euler path.

Solution:

1 Graph H1 has no Euler path, because deg
+ (a) = 2 but deg− (a) = 0.

2 Graph H2 has an Euler circuit, one of the circuit is 〈a, g, c, b, g, e, d, f, a〉.
3 Graph H3 has no Euler circuit but it has an Euler path, one of the path is
〈c, a, b, c, d, b〉.

MZI (SoC Tel-U) Graph (Part 2) May 2023 44 / 54



Contents

1 Graph Isomorphism
Identifying Isomorphic Graph
Identifying Isomorphic Graphs via Adjacency Matrix
More about Graph Isomorphism
Exercise: Determining Graph Isomorphism

2 Connectivity
Path and Circuit
Connected and Connectivity Definition
Counting the Number of Paths Between Two Vertices

3 Euler Path and Circuit

4 Hamilton Path and Circuit

MZI (SoC Tel-U) Graph (Part 2) May 2023 45 / 54



Motivation: Hamilton Path and Circuit

Observe the following graph:

Graph G

Is there any circuit that traverses all vertices in the graph G exactly once? If it
isn’t, then is there any path that traverses all the vertices in the graph G exactly
once?
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Definition of Hamilton Path and Circuit

In this course, Hamilton path and circuit are considered on simple graphs (graphs
with no multiple edges nor loop).

Definition
Suppose G = (V,E) is a simple graph. A Hamilton path is a simple path that
traverses every vertex on G exactly once. A Hamilton circuit is a simple circuit
that traverses every vertex on G exactly once, except for initial vertex (which is
identical to the terminal vertex) that is traversed exactly twice .

Definition
A graph that has a Hamilton circuit is called Hamiltonian graph, while a graph
that only has a Hamilton path (but does not have Hamilton circuit) is called
semi-Hamiltonian graph.

Notice that if G = (V,E) is a semi-Hamilton graph and x0, x1, . . . , xn−1, xn is a
Hamilton path on G then V = {x0, x1, . . . , xn−1, xn}.
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Suppose G1, G2, and G3 are respectively the following graphs (from left to right).

1 2

34

1

3

2

4

1 2

34

1 Graph G1 has a Hamilton path, one of them is 〈4, 1, 3, 2〉. However, it is not
possible for G1 to have a Hamilton circuit. This is because every circuit that
contain vertex 4 must contain vertex 1 more than once.

2 Graph G2 has a Hamilton circuit, one of them is 〈1, 2, 3, 4, 1〉.
3 Graph G3 has no Hamilton path. This is because every path that traverses all
vertices in G3 and contain vertex 1 as well as vertex 3 must contain vertex 4
more than once.
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Exercise 6: Hamilton Path and Circuit

Exercise
Check whether the following graphs have Hamilton circuit! If they’re not, check
whether the graph has Hamilton path!

Graph G1, G2, and G3
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Solution of Exercise 6

1 G1 has a Hamilton circuit, namely

〈a, b, c, d, e, a〉.
2 G2 has no Hamilton circuit, but G2 has a Hamilton path, namely 〈a, b, c, d〉.
G2 has no Hamilton circuit because every circuit that traverses all vertices in
G2 must contain the edge {a, b} at least twice.

3 G3 has no Hamilton path. This is because every path that contains all
vertices in G3 must contain one of the edges {a, b}, {e, f}, or {c, d} more
than once.
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vertices in G3 must contain one of the edges {a, b}, {e, f}, or {c, d} more
than once.
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Theorems about Hamilton Path and Circuit

Theorem
A complete graph Kn for n ≥ 3 has Hamilton circuit.

Theorem (Dirac’s Theorem)
If G = (V,E) is a simple connected graph with |V | ≥ 3 that satisfies

deg (v) ≥ |V |
2
for every v ∈ V ,

then G has Hamilton circuit.

Theorem (Ore’s Theorem)
If G = (V,E) is a simple connected graph with |V | ≥ 3 that satisfies

deg (u) + deg (v) ≥ |V | , for every u, v ∈ V that are not adjacent,

then G has Hamilton circuit.
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Exercise 7: Counting The Number of Different Hamilton
Circuits

Exercise
Determine the number of different Hamilton circuits with initial and terminal
vertex a on the following graph.
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We consider the graph K6 with set of vertices V = {a, b, c, d, e, f}. Any Hamilton
circuit with initial and terminal vertex a on the graph must have the following form

〈a, v1, v2, v3, v4, v5, a〉 ,

where vi ∈ V for every 1 ≤ i ≤ 5. Because we consider the graph K6, then every
vertex is adjacent to each other, therefore:

1 there are 5 choices for v1 (because v1 6= a),
2 there are 4 choices for v2 (because v2 6= v1 6= a),
3 there are 3 choices for v3 (because v3 6= v2 6= v1 6= a),
4 there are 2 choices for v4 (because v4 6= v3 6= v2 6= v1 6= a), and
5 there is 1 choice for v5 (because v5 6= v4 6= v3 6= v2 6= v1 6= a).

Therefore, there are 5! = 120 possible circuits. However, because the graph is
undirected, then the circuit

〈a, v5, v4, v3, v2, v1, a〉

is considered to be similar with 〈a, v1, v2, v3, v4, v5, a〉, therefore, there is only
120
2 = 60 different Hamilton circuits.
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The Number of Hamilton Circuit on Kn

Theorem

There are (n−1)!
2 different Hamilton circuits in the complete graph Kn.

Theorem
There are n−1

2 disjoint Hamilton circuits (the set of edges on the circuit is
disjoint) in a complete graph Kn where n ≥ 3 and n is an odd number.

Theorem
There are n−2

2 disjoint Hamilton circuits (the set of edges on the circuit is
disjoint) in a complete graph Kn where n ≥ 4 and n is an even number.
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