Dasar Teori Graf (Bagian 1)

Beberapa Definisi Formal Graf - Representasi Matriks untuk Graf

MZI

Fakultas Informatika Telkom University

FIF Tel-U

April-Mei 2023

1 / 77

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023

Acknowledgements

Slide ini disusun berdasarkan materi yang terdapat pada sumber-sumber berikut:

- Discrete Mathematics and Its Applications, Edisi 8, 2019, oleh K. H. Rosen (acuan utama).
- ② Discrete Mathematics with Applications, Edisi 5, 2018, oleh S. S. Epp.
- Mathematics for Computer Science. MIT, 2010, oleh E. Lehman, F. T. Leighton, A. R. Meyer.
- Slide kuliah Matematika Diskret 2 (2012) di Fasilkom UI oleh B. H. Widjaja.
- 5 Slide kuliah Matematika Diskret 2 di Fasilkom UI oleh Tim Dosen.
- Slide kuliah Matematika Diskrit di Telkom University oleh B. Purnama dan rekan-rekan.

Beberapa gambar dapat diambil dari sumber-sumber di atas. *Slide* ini ditujukan untuk keperluan akademis di lingkungan FIF Telkom University. Jika Anda memiliki saran/ pendapat/ pertanyaan terkait materi dalam *slide* ini, silakan kirim email ke <ple>pleasedontspam>@telkomuniversity.ac.id.

Bahasan

- Latar Belakang dan Motivasi
- 2 Beberapa Definisi Formal Graf
- Beberapa Terminologi Dasar
- Subgraf, Subgraf Perentang (Spanning Subgraph), Graf Komplemen (Complement Graph), dan Graf Gabungan
- 5 Beberapa Graf Sederhana dengan Struktur Khusus
- 6 Representasi Graf dengan Matriks dan Daftar

Bahasan

- Latar Belakang dan Motivasi
- 2 Beberapa Definisi Formal Graf
- 3 Beberapa Terminologi Dasar
- Subgraf, Subgraf Perentang (Spanning Subgraph), Graf Komplemen (Complement Graph), dan Graf Gabungan
- Beberapa Graf Sederhana dengan Struktur Khusus
- 6 Representasi Graf dengan Matriks dan Daftar

Latar Belakang

Graf (Bahasa Inggris: *graph*) merupakan suatu objek dalam matematika diskrit yang penting dan memiliki banyak penerapan, salah satunya adalah dalam desain topologi jaringan komunikasi.

Graf dapat digunakan untuk **memodelkan keterhubungan** antar objek-objek diskrit. Salah satunya adalah graf yang menggambarkan keterhubungan antar kota di Jawa Tengah (*keterhubungan di sini ditinjau dari ada tidaknya jalan raya yang menghubungkan kota-kota tersebut*).

Latar Belakang

Graf (Bahasa Inggris: graph) merupakan suatu objek dalam matematika diskrit yang penting dan memiliki banyak penerapan, salah satunya adalah dalam desain topologi jaringan komunikasi.

Graf dapat digunakan untuk **memodelkan keterhubungan** antar objek-objek diskrit. Salah satunya adalah graf yang menggambarkan keterhubungan antar kota di Jawa Tengah (*keterhubungan di sini ditinjau dari ada tidaknya jalan raya yang menghubungkan kota-kota tersebut*).

5 / 77

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023

Dengan memodelkan keterhubungan kota-kota yang di Jawa Tengah dengan graf, kita dapat menjawab pertanyaan-pertanyaan berikut:

Dengan memodelkan keterhubungan kota-kota yang di Jawa Tengah dengan graf, kita dapat menjawab pertanyaan-pertanyaan berikut:

• Rute terpendek seperti apa yang menghubungkan kota Pekalongan dan Solo?

April-Mei 2023

Dengan memodelkan keterhubungan kota-kota yang di Jawa Tengah dengan graf, kita dapat menjawab pertanyaan-pertanyaan berikut:

- Rute terpendek seperti apa yang menghubungkan kota Pekalongan dan Solo?
- Apakah kita dapat mengunjungi setiap kota di Jawa Tengah dan hanya melalui kota-kota tersebut tepat sekali saja dalam satu perjalanan?

Dengan memodelkan keterhubungan kota-kota yang di Jawa Tengah dengan graf, kita dapat menjawab pertanyaan-pertanyaan berikut:

- Rute terpendek seperti apa yang menghubungkan kota Pekalongan dan Solo?
- Apakah kita dapat mengunjungi setiap kota di Jawa Tengah dan hanya melalui kota-kota tersebut tepat sekali saja dalam satu perjalanan?
- Berapa banyak rute berbeda yang dapat dilalui seseorang jika pergi dari Cilacap ke Rembang bila banyaknya kota yang dilalui harus sesedikit mungkin?

Dengan memodelkan keterhubungan kota-kota yang di Jawa Tengah dengan graf, kita dapat menjawab pertanyaan-pertanyaan berikut:

- Rute terpendek seperti apa yang menghubungkan kota Pekalongan dan Solo?
- Apakah kita dapat mengunjungi setiap kota di Jawa Tengah dan hanya melalui kota-kota tersebut tepat sekali saja dalam satu perjalanan?
- Berapa banyak rute berbeda yang dapat dilalui seseorang jika pergi dari Cilacap ke Rembang bila banyaknya kota yang dilalui harus sesedikit mungkin?

Dengan pemodelan graf, kota-kota yang ditinjau dimodelkan sebagai titik atau simpul atau verteks (*vertex*, jamak: *vertices*) sedangkan jalan-jalan yang ditinjau dimodelkan sebagai sisi atau garis atau busur (*edge* atau *arc*).

Dengan memodelkan keterhubungan kota-kota yang di Jawa Tengah dengan graf, kita dapat menjawab pertanyaan-pertanyaan berikut:

- Rute terpendek seperti apa yang menghubungkan kota Pekalongan dan Solo?
- Apakah kita dapat mengunjungi setiap kota di Jawa Tengah dan hanya melalui kota-kota tersebut tepat sekali saja dalam satu perjalanan?
- Berapa banyak rute berbeda yang dapat dilalui seseorang jika pergi dari Cilacap ke Rembang bila banyaknya kota yang dilalui harus sesedikit mungkin?

Dengan pemodelan graf, kota-kota yang ditinjau dimodelkan sebagai titik atau simpul atau verteks (*vertex*, jamak: *vertices*) sedangkan jalan-jalan yang ditinjau dimodelkan sebagai sisi atau garis atau busur (*edge* atau *arc*).

Graf biasanya terdiri dari dua himpunan, yaitu himpunan simpul (dinotasikan dengan V) dan himpunan sisi (dinotasikan dengan E).

Definisi (Definisi Informal Graf)

Graf merupakan struktur matematika yang terdiri atas himpunan simpul (titik atau *vertex*) dan himpunan sisi (garis atau *edge*) yang menghubungkan simpul-simpul tersebut.

Bahasan

- Latar Belakang dan Motivasi
- 2 Beberapa Definisi Formal Graf
- 3 Beberapa Terminologi Dasar
- Subgraf, Subgraf Perentang (Spanning Subgraph), Graf Komplemen (Complement Graph), dan Graf Gabungan
- Beberapa Graf Sederhana dengan Struktur Khusus
- 6 Representasi Graf dengan Matriks dan Daftar

Graf Berarah dengan Sisi Ganda

Definisi (untuk graf berarah dengan sisi ganda)

Suatu graf G dinyatakan dalam triplet (V,E,f) dengan

- $lackbox{0}\ V$ merupakan himpunan seluruh simpul pada graf,
- E merupakan himpunan seluruh sisi pada graf,
- \bullet f adalah fungsi total dari E ke $V \times V$.

Graf **berarah** yang memiliki sisi ganda maupun gelang disebut graf berarah sembarang atau graf ganda berarah (*directed multigraph*).

MZI (FIF Tel-U) Graf (Bagian 1)

Latihan 1: Graf Berarah dengan Sisi Ganda

Latihan

Tuliskan graf berikut dalam bentuk triplet (V, E, f)

Kita memiliki G=(V,E,f) dengan

- $V = \{1, 2, 3, 4\},\$
- \bullet E =

MZI (FIF Tel-U)

Kita memiliki G = (V, E, f) dengan

- $V = \{1, 2, 3, 4\},$
- $E = \{e_1, e_2, e_3, e_4, e_5, e_6\},\$
- $f: E \rightarrow V \times V$ dengan definisi:

MZI (FIF Tel-U)

- $V = \{1, 2, 3, 4\},$
- $E = \{e_1, e_2, e_3, e_4, e_5, e_6\},\$
- $f: E \rightarrow V \times V$ dengan definisi:
 - $f(e_1) = f(e_2) = (1,2)$
 - $f(e_3) = (3,4)$
 - $f(e_4) = (4,3)$
 - $f(e_5) = f(e_6) = (4,4).$

Graf Tak Berarah dengan Sisi Ganda

Definisi (untuk graf tak berarah berarah dengan sisi ganda)

Suatu graf G dinyatakan dalam triplet (V, E, f) dengan

- $oldsymbol{0}\ V$ merupakan himpunan seluruh simpul pada graf,
- 2 E merupakan himpunan seluruh sisi pada graf,
- $\textbf{ 0} \ \, f \ \, \text{adalah fungsi total dari} \,\, E \,\, \text{ke himpunan} \,\, \{\{u,v\} \,\mid \, u,v \in V\}.$

Graf **tak berarah** yang memiliki sisi ganda maupun gelang disebut graf samar atau graf semu (*pseudograph*).

Latihan 2: Graf Tak Berarah dengan Sisi Ganda

Latihan

Tuliskan graf berikut dalam bentuk triplet (V, E, f)

Kita memiliki G=(V,E,f) dengan

MZI (FIF Tel-U)

- \bullet E =

- $V = \{1, 2, 3, 4\},$
- $E = \{e_1, e_2, e_3, e_4, e_5, e_6\},\$

- $V = \{1, 2, 3, 4\},$
- $E = \{e_1, e_2, e_3, e_4, e_5, e_6\},\$
- $\bullet \ f: E \to \{\{u,v\}: u,v \in V\} \ \text{dengan definisi:}$
 - $f(e_1) = f(e_2) = \{1, 2\} = \{2, 1\}$
 - $f(e_3) = f(e_4) = \{3, 4\} = \{4, 3\}$
 - $f(e_5) = f(e_6) = \{4,4\} = \{4\}.$

Graf Berarah Tanpa Sisi Ganda

Definisi (sisi ganda dan gelang)

Dengan definisi graf yang telah diberikan sebelumnya, sisi $e_1,e_2\in E$ dikatakan sebagai sisi ganda (parallel edge) apabila $f\left(e_1\right)=f\left(e_2\right)$. Sisi $e\in E$ dikatakan sebagai gelang (loop) apabila $f\left(e\right)=\left(u,u\right)$ atau $f\left(e\right)=\left\{u,u\right\}=\left\{u\right\}$.

Definisi (untuk graf berarah **tanpa** sisi ganda)

Suatu graf G dinyatakan dalam pasangan (V,E) dengan

- $oldsymbol{0}\ V$ merupakan himpunan seluruh simpul pada graf tersebut,
- $E \subseteq V \times V.$

Graf **berarah** yang tidak memiliki sisi ganda namun boleh memiliki gelang disebut graf berarah atau digraf (*directed graph*/ *digraph*).

Digraf sebelumnya telah kita lihat pada kajian relasi sebelum UTS.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

MZI (FIF Tel-U) Graf (Bagian 1)

Latihan 3: Graf Berarah Tanpa Sisi Ganda

Latihan

Tuliskan graf berikut dalam bentuk pasangan (V, E)

- $\mathbf{2} \ E =$

$$V = \{1, 2, 3, 4\},\$$

$$E = \{(1,2), (3,4), (4,3), (4,4)\}.$$

Graf Tak Berarah Tanpa Sisi Ganda

Definisi (untuk graf tak berarah tanpa sisi ganda)

Suatu graf G dinyatakan dalam pasangan (V,E) dengan

- lacktriangledown V merupakan himpunan seluruh simpul pada graf tersebut,
- **2** $E \subseteq \{\{u, v\} \mid u, v \in V\}.$

Definisi (graf sederhana (simple graph))

Graf sederhana (simple graph) adalah graf tak berarah yang tidak memiliki sisi ganda maupun gelang.

Latihan 4: Graf tak berarah tanpa sisi ganda

Latihan

Tuliskan graf berikut dalam bentuk pasangan (V, E)

- $\mathbf{2} E =$

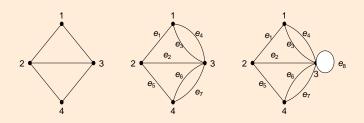
Kita memiliki G=(V,E) dengan

- $V = \{1, 2, 3, 4\},\$
- \bullet $E = \{\{1,2\},\{3,4\},\{4\}\}.$

Latihan 5

Latihan

Misalkan G_1 , G_2 , dan G_3 adalah graf-graf yang digambarkan sebagai berikut (berturut-turut dari kiri ke kanan G_1 , G_2 , dan G_3).



Berikan definisi formal untuk graf-graf tersebut.

Solusi Latihan 5

MZI (FIF Tel-U)

Solusi Latihan 5

- $\begin{array}{l} \bullet \ \ G_1 = (V_1, E_1) \ \text{dengan} \ V_1 = \{1, 2, 3, 4\} \ \text{dan} \\ E_1 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}. \end{array}$
- **②** $G_2=(V_2,E_2,f_2)$ dengan $V_2=\{1,2,3,4\}$, $E_2=\{e_1,e_2,e_3,e_4,e_5,e_6,e_7\}$, dan f_2 didefinisikan sebagai:
 - $f_2(e_1) = \{1, 2\} = \{2, 1\}$
 - $f_2(e_2) = \{2,3\} = \{3,2\}$
 - $f_2(e_3) = f_2(e_4) = \{1, 3\} = \{3, 1\}$

 - $f_2(e_6) = f_2(e_7) = \{3,4\} = \{4,3\}.$

MZI (FIF Tel-U)

Solusi Latihan 5

- $\begin{array}{l} \bullet \ \ G_1 = (V_1, E_1) \ \text{dengan} \ V_1 = \{1, 2, 3, 4\} \ \text{dan} \\ E_1 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}. \end{array}$
- **Q** $G_2=(V_2,E_2,f_2)$ dengan $V_2=\{1,2,3,4\}$, $E_2=\{e_1,e_2,e_3,e_4,e_5,e_6,e_7\}$, dan f_2 didefinisikan sebagai:
 - $f_2(e_1) = \{1, 2\} = \{2, 1\}$
 - $f_2(e_2) = \{2,3\} = \{3,2\}$

 - $f_2(e_5) = \{2,4\} = \{4,2\}$
 - $f_2(e_6) = f_2(e_7) = \{3,4\} = \{4,3\}.$
- $G_3 = (V_3, E_3, f_3) \text{ dengan } V_3 = \{1, 2, 3, 4\}, \\ E_3 = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}, \text{ dan } f_3 \text{ didefinisikan sebagai: }$
 - $f_3(e_1) = \{1, 2\} = \{2, 1\}$
 - $f_3(e_2) = \{2,3\} = \{3,2\}$

 - $f_3(e_6) = f_3(e_7) = \{3,4\} = \{4,3\}$
 - $f_3(e_8) = \{3,3\} = \{3\}.$

Graf Berhingga dan Graf Tak Berhingga

Kita telah melihat bahwa graf dapat ditulis dalam definisi formal G=(V,E,f) atau G=(V,E), himpunan V adalah himpunan simpul dan himpunan E adalah himpunan sisi.

Definisi (Graf Berhingga dan Tak Berhingga)

Suatu graf G=(V,E,f) atau G=(V,E) dikatakan graf berhingga bila V adalah himpunan berhingga, dengan perkataan lain |V|=n untuk suatu $n\in\mathbb{N}$. Jika V tidak berhingga, maka G dikatakan graf tak berhingga.

Catatan

Dalam perkuliahan ini, setiap graf yang ditinjau adalah graf berhingga.

Bahasan

- Latar Belakang dan Motivasi
- 2 Beberapa Definisi Formal Graf
- Beberapa Terminologi Dasar
- Subgraf, Subgraf Perentang (Spanning Subgraph), Graf Komplemen (Complement Graph), dan Graf Gabungan
- Beberapa Graf Sederhana dengan Struktur Khusus
- 6 Representasi Graf dengan Matriks dan Daftar

Bertetangga/ Bersisian, Tetangga, dan Lingkungan

Definisi (bertetangga/ bersisian dan bertumpuan pada graf tak berarah)

- Misalkan G = (V, E, f), $v_1, v_2 \in V$ dikatakan **bertetangga atau bersisian** (adjacent) apabila terdapat $e \in E$ dengan sifat $f(e) = \{v_1, v_2\}$.
- ② Misalkan G=(V,E), $v_1,v_2\in V$ dikatakan **bertetangga** apabila $\{v_1,v_2\}\in E$.

Apabila $f\left(e\right)=\left\{v_1,v_2\right\}$ (atau $e=\left\{v_1,v_2\right\}$) maka e dikatakan **bertumpuan** (incident) dengan v_1 dan v_2 . Simpul-simpul v_1 dan v_2 selanjutnya dikatakan sebagai **simpul ujung** (titik ujung atau endpoint) dari sisi $e\in E$.

Definisi (lingkungan pada graf tak berarah)

Misalkan $G=(V,E,f),\ u\in V$ dikatakan sebagai tetangga (neighbor) dari $v\in V$ jika terdapat $e\in E$ sehingga $f\left(e\right)=\{u,v\}$. Lingkungan (neighborhood) dari v, dinotasikan dengan $N\left(v\right)$, didefinisikan sebagai himpunan semua simpul yang merupakan tetangga dari v.

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023 24 / 77

◆□ > ◆圖 > ◆圖 > ◆圖 >

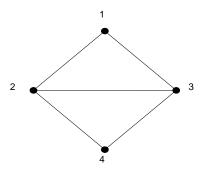
Definisi (betetangga/ bersisian pada graf berarah)

- Misalkan G=(V,E,f) adalah graf berarah. Simpul v_1 dikatakan bertetangga ke v_2 atau simpul v_2 dikatakan bertetangga dari v_1 apabila $f\left(e\right)=\left(v_1,v_2\right)$ untuk suatu $e\in E$.
- ② Misalkan G=(V,E) adalah graf berarah. Simpul v_1 dikatakan <u>bertetangga</u> ke v_2 atau simpul v_2 dikatakan bertetangga dari v_1 apabila $(v_1,v_2)\in E$.

Apabila $f(e)=(v_1,v_2)$ (atau $e=(v_1,v_2)$) maka v_1 dikatakan simpul awal (titik awal *initial vertex*) dan v_2 dikatakan simpul akhir (titik akhir atau *terminal vertex*) dari sisi $e\in E$.

Contoh Ilustrasi Ketetanggaan (Adjacency)

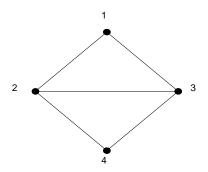
Misalkan ${\cal G}$ adalah graf sederhana tak berarah yang digambarkan sebagai berikut.



Kita memiliki:

Contoh Ilustrasi Ketetanggaan (Adjacency)

Misalkan G adalah graf sederhana tak berarah yang digambarkan sebagai berikut.

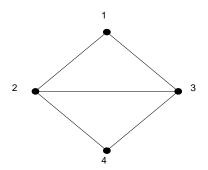


Kita memiliki:

• simpul 1 dan 2 saling bertetangga (adjacent), begitu pula simpul 1 dan 3, 2 dan 3, 2 dan 4, serta 3 dan 4;

Contoh Ilustrasi Ketetanggaan (Adjacency)

Misalkan G adalah graf sederhana tak berarah yang digambarkan sebagai berikut.



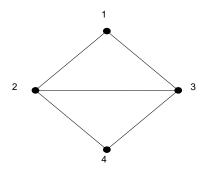
Kita memiliki:

- simpul 1 dan 2 saling bertetangga (adjacent), begitu pula simpul 1 dan 3, 2 dan 3, 2 dan 4, serta 3 dan 4;
- $oldsymbol{0}$ simpul 1 dan 4 tidak saling bertetangga (non-adjacent), karena tidak ada sisi yang menghubungkan simpul 1 dan 4.

Pada graf tak berarah, simpul a dan b bertetangga bila terdapat sisi yang menghubungkannya.

Contoh Ilustrasi Lingkungan (Neighborhood)

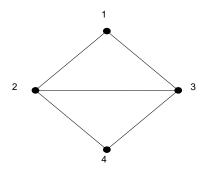
Misalkan ${\cal G}$ adalah graf sederhana tak berarah yang digambarkan sebagai berikut.



Kita memiliki:

Contoh Ilustrasi Lingkungan (Neighborhood)

Misalkan G adalah graf sederhana tak berarah yang digambarkan sebagai berikut.



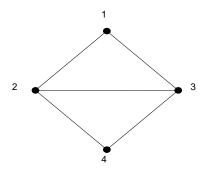
Kita memiliki:

 $\textbf{0} \ \ N\left(1\right) = \{2,3\} \text{, dalam hal ini } \{2,3\} \text{ adalah lingkungan dari simpul } 1 \text{ karena} \\ \text{terdapat sisi yang menghubungkan simpul } 1 \text{ dan simpul } 2 \text{ serta sisi yang} \\ \text{menghubungkan simpul } 1 \text{ dan simpul } 3;$

April-Mei 2023

Contoh Ilustrasi Lingkungan (Neighborhood)

Misalkan G adalah graf sederhana tak berarah yang digambarkan sebagai berikut.

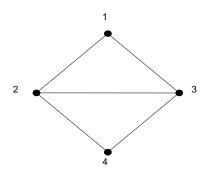


Kita memiliki:

- $N\left(1\right)=\left\{2,3\right\}$, dalam hal ini $\left\{2,3\right\}$ adalah lingkungan dari simpul 1 karena terdapat sisi yang menghubungkan simpul 1 dan simpul 2 serta sisi yang menghubungkan simpul 1 dan simpul 3;
- $oldsymbol{0}$ $N\left(2\right)=\left\{1,3,4\right\}$, dalam hal ini $\left\{1,3,4\right\}$ adalah lingkungan dari simpul 2 karena terdapat sisi yang menghubungkan simpul 2 dengan simpul 3, dan simpul 2 dengan simpul 4

Contoh Ilustrasi Bertumpuan (*Incident*)

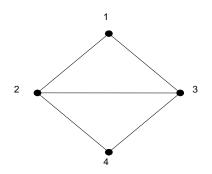
Misalkan ${\cal G}$ adalah graf sederhana tak berarah yang digambarkan sebagai berikut.



Kita memiliki:

Contoh Ilustrasi Bertumpuan (Incident)

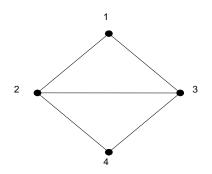
Misalkan G adalah graf sederhana tak berarah yang digambarkan sebagai berikut.



Kita memiliki:

Contoh Ilustrasi Bertumpuan (Incident)

Misalkan G adalah graf sederhana tak berarah yang digambarkan sebagai berikut.



Kita memiliki:

- sisi $\{1,2\}$ bertumpuan pada simpul 1 maupun simpul 2, sisi $\{1,3\}$ bertumpuan pada simpul 1 maupun simpul 3;
- $oldsymbol{0}$ sisi $\{1,2\}$ tidak bertumpuan pada simpul 3 maupun simpul 4.

Pada graf tak berarah sederhana, sisi $\{a,b\}$ bertumpuan pada simpul a maupun simpul b.

Derajat Suatu Simpul Pada Graf Tak Berarah

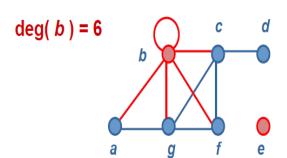
Definisi (derajat simpul pada graf tak berarah)

Misalkan G=(V,E,f) adalah suatu graf tak berarah. Derajat suatu simpul $v\in V$ pada G merupakan banyaknya sisi yang bertumpuan dengan simpul v, dengan catatan banyaknya sisi yang berupa gelang dihitung dua kali. Derajat dari v dinotasikan dengan e e e0.

Derajat Suatu Simpul Pada Graf Tak Berarah

Definisi (derajat simpul pada graf tak berarah)

Misalkan G=(V,E,f) adalah suatu graf tak berarah. Derajat suatu simpul $v\in V$ pada G merupakan banyaknya sisi yang bertumpuan dengan simpul v, dengan catatan banyaknya sisi yang berupa gelang dihitung dua kali. Derajat dari v dinotasikan dengan $\deg(v)$.

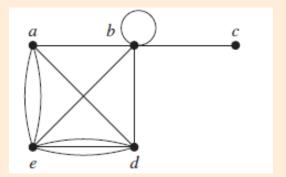


deg(e) = 0

Latihan 6: Menentukan Lingkungan dan Derajat Simpul

Latihan

Tentukan lingkungan dan derajat tiap simpul pada graf ${\cal G}$ berikut



Simpul Terisolasi dan Bandul

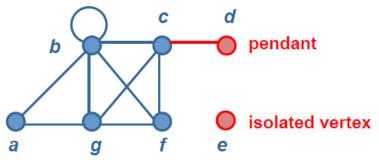
Definisi (simpul terisolasi dan bandul)

- Apabila G=(V,E,f) merupakan suatu graf tak berarah, maka simpul $v\in V$ disebut sebagai simpul terisolasi atau simpul terpencil (isolated vertex) apabila $\deg{(v)}=0$.
- ② Apabila G=(V,E,f) merupakan suatu graf tak berarah, maka simpul $v\in V$ disebut sebagai bandul (pendant) apabila $\deg{(v)}=1$.

Simpul Terisolasi dan Bandul

Definisi (simpul terisolasi dan bandul)

- $\textbf{ Apabila } G = (V, E, f) \text{ merupakan suatu graf tak berarah, maka simpul } v \in V \\ \text{ disebut sebagai simpul terisolasi atau simpul terpencil (} \textit{isolated vertex}) \\ \text{ apabila } \deg(v) = 0.$
- ② Apabila G=(V,E,f) merupakan suatu graf tak berarah, maka simpul $v\in V$ disebut sebagai bandul (pendant) apabila $\deg{(v)}=1$.



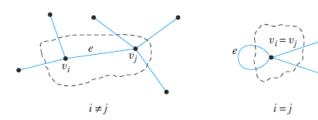
31 / 77

Teorema Jabat Tangan (untuk Graf Tak Berarah)

Teorema (Teorema Jabat Tangan (Handshaking Theorem))

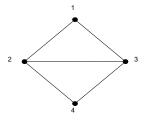
Apabila G = (V, E, f) adalah suatu graf tak berarah, maka $2|E| = \sum_{v \in V} \deg(v)$.

Ilustrasi pembuktian teorema jabat tangan.

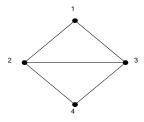


Akibat

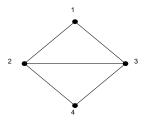
Setiap graf tak berarah G=(V,E,f) memiliki sebanyak genap simpul yang berderajat ganjil.



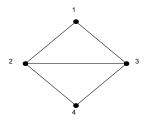
Misalkan graf di atas dalah graf G_1 . Kita memiliki: $\deg\left(1\right)=$



Misalkan graf di atas dalah graf G_1 . Kita memiliki: $\deg(1)=2$, $\deg(2)=\deg(3)=$



Misalkan graf di atas dalah graf G_1 . Kita memiliki: deg(1) = 2, deg(2) = deg(3) = 3, dan deg(4) =

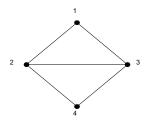


Misalkan graf di atas dalah graf G_1 . Kita memiliki: $\deg(1)=2$, $\deg(2)=\deg(3)=3$, dan $\deg(4)=2$. Banyaknya sisi adalah 5. Kita memiliki

$$|E| = 5$$

$$\sum_{v \in V} \deg(v) =$$

33 / 77



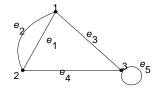
Misalkan graf di atas dalah graf G_1 . Kita memiliki: deg(1) = 2, deg(2) = deg(3) = 3, dan deg(4) = 2. Banyaknya sisi adalah 5. Kita memiliki

$$\begin{array}{rcl} |E| & = & 5 \\ \sum_{v \in V} \deg\left(v\right) & = & \deg\left(1\right) + \deg\left(2\right) + \deg\left(3\right) + \deg\left(4\right) \\ & = & 2 + 3 + 3 + 2 = 10 \text{, sehingga} \\ 2\left|E\right| & = & \sum_{v \in V} \deg\left(v\right) \text{.} \end{array}$$

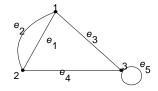
4 □ ト ← □ ト ← 亘 ト ← 亘 ・ 夕 Q ○

April-Mei 2023

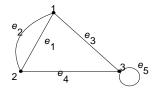
33 / 77



Misalkan graf di atas dalah graf G_2 . Kita memiliki: $\deg(1) =$

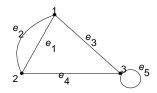


Misalkan graf di atas dalah graf G_2 . Kita memiliki: $\deg\left(1\right)=3$, $\deg\left(2\right)=$



Misalkan graf di atas dalah graf G_2 . Kita memiliki: deg(1) = 3, deg(2) = 3, deg(3) =

4 D > 4 P > 4 B > 4 B > B 900

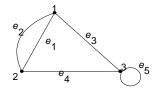


Misalkan graf di atas dalah graf G_2 . Kita memiliki: deg(1) = 3, deg(2) = 3, deg(3) = 4. Banyaknya sisi adalah 5. Kita memiliki

$$|E| = 5$$

$$\sum_{v \in V} \deg(v) =$$

MZI (FIF Tel-U)



Misalkan graf di atas dalah graf G_2 . Kita memiliki: $\deg(1)=3$, $\deg(2)=3$, $\deg(3)=4$. Banyaknya sisi adalah 5. Kita memiliki

$$\begin{split} |E| &=& 5 \\ \sum_{v \in V} \deg\left(v\right) &=& \deg\left(1\right) + \deg\left(2\right) + \deg\left(3\right) \\ &=& 3 + 3 + 4 = 10 \text{, sehingga} \\ 2\left|E\right| &=& \sum_{v \in V} \deg\left(v\right) \text{.} \end{split}$$

Latihan

Periksa apakah kita dapat menggambarkan graf-graf berikut.

- **Q** Graf $G_1 = (V_1, E_1)$ dengan $V_1 = \{a, b, c, d, e\}$ dan $\deg(a) = 2$, $\deg(b) = 3$, $\deg(c) = 1$, $\deg(d) = 1$, dan $\deg(e) = 2$.
- $\textbf{Q} \ \operatorname{Graf} \ G_2 = (V_2, E_2) \ \operatorname{dengan} \ V_2 = \{a, b, c, d, e\} \ \operatorname{dan} \ \operatorname{deg} (a) = 2, \ \operatorname{deg} (b) = 3, \ \operatorname{deg} (c) = 3, \ \operatorname{deg} (d) = 4, \ \operatorname{dan} \ \operatorname{deg} (e) = 4.$

Solusi:

Latihan

Periksa apakah kita dapat menggambarkan graf-graf berikut.

- **①** Graf $G_1 = (V_1, E_1)$ dengan $V_1 = \{a, b, c, d, e\}$ dan $\deg(a) = 2$, $\deg(b) = 3$, $\deg(c) = 1$, $\deg(d) = 1$, dan $\deg(e) = 2$.
- ② Graf $G_2=(V_2,E_2)$ dengan $V_2=\{a,b,c,d,e\}$ dan $\deg{(a)}=2$, $\deg{(b)}=3$, $\deg{(c)}=3$, $\deg{(d)}=4$, dan $\deg{(e)}=4$.

Solusi:

1 Tinjau bahwa $\sum_{v \in V_1} \deg(v) = 2 + 3 + 1 + 1 + 2 = 9$.

Latihan

Periksa apakah kita dapat menggambarkan graf-graf berikut.

- **①** Graf $G_1 = (V_1, E_1)$ dengan $V_1 = \{a, b, c, d, e\}$ dan $\deg(a) = 2$, $\deg(b) = 3$, $\deg(c) = 1$, $\deg(d) = 1$, dan $\deg(e) = 2$.
- ② Graf $G_2=(V_2,E_2)$ dengan $V_2=\{a,b,c,d,e\}$ dan $\deg{(a)}=2$, $\deg{(b)}=3$, $\deg{(c)}=3$, $\deg{(d)}=4$, dan $\deg{(e)}=4$.

Solusi:

 $\textbf{9} \ \ \mathsf{Tinjau} \ \mathsf{bahwa} \ \textstyle \sum_{v \in V_1} \deg\left(v\right) = 2 + 3 + 1 + 1 + 2 = 9. \ \mathsf{Dengan} \ \mathsf{teorema} \ \mathsf{jabat} \ \mathsf{tangan} \ 2 \left|E_1\right| = 9, \ \mathsf{sehingga} \ \left|E_1\right| = \frac{9}{2} \not \in \mathbb{N}_0.$

Latihan

Periksa apakah kita dapat menggambarkan graf-graf berikut.

- **①** Graf $G_1 = (V_1, E_1)$ dengan $V_1 = \{a, b, c, d, e\}$ dan $\deg(a) = 2$, $\deg(b) = 3$, $\deg(c) = 1$, $\deg(d) = 1$, dan $\deg(e) = 2$.
- ② Graf $G_2=(V_2,E_2)$ dengan $V_2=\{a,b,c,d,e\}$ dan $\deg{(a)}=2$, $\deg{(b)}=3$, $\deg{(c)}=3$, $\deg{(d)}=4$, dan $\deg{(e)}=4$.

Solusi:

● Tinjau bahwa $\sum_{v \in V_1} \deg(v) = 2 + 3 + 1 + 1 + 2 = 9$. Dengan teorema jabat tangan $2|E_1| = 9$, sehingga $|E_1| = \frac{9}{2} \notin \mathbb{N}_0$. Akibatnya tidak mungkin ada graf G_1 yang memenuhi kriteria tersebut.

Latihan 7: Penerapan Teorema Jabat Tangan

Latihan

Periksa apakah kita dapat menggambarkan graf-graf berikut.

- Graf $G_1 = (V_1, E_1)$ dengan $V_1 = \{a, b, c, d, e\}$ dan $\deg(a) = 2$, $\deg(b) = 3$, $\deg(c) = 1$, $\deg(d) = 1$, dan $\deg(e) = 2$.
- ② Graf $G_2=(V_2,E_2)$ dengan $V_2=\{a,b,c,d,e\}$ dan $\deg{(a)}=2$, $\deg{(b)}=3$, $\deg{(c)}=3$, $\deg{(d)}=4$, dan $\deg{(e)}=4$.

Solusi:

- **①** Tinjau bahwa $\sum_{v \in V_1} \deg(v) = 2 + 3 + 1 + 1 + 2 = 9$. Dengan teorema jabat tangan $2|E_1| = 9$, sehingga $|E_1| = \frac{9}{2} \notin \mathbb{N}_0$. Akibatnya tidak mungkin ada graf G_1 yang memenuhi kriteria tersebut.
- ② Tinjau bahwa $\sum_{v \in V_2} \deg(v) = 2 + 3 + 3 + 4 + 4 = 16$.

MZI (FIF Tel-U)

Latihan 7: Penerapan Teorema Jabat Tangan

Latihan

Periksa apakah kita dapat menggambarkan graf-graf berikut.

- Graf $G_1 = (V_1, E_1)$ dengan $V_1 = \{a, b, c, d, e\}$ dan $\deg(a) = 2$, $\deg(b) = 3$, $\deg(c) = 1$, $\deg(d) = 1$, dan $\deg(e) = 2$.
- ② Graf $G_2=(V_2,E_2)$ dengan $V_2=\{a,b,c,d,e\}$ dan $\deg{(a)}=2$, $\deg{(b)}=3$, $\deg{(c)}=3$, $\deg{(d)}=4$, dan $\deg{(e)}=4$.

Solusi:

- **●** Tinjau bahwa $\sum_{v \in V_1} \deg(v) = 2 + 3 + 1 + 1 + 2 = 9$. Dengan teorema jabat tangan $2|E_1| = 9$, sehingga $|E_1| = \frac{9}{2} \notin \mathbb{N}_0$. Akibatnya tidak mungkin ada graf G_1 yang memenuhi kriteria tersebut.
- ② Tinjau bahwa $\sum_{v \in V_2} \deg(v) = 2+3+3+4+4=16$. Dengan teorema jabat tangan $2|E_2|=16$, sehingga $|E_2|=8$.

MZI (FIF Tel-U)

Latihan 7: Penerapan Teorema Jabat Tangan

Latihan

Periksa apakah kita dapat menggambarkan graf-graf berikut.

- **①** Graf $G_1 = (V_1, E_1)$ dengan $V_1 = \{a, b, c, d, e\}$ dan $\deg(a) = 2$, $\deg(b) = 3$, $\deg(c) = 1$, $\deg(d) = 1$, dan $\deg(e) = 2$.
- ② Graf $G_2=(V_2,E_2)$ dengan $V_2=\{a,b,c,d,e\}$ dan $\deg{(a)}=2$, $\deg{(b)}=3$, $\deg{(c)}=3$, $\deg{(d)}=4$, dan $\deg{(e)}=4$.

Solusi:

- **●** Tinjau bahwa $\sum_{v \in V_1} \deg(v) = 2 + 3 + 1 + 1 + 2 = 9$. Dengan teorema jabat tangan $2|E_1| = 9$, sehingga $|E_1| = \frac{9}{2} \notin \mathbb{N}_0$. Akibatnya tidak mungkin ada graf G_1 yang memenuhi kriteria tersebut.
- ② Tinjau bahwa $\sum_{v \in V_2} \deg(v) = 2 + 3 + 3 + 4 + 4 = 16$. Dengan teorema jabat tangan $2|E_2| = 16$, sehingga $|E_2| = 8$. Akibatnya G_2 adalah sebuah graf dengan 8 sisi.

Derajat Suatu Simpul Pada Graf Berarah

Definisi (derajat simpul pada graf berarah)

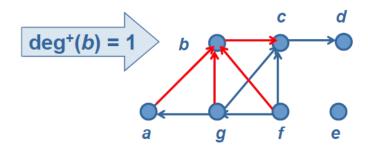
Misalkan G=(V,E,f) adalah suatu graf berarah ganda. Apabila $v\in V$, maka derajat masuk (in-degree) dari v, dinotasikan dengan $\deg^-(v)$ atau $\deg_{in}(v)$, merupakan banyaknya sisi dengan simpul akhir v. Derajat keluar (out-degree) dari v, dinotasikan dengan $\deg^+(v)$ atau $\deg_{out}(v)$, merupakan banyaknya sisi dengan simpul awal v.

36 / 77

Derajat Suatu Simpul Pada Graf Berarah

Definisi (derajat simpul pada graf berarah)

Misalkan G=(V,E,f) adalah suatu graf berarah ganda. Apabila $v\in V$, maka derajat masuk (in-degree) dari v, dinotasikan dengan $\deg^-(v)$ atau $\deg_{in}(v)$, merupakan banyaknya sisi dengan simpul akhir v. Derajat keluar (out-degree) dari v, dinotasikan dengan $\deg^+(v)$ atau $\deg_{out}(v)$, merupakan banyaknya sisi dengan simpul awal v.



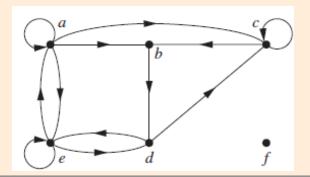
4□ > 4□ > 4 = > 4 = > = 900

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023

Latihan 8: Menentukan Derajat Simpul Graf Berarah

Latihan

Tentukan derajat masuk dan derajat keluar untuk setiap simpul pada graf G berikut



Teorema Jabat Tangan (untuk Graf Berarah)

Teorema (Teorema Jabat Tangan Berarah (*Directed Handshaking Theorem*))

Misalkan G=(V,E,f) merupakan graf berarah ganda (atau graf berarah), maka

$$\begin{split} &\sum_{v \in V} \deg^-\left(v\right) &=& \sum_{v \in V} \deg^+\left(v\right) = |E| \text{ , atau} \\ &\sum_{v \in V} \deg_{in}\left(v\right) &=& \sum_{v \in V} \deg_{out}\left(v\right) = |E| \text{ .} \end{split}$$

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023 38 / 77

Bahasan

- Latar Belakang dan Motivasi
- 2 Beberapa Definisi Formal Graf
- Beberapa Terminologi Dasar
- Subgraf, Subgraf Perentang (Spanning Subgraph), Graf Komplemen (Complement Graph), dan Graf Gabungan
- 5 Beberapa Graf Sederhana dengan Struktur Khusus
- 6 Representasi Graf dengan Matriks dan Daftar

Subgraf dan Subgraf Perentang (Spanning Subgraph)

Definisi (subgraf dan subgraf perentang)

Misalkan G = (V, E) adalah suatu graf tak berarah tanpa sisi ganda.

- $\textbf{ Graf } H = (W,F) \text{ dikatakan sebagai subgraf dari } G \text{ apabila } W \subseteq V \text{ dan } F \subseteq E.$
- **Q** Graf H dikatakan subgraf sejati (proper subgraph) dari G bila H adalah subgraf dari G dan $H \neq G$.
- **1** Lebih lanjut, suatu subgraf H=(W,F) dari graf G=(V,E) dikatakan sebagai subgraf perentang (spanning subgraph) dari G apabila W=V.

40 / 77

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023

Misalkan ${\cal G}$ adalah graf yang digambarkan sebagai berikut

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023 41 / 77

Misalkan H_1 adalah graf berikut.

Apakah H_1 merupakan subgraf dari G? Apakah H_1 merupakan subgraf perentang dari G?

Misalkan H_1 adalah graf berikut.

Apakah H_1 merupakan subgraf dari G? Apakah H_1 merupakan subgraf perentang dari G? Graf H_1 adalah subgraf dan subgraf perentang dari G.

Misalkan H_2 adalah graf berikut.

Apakah H_2 merupakan subgraf dari G? Apakah H_2 merupakan subgraf perentang dari G?

Misalkan H_2 adalah graf berikut.

Apakah H_2 merupakan subgraf dari G? Apakah H_2 merupakan subgraf perentang dari G? Graf H_2 bukan subgraf dan bukan subgraf perentang dari G karena sisi $\{2,3\}$ bukan sisi pada G.

Misalkan H_3 adalah graf berikut.

Apakah H_3 merupakan subgraf dari G? Apakah H_3 merupakan subgraf perentang dari G?

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023 44 / 77

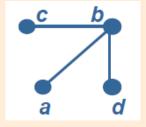
Misalkan H_3 adalah graf berikut.

Apakah H_3 merupakan subgraf dari G? Apakah H_3 merupakan subgraf perentang dari G? Graf H_3 adalah subgraf dari G namun bukan subgraf perentang dari G (karena himpunan simpul untuk H_3 dan G berbeda).

Latihan 9: Menentukan Banyaknya Subgraf Perentang

Latihan

Tentukan banyaknya subgraf perentang berbeda dari graf berikut



Petunjuk: Anda tidak perlu menggambar semua subgraf perentang dari graf di atas.

45 / 77

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023

Graf Komplemen (Complement Graph)

Definisi (Graf Komplemen)

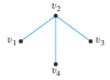
Misalkan $G=(V_G,E_G)$ adalah sebuah graf sederhana (tidak memuat sisi ganda maupun gelang). Graf $\bar{G}=(V_{\bar{G}},E_{\bar{G}})$ adalah komplemen dari graf G bila

- $V_{\bar{G}} = V_G$
- @ u dan v adalah dua simpul yang bertetangga di G jika dan hanya jika u dan v tidak bertetangga di \bar{G} , secara formal

$$\{u,v\} \in E_G \Leftrightarrow \{u,v\} \not\in E_{\bar{G}} \text{ (untuk graf tak berarah)}$$

 $(u,v) \in E_G \Leftrightarrow (u,v) \not\in E_{\bar{G}} \text{ (untuk graf berarah)}.$

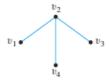
Misalkan G adalah graf berikut.



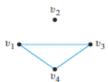
Maka \bar{G} adalah graf berikut.

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023 47 / 77

Misalkan G adalah graf berikut.



Maka \bar{G} adalah graf berikut.



47 / 77

MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023

Komplemen Subgraf (Subgraph Complement)

Definisi (Komplemen Subgraf)

Misalkan G=(V,E) adalah sebuah graf dan $G_1=(V_1,E_1)$ adalah subgraf dari G. Komplemen dari subgraf G_1 terhadap graf G adalah graf $G_2=(V_2,E_2)$ dengan sifat:

- **1** $E_2 = E \setminus E_1$;
- $\textbf{9} \ \ V_2 \subseteq V \ \ \text{adalah himpunan simpul dengan sifat anggota-anggota dari} \ E_2 \\ \text{bertumpuan pada simpul-simpul di} \ \ V_2.$

Berikut adalah ilustrasi komplemen subgraf.

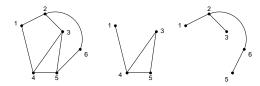
Komplemen Subgraf (Subgraph Complement)

Definisi (Komplemen Subgraf)

Misalkan G=(V,E) adalah sebuah graf dan $G_1=(V_1,E_1)$ adalah subgraf dari G. Komplemen dari subgraf G_1 terhadap graf G adalah graf $G_2=(V_2,E_2)$ dengan sifat:

- **1** $E_2 = E \setminus E_1$;
- $oldsymbol{Q} V_2 \subseteq V$ adalah himpunan simpul dengan sifat anggota-anggota dari E_2 bertumpuan pada simpul-simpul di V_2 .

Berikut adalah ilustrasi komplemen subgraf.



Graf paling kiri adalah graf G=(V,E) dan graf di tengah $G_1=(V_1,E_1)$ adalah subgraf dari G.

<ロト <部ト < 注 > < 注 >

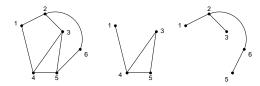
Komplemen Subgraf (Subgraph Complement)

Definisi (Komplemen Subgraf)

Misalkan G=(V,E) adalah sebuah graf dan $G_1=(V_1,E_1)$ adalah subgraf dari G. Komplemen dari subgraf G_1 terhadap graf G adalah graf $G_2=(V_2,E_2)$ dengan sifat:

- **1** $E_2 = E \setminus E_1$;
- $\textbf{0} \quad V_2 \subseteq V \text{ adalah himpunan simpul dengan sifat anggota-anggota dari } E_2 \\ \text{bertumpuan pada simpul-simpul di } V_2.$

Berikut adalah ilustrasi komplemen subgraf.



Graf paling kiri adalah graf G=(V,E) dan graf di tengah $G_1=(V_1,E_1)$ adalah subgraf dari G. Graf paling kanan adalah $G_2=(V_2,E_2)$ yang merupakan subgraf komplemen dari G_1 terhadap graf G.

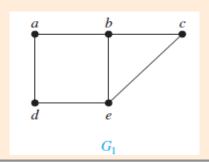
Graf Gabungan dari Dua Graf Sederhana

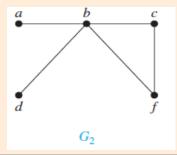
Definisi

Misalkan $G_1=(V_1,E_1)$ dan $G_2=(V_2,E_2)$ merupakan dua graf sederhana (tak berarah, tidak memiliki sisi ganda, tidak memiliki gelang). Graf gabungan dari G_1 dan G_2 , dinotasikan dengan $G_1 \cup G_2$, merupakan graf $(V_1 \cup V_2, E_1 \cup E_2)$.

Latihan

Gambarkan $G_1 \cup G_2$ apabila G_1 dan G_2 adalah graf yang digambarkan berikut





Bahasan

- Latar Belakang dan Motivasi
- 2 Beberapa Definisi Formal Graf
- Beberapa Terminologi Dasar
- Subgraf, Subgraf Perentang (Spanning Subgraph), Graf Komplemen (Complement Graph), dan Graf Gabungan
- 5 Beberapa Graf Sederhana dengan Struktur Khusus
- 6 Representasi Graf dengan Matriks dan Daftar

Graf Lengkap K_n

Ingat kembali: graf sederhana merupakan graf tak berarah yang **tidak** memiliki sisi ganda dan **tidak** memuat gelang.

Definisi

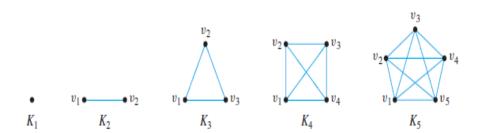
Misalkan n adalah bilangan asli, $n=1,2,\ldots$ Graf lengkap (complete graph) dengan n simpul, dinotasikan dengan K_n , adalah graf yang setiap simpulnya bertetangga dengan simpul yang lain.

Graf Lengkap K_n

Ingat kembali: graf sederhana merupakan graf tak berarah yang **tidak** memiliki sisi ganda dan **tidak** memuat gelang.

Definisi

Misalkan n adalah bilangan asli, $n=1,2,\ldots$ Graf lengkap (complete graph) dengan n simpul, dinotasikan dengan K_n , adalah graf yang setiap simpulnya bertetangga dengan simpul yang lain.



Graf Lingkaran/ Graf Siklis C_n

Definisi

Graf siklis (cycle) dengan n simpul ($n \geq 3$), dinotasikan dengan C_n , adalah graf yang himpunan simpulnya adalah $\{v_1, v_2, \ldots, v_n\}$ dan himpunan sisinya adalah

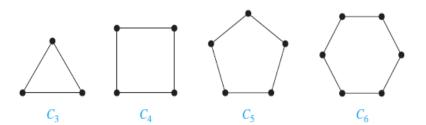
$$\{\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}, \{v_n, v_1\}\}.$$

Graf Lingkaran/ Graf Siklis C_n

Definisi

Graf siklis (cycle) dengan n simpul ($n \ge 3$), dinotasikan dengan C_n , adalah graf yang himpunan simpulnya adalah $\{v_1, v_2, \ldots, v_n\}$ dan himpunan sisinya adalah

$$\{\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}, \{v_n, v_1\}\}.$$



Graf Roda W_n

Definisi

Graf roda (wheel) dengan n+1 simpul $(n \geq 3)$, dinotasikan dengan W_n , adalah graf diperoleh dengan menambahkan satu simpul v_{n+1} pada graf C_n sedemikian rupa sehingga v_{n+1} bertetangga dengan setiap simpul pada himpunan $\{v_1, v_2, \ldots, v_n\}$.

Graf Roda W_n

Definisi

Graf roda (wheel) dengan n+1 simpul $(n\geq 3)$, dinotasikan dengan W_n , adalah graf diperoleh dengan menambahkan satu simpul v_{n+1} pada graf C_n sedemikian rupa sehingga v_{n+1} bertetangga dengan setiap simpul pada himpunan $\{v_1,v_2,\ldots,v_n\}$.

Graf Regular (Graf Teratur)

Definisi

Suatu graf sederhana dikatakan graf regular (graf teratur) apabila setiap simpul pada graf tersebut berderajat sama.

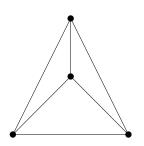
Berikut adalah contoh graf regular dengan dengan 4 simpul yang tiap simpulnya berderajat 3.

Graf Regular (Graf Teratur)

Definisi

Suatu graf sederhana dikatakan graf regular (graf teratur) apabila setiap simpul pada graf tersebut berderajat sama.

Berikut adalah contoh graf regular dengan dengan 4 simpul yang tiap simpulnya berderajat $3.\,$



Graf Bipartit

Definisi

Graf bipartit G=(V,E) adalah graf yang memenuhi sifat-sifat berikut

- $0 \ V = V_1 \cup V_2 \ \mathsf{dengan}$
 - $0 V_1 \neq \emptyset \text{ dan } V_2 \neq \emptyset,$
 - **2** $V_1 \cap V_2 = \emptyset$.

Dengan perkataan lain V_1 dan V_2 merupakan **partisi** pada himpunan V.

- $\mbox{ \ @ }\{u_1,u_2\}\in E$ jika dan hanya jika tepat salah satu dari dua kondisi berikut dipenuhi
 - $\mathbf{0} \ u_1 \in V_1 \ \mathsf{dan} \ u_2 \in V_2$, atau
 - $u_1 \in V_1 \text{ dan } u_1 \in V_2.$

Dengan perkataan lain setiap sisi mengubungkan dua simpul pada partisi yang berbeda.

MZI (FIF Tel-U)

Graf Bipartit Lengkap

Definisi

Suatu graf dikatakan graf bipartit lengkap $K_{m,n}$ apabila $K_{m,n}=(V,E)$ dengan

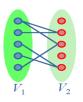
- lacksquare V dapat dipartisi menjadi V_1 dan V_2 dengan $|V_1|=m$ dan $|V_2|=n$
- ② $E = \{\{v_1, v_2\} : v_1 \in V_1 \text{ dan } v_2 \in V_2\}$, dengan perkataan lain setiap simpul pada V_1 bertetangga dengan setiap simpul pada V_2 .

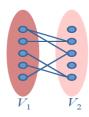
56 / 77

Contoh-contoh Graf Bipartit

57 / 77

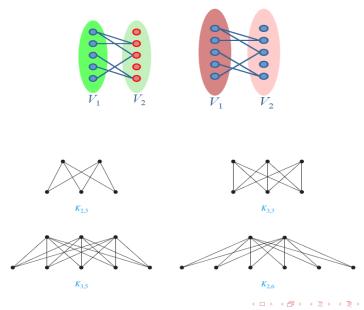
Contoh-contoh Graf Bipartit





57 / 77

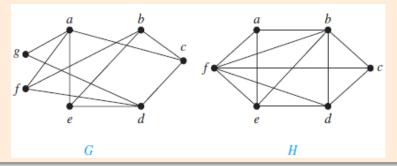
Contoh-contoh Graf Bipartit



Latihan 10: Graf Sederhana dengan Struktur Khusus

Latihan

- lacktriangle Tentukan banyaknya sisi pada K_{2019}
- $oldsymbol{0}$ Tentukan banyaknya sisi pada C_{2019}
- lacktriangle Tentukan banyaknya sisi pada W_{2019}
- Tentukan banyaknya sisi pada $K_{2019,2020}$
- Periksa apakah graf berikut merupakan graf bipartit atau bukan.



Bahasan

- Latar Belakang dan Motivasi
- 2 Beberapa Definisi Formal Graf
- Beberapa Terminologi Dasar
- 4 Subgraf, Subgraf Perentang (Spanning Subgraph), Graf Komplemen (Complement Graph), dan Graf Gabungan
- 5 Beberapa Graf Sederhana dengan Struktur Khusus
- 6 Representasi Graf dengan Matriks dan Daftar

Matriks Ketetanggaan (Adjacency Matrix)

Definisi

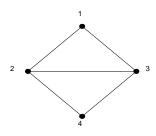
• Misalkan G=(V,E,f) adalah suatu graf tak berarah yang dapat memiliki sisi ganda atau gelang dengan |V|=n. Matriks ketetanggaan (adjacency matrix) dari G adalah matriks $\mathbf{A}_G=[a_{ij}]$ yang berukuran $n\times n$ dengan entri-entri yang dijelaskan berikut

$$a_{ij} = \left\{ \begin{array}{ll} m, & \mathrm{jika} \ |\{e \in E \mid f\left(e\right) = \{v_i, v_j\}\}| = m. \\ 0, & \mathrm{lainnya}. \end{array} \right.$$

 $oldsymbol{\Theta}$ Misalkan G=(V,E) merupakan suatu graf tak berarah yang tidak memiliki sisi ganda namun dapat memiliki gelang, maka

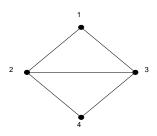
$$a_{ij} = \begin{cases} 1, & \text{jika } \{v_i, v_j\} \in E \\ 0, & \text{lainnya.} \end{cases}$$

Definisi matriks ketetanggaan untuk graf berarah analog dengan definisi di atas (ganti $\{v_i, v_j\}$ dengan (v_i, v_j)).



Matriks ketetanggan untuk graf G adalah \mathbf{A}_G , dengan

$$\mathbf{A}_G =$$

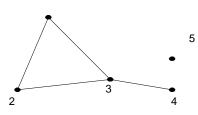


Matriks ketetanggan untuk graf G adalah \mathbf{A}_G , dengan

$$\mathbf{A}_{G} = \begin{array}{ccccccc} & 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 & 1 \\ 3 & 1 & 1 & 0 & 1 \\ 4 & 0 & 1 & 1 & 0 \end{array}$$

Misalkan ${\cal G}$ adalah graf berikut.

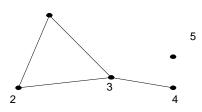
1



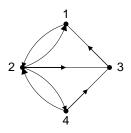
Matriks ketetanggan untuk graf G adalah \mathbf{A}_G , dengan

$$\mathbf{A}_G =$$

1

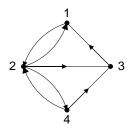


Matriks ketetanggan untuk graf G adalah \mathbf{A}_G , dengan

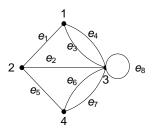


Matriks ketetanggan untuk graf G adalah \mathbf{A}_G , dengan

$$\mathbf{A}_G =$$

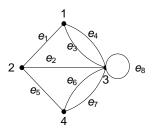


Matriks ketetanggan untuk graf G adalah \mathbf{A}_G , dengan



Matriks ketetanggan untuk graf G adalah \mathbf{A}_G , dengan

$$\mathbf{A}_G =$$



Matriks ketetanggan untuk graf G adalah \mathbf{A}_G , dengan

Menentukan Derajat Simpul dari Matriks Ketetanggaan

Derajat Simpul dari Matriks Ketetanggaan

Misalkan $\mathbf{A}_G=[a_{ij}]$ adalah matriks ketetanggaan suatu graf tak berarah G=(V,E) dengan $V=\{v_1,v_2,\ldots,v_n\}$ yang tidak memuat gelang (loop), maka

$$\deg\left(v_{i}\right) = \sum_{j=1}^{n} a_{ij}.$$

Misakan $\mathbf{A}_G=[a_{ij}]$ adalah matriks ketetanggaan suatu graf berarah G=(V,E) dengan $V=\{v_1,v_2,\ldots,v_n\}$, maka

$$\deg_{in}(v_i) = \deg^-(v_i) = \text{jumlah nilai pada kolom } i = \sum_{j=1}^n a_{ji}$$

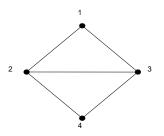
$$\deg_{out}(v_i) = \deg^+(v_i) = \mathsf{jumlah}$$
 nilai pada baris $i = \sum_{i=1}^n a_{ij}$

4D> 4B> 4B> B 990

65 / 77

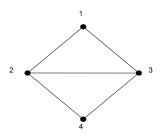
MZI (FIF Tel-U) Graf (Bagian 1) April-Mei 2023

Misalkan G adalah graf berikut.



Kita memiliki $\mathbf{A}_G =$

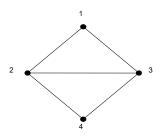
Misalkan G adalah graf berikut.



Kita memiliki
$$\mathbf{A}_G=egin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 . Akibatnya

• deg(2) =

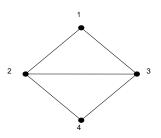
Misalkan G adalah graf berikut.



Kita memiliki
$$\mathbf{A}_G=\left[egin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{array}
ight]$$
 . Akibatnya

• $deg(2) = \sum_{j=1}^{4} a_{2j} = a_{21} + a_{22} + a_{23} + a_{24} =$

Misalkan ${\cal G}$ adalah graf berikut.



Kita memiliki
$$\mathbf{A}_G=egin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 . Akibatnya

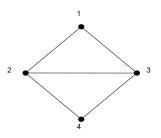
- deg (2) = $\sum_{j=1}^{4} a_{2j} = a_{21} + a_{22} + a_{23} + a_{24} = 1 + 0 + 1 + 1 = 3$.
- deg(4) =

4□ > 4同 > 4 量 > 4 量 > 量 め Q ○

April-Mei 2023

66 / 77

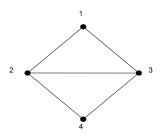
Misalkan G adalah graf berikut.



Kita memiliki
$$\mathbf{A}_G=egin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 . Akibatnya

- deg (2) = $\sum_{j=1}^{4} a_{2j} = a_{21} + a_{22} + a_{23} + a_{24} = 1 + 0 + 1 + 1 = 3$.
- $deg(4) = \sum_{i=1}^{4} a_{4i} = a_{41} + a_{42} + a_{43} + a_{44} =$

Misalkan G adalah graf berikut.

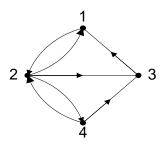


Kita memiliki
$$\mathbf{A}_G=egin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 . Akibatnya

- deg (2) = $\sum_{j=1}^{4} a_{2j} = a_{21} + a_{22} + a_{23} + a_{24} = 1 + 0 + 1 + 1 = 3$.
- deg (4) = $\sum_{i=1}^{4} a_{4i} = a_{41} + a_{42} + a_{43} + a_{44} = 0 + 1 + 1 + 0 = 2$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

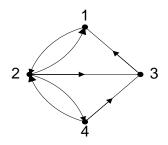
Misalkan G adalah graf berikut.



Kita memiliki $\mathbf{A}_G =$

67 / 77

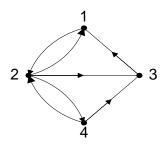
Misalkan G adalah graf berikut.



Kita memiliki
$$\mathbf{A}_G=egin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 . Akibatnya

• $\deg_{in}(2) = \deg^{-}(2) =$

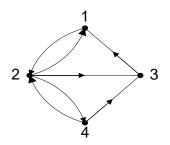
Misalkan G adalah graf berikut.



Kita memiliki
$$\mathbf{A}_G=egin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 . Akibatnya

• $\deg_{in}(2) = \deg^{-}(2) = \sum_{j=1}^{4} a_{j2} = a_{12} + a_{22} + a_{32} + a_{42} =$

Misalkan G adalah graf berikut.

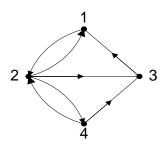


Kita memiliki
$$\mathbf{A}_G=egin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 . Akibatnya

- $\deg_{in}(2) = \deg^{-}(2) = \sum_{j=1}^{4} a_{j2} = a_{12} + a_{22} + a_{32} + a_{42} = 1 + 0 + 0 + 1 = 2.$
- $\deg_{out}(2) = \deg^+(2) =$

40 1 40 1 4 1 1 1 1 1 1

Misalkan G adalah graf berikut.

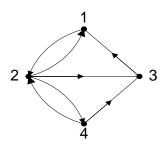


Kita memiliki
$$\mathbf{A}_G=egin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 . Akibatnya

- $\deg_{in}(2) = \deg^{-}(2) = \sum_{j=1}^{4} a_{j2} = a_{12} + a_{22} + a_{32} + a_{42} = 1 + 0 + 0 + 1 = 2.$
- $\deg_{out}(2) = \deg^+(2) = \sum_{i=1}^4 a_{2i} = a_{2i} + a_{2i} + a_{2i} + a_{2i} + a_{2i} = a_{2i} + a_{$

《마시《라시《문》《문》 · 문 · *.

Misalkan G adalah graf berikut.



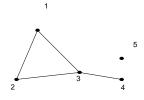
Kita memiliki
$$\mathbf{A}_G=egin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 . Akibatnya

- $\deg_{in}(2) = \deg^{-}(2) = \sum_{i=1}^{4} a_{i2} = a_{12} + a_{22} + a_{32} + a_{42} = 1 + 0 + 0 + 1 = 2.$
- $\deg_{out}(2) = \deg^+(2) = \sum_{i=1}^4 a_{2i} = a_{21} + a_{22} + a_{23} + a_{24} = 1 + 0 + 1 + 1 = 3.$

April-Mei 2023

Daftar ketetanggaan untuk graf tak berarah merupakan daftar yang menjelaskan ketetanggaan antara sebuah simpul **dengan** simpul-simpul lain yang menjadi tetangganya.

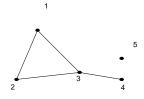
Misalkan ${\cal G}$ adalah graf berikut.



Simpul	Simpul Tetangga
1	

Daftar ketetanggaan untuk graf tak berarah merupakan daftar yang menjelaskan ketetanggaan antara sebuah simpul **dengan** simpul-simpul lain yang menjadi tetangganya.

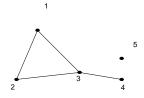
Misalkan ${\cal G}$ adalah graf berikut.



Simpul	Simpul Tetangga
1	2,3
2	

Daftar ketetanggaan untuk graf tak berarah merupakan daftar yang menjelaskan ketetanggaan antara sebuah simpul **dengan** simpul-simpul lain yang menjadi tetangganya.

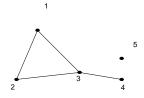
Misalkan ${\cal G}$ adalah graf berikut.



Simpul	Simpul Tetangga
1	2,3
2	1,3
3	

Daftar ketetanggaan untuk graf tak berarah merupakan daftar yang menjelaskan ketetanggaan antara sebuah simpul **dengan** simpul-simpul lain yang menjadi tetangganya.

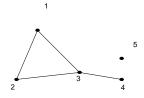
Misalkan G adalah graf berikut.



Simpul	Simpul Tetangga
1	2,3
2	1,3
3	1, 2, 4
4	

Daftar ketetanggaan untuk graf tak berarah merupakan daftar yang menjelaskan ketetanggaan antara sebuah simpul **dengan** simpul-simpul lain yang menjadi tetangganya.

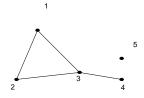
Misalkan G adalah graf berikut.



Simpul	Simpul Tetangga
1	2,3
2	1,3
3	1, 2, 4
4	3
5	

Daftar ketetanggaan untuk graf tak berarah merupakan daftar yang menjelaskan ketetanggaan antara sebuah simpul **dengan** simpul-simpul lain yang menjadi tetangganya.

Misalkan ${\cal G}$ adalah graf berikut.



Simpul	Simpul Tetangga
1	2,3
2	1,3
3	1, 2, 4
4	3
5	- (tidak ada)

Perbandingan Matriks dan Daftar Ketetanggaan

Matriks ketetanggaan memiliki beberapa kelebihan:

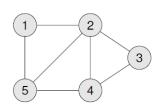
- cocok digunakan untuk graf padat (dense graph), yaitu graf G=(V,E) dengan nilai |E| mendekati $|V|^2$,
- dapat memberikan informasi tentang ada tidaknya sisi yang mengubungkan dua simpul dengan cukup cepat.

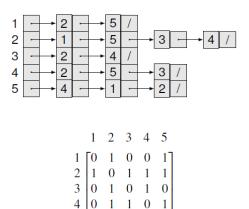
Namun pemakaian matriks ketetanggaan memerlukan kapasitas memori yang cukup besar untuk menyimpan matriks yang memuat $\left|V\right|^2$ komponen. Daftar ketetangaan (*adjacency list*) memiliki beberapa kelebihan:

- cocok digunakan untuk graf jarang (sparse graph), yaitu graf G=(V,E) dengan nilai |E| jauh lebih kecil dari $|V|^2$,
- 0 memerlukan kapasitas memori yang lebih kecil daripada matriks ketetanggaan yang memuat $\left|V\right|^2$ komponen.

Namun daftar ketetanggaan tidak dapat memberikan informasi ada tidaknya sisi yang menghubungkan dua simpul dengan cukup cepat.

Dalam implementasinya pada suatu bahasa pemrograman, daftar ketetanggaan dibuat dengan bantuan *pointer* (dipelajari dalam kuliah Struktur Data).

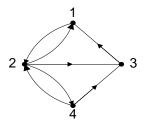




5

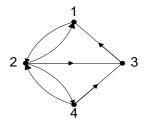
70 / 77

Misalkan ${\cal G}$ adalah graf berikut.



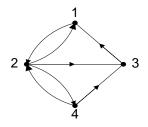
Simpul awal (initial vertex)	Simpul akhir (terminal vertex)
1	

Misalkan ${\cal G}$ adalah graf berikut.



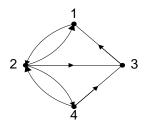
Simpul awal (initial vertex)	Simpul akhir (terminal vertex)
1	2
2	

Misalkan ${\cal G}$ adalah graf berikut.



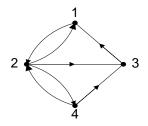
Simpul awal (initial vertex)	Simpul akhir (terminal vertex)
1	2
2	1, 3, 4
3	

Misalkan G adalah graf berikut.



Simpul awal (initial vertex)	Simpul akhir (terminal vertex)
1	2
2	1, 3, 4
3	1
4	

Misalkan ${\cal G}$ adalah graf berikut.



Simpul awal (initial vertex)	Simpul akhir (terminal vertex)
1	2
2	1, 3, 4
3	1
4	2,3

Matriks Bertumpuan/ Matriks Insidensi (Incidence Matrix)

Definisi

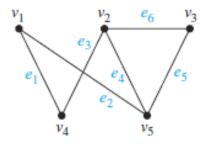
Misalkan G=(V,E,f) adalah suatu graf tak berarah yang dapat memiliki sisi ganda atau gelang dengan |V|=m dan |E|=n. Matriks bertumpuan (matriks insidensi) dari G adalah matriks $\mathbf{B}=[b_{ij}]$ yang berukuran $m\times n$ dengan entri-entri yang dijelaskan berikut

$$b_{ij} = \left\{ \begin{array}{l} 1, \quad \text{jika } v_i \text{ simpul ujung dari } e_j \text{ dan } e_j \text{ bukan gelang,} \\ 2, \quad \text{jika } v_i \text{ simpul ujung dari } e_j \text{ dan } e_j \text{ gelang,} \\ 0, \quad \text{lainnya.} \end{array} \right.$$

Jika G=(V,E,f) adalah suatu graf berarah yang dapat memiliki sisi ganda atau gelang dengan |V|=m dan |E|=n, entri-entri ${\bf B}$ dijelaskan berikut

$$b_{ij} = \left\{ \begin{array}{ll} 1, & \text{jika } v_i \text{ simpul awal dari } e_j \text{ dan } e_j \text{ bukan gelang,} \\ -1, & \text{jika } v_i \text{ simpul akhir dari } e_j \text{ dan } e_j \text{ bukan gelang,} \\ 2, & \text{jika } v_i \text{ simpul awal/ akhir dari } e_j \text{ dan } e_j \text{ gelang,} \\ 0, & \text{lainnya.} \end{array} \right.$$

Misalkan ${\cal G}$ adalah graf berikut.

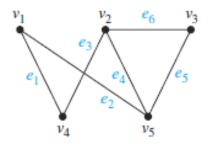


Matriks bertumpuan untuk G adalah \mathbf{B}_G , dengan

$$\mathbf{B}_G =$$

MZI (FIF Tel-U)

73 / 77



Matriks bertumpuan untuk G adalah \mathbf{B}_G , dengan

MZI (FIF Tel-U)

73 / 77

Latihan 11: Representasi Matriks untuk Graf Tak Berarah

Latihan

Tentukan matriks ketetanggaan dan matriks bertumpuan untuk graf G berikut

Solusi:
$$\mathbf{A}_G = \left[\begin{array}{cccc} 0 & 3 & 2 & 0 \\ 3 & 0 & 1 & 0 \\ 2 & 1 & 0 & 2 \\ 0 & 0 & 2 & 1 \end{array} \right]$$

75 / 77

Latihan 12: Representasi Matriks untuk Graf Berarah

Latihan

Tentukan matriks ketetanggaan dan matriks bertumupuan graf G berikut

Solusi:

$$\mathbf{A}_G = \left[\begin{array}{cccc} 0 & 2 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

MZI (FIF Tel-U)

77 / 77