
1

SISTEM TRANSPORTASI DAN DISTRIBUSI BARANG

Perutean dalam Aktivitas
Transportasi

Muhammad Nashir Ardiansyah, S.T., M.T., Ph.D.

Program Studi S1 Teknik Industri – Telkom University

Image Source: https://www.r-bloggers.com/any-r-packages-to-solve-vehicle-routing-problem/

2

Algoritma Penyelesaian TSP

2

3

Metode Pendekatan Penyelesaian TSP

• Beberapa algoritma pendekatan sederhana untuk menyelesaikan permasalahan
TSP:

1. Algoritma Nearest Neighbor

2. Algoritma Branch and Bound

3. Algoritma Lin-Kernighan

4. Algoritma Farthest Insertion

5. Algoritma V-opt

3

4

Algoritma Farthest Insertion

• Algoritma Farthest Insertion dimulai dari pemilihan tur yang terdiri dari dua kota
dengan jarak antar kota maksimum, berulang kali memilih kota dengan jarak
maksimum ke tetangga terdekat di antara titik yang belum terpilih, dan
memasukkannya seperti dalam Nearest Neighbor.

4
Image Source: https://www2.isye.gatech.edu/~mgoetsch/cali/VEHICLE/TSP/TSP003__.HTM

5

Tahapan Algoritma Farthest Insertion

1. For every node v not in the cycle, 𝑑𝑖𝑠𝑡(𝑣) is the distance to 𝑣
from that node in the current cycle from which 𝑣 is closest

2. Each time a new node 𝑓 is added to the cycle, the 𝑑𝑖𝑠𝑡 array
is updates such that its entries are the minimum of the
current entries in the 𝑑𝑖𝑠𝑡 array and the 𝑓 th row in 𝑊

3. Having settled on the Selection step, let us now look at the
Insertion step. Assume that there are k nodes in the current
cycle, and the next (farthest) node to be inserted is f.

4. We examine every edge (i,j) in the current tour to determine
the insertion cost of/between node i and j, which is

𝑐𝑖𝑗 = 𝑤𝑖𝑓 + 𝑤𝑓𝑗 − 𝑤𝑖𝑗

5

6

Tahapan Algoritma Farthest Insertion

6. Among all 𝑘 edges in the cycle we select 𝑒𝑑𝑔𝑒(𝑡, ℎ) — with
tail 𝑡 and head ℎ — for which 𝑐𝑡ℎ has the smallest value (𝑐𝑖𝑗
could be negative). Then insert node 𝑓 between 𝑡 and ℎ. The
weight of the cycle is updated. We also update the 𝑑𝑖𝑠𝑡 array

7. To keep track of 𝑉𝑇, the nodes in the current cycle, as well as
𝐸𝑇, the edges in the current cycle, we will maintain an array,
𝑐𝑦𝑐𝑙𝑒, of length 𝑛, defined — as follows; 𝑐𝑦𝑐𝑙𝑒(𝑖) = 0 if and
only if node 𝑖 is not in the current cycle; and 𝑐𝑦𝑐𝑙𝑒(𝑖) = 𝑗 if
and only if (𝑖, 𝑗) is an edge in the current cycle

6

7

Contoh Permasalahan TSP

• Terdapat 6 kota yang harus dikunjungi oleh seorang pedagang.

• Buat rute kunjungan pedagang ke 6 kota!

7

8

Algoritma Farthest-Insertion

1.Let us arbitrarily pick node 1 as the starting node 𝑠. The 𝑑𝑖𝑠𝑡 array at this juncture will
be

𝑑𝑖𝑠𝑡 = (−, 3, 93, 13, 33, 9)
which is row 1 of weight matrix 𝑊, except 𝑑𝑖𝑠𝑡 (1), which is immaterial. The other
array is
𝑐𝑦𝑐𝑙𝑒 = (1,0,0,0,0,0); the sub-tour is (1,1).

8

2. The largest entry in 𝑑𝑖𝑠𝑡 array is 93,
corresponding to node 3. Therefore, the sub-
tour is enlarged to (1,3,1) and the total distance
traveled (𝑡𝑤𝑒𝑖𝑔ℎ𝑡) is

𝑤13 +𝑤31 = 93 + 45 = 138.
The 𝑑𝑖𝑠𝑡 array is now modified to have entries
that are the smaller
of 𝑑𝑖𝑠𝑡 and row 3 of 𝑊.

9

Algoritma Farthest-Insertion

• Now in the second iteration the farthest node from the current sub-tour is 5,
corresponding to the largest value, 16, in the 𝑑𝑖𝑠𝑡 array. Node 5 can be inserted in
two different ways. The insertion costs are

𝑐13 = 𝑤15 + 𝑤53－𝑤13 = 33 + 88－93 = 28
𝑐31 = 𝑤35 + 𝑤51－𝑤31 = 16 + 28－45 = －1 (∗)

Performing the insertion with lower cost, we obtain 𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 138 − 1 = 137, and
the two arrays are

𝑐𝑦𝑐𝑙𝑒 = (3, 0, 5, 0, 1, 0) ; the sub-tour is (1, 3, 5, 1).
𝑑𝑖𝑠𝑡 = (−, 3, −, 𝟏𝟑,−, 9)

9

10

Algoritma Farthest-Insertion

• In the third iteration, node 4 is the farthest. The three insertion costs of node 4 are
𝑐13 = 𝑤14 + 𝑤43－𝑤13 = 0 (∗)
𝑐35 = 𝑤34 + 𝑤45－𝑤35 = 76
𝑐51 = 𝑤54 + 𝑤41－𝑤51 = 44

We, therefore, perform the lowest-cost insertion (at zero cost). The new sub-tour is
(1,4,3,5,1), with a value 𝑡𝑤𝑒𝑖𝑔ℎ𝑡 of 137.

The updated arrays are
𝑐𝑦𝑐𝑙𝑒 = (4,0,5,3,1,0)
𝑑𝑖𝑠𝑡 = (−, 3, −,−,−, 7)

10

11

Algoritma Farthest-Insertion

• In the fifth and the last iteration, we must insert node 2. Its five insertion costs are

𝑐14 = 32, 𝑐46 = 99, 𝑐63 = 147, 𝑐35 = 22 (∗), and 𝑐51 = 22 (∗).

There are two minimum values; we could pick either. Let us choose 𝐶35. Then we
obtain the final solution as (1,4,6,3,2,5,1), with the total distance traveled

𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 82 + 22 = 104

11

