SISTEM TRANSPORTASI DAN DISTRIBUSI BARANG Perutean dalam Aktivitas
Transportasi

Muhammad Nashir Ardiansyah, S.T., M.T., Ph.D.

Program Studi S1 Teknik Industri - Telkom University

Algoritma Penyelesaian TSP

Metode Pendekatan Penyelesaian TSP

- Beberapa algoritma pendekatan sederhana untuk menyelesaikan permasalahan TSP:

1. Algoritma Nearest Neighbor
2. Algoritma Branch and Bound
3. Algoritma Lin-Kernighan
4. Algoritma Farthest Insertion
5. Algoritma V-opt

Algoritma Farthest Insertion

- Algoritma Farthest Insertion dimulai dari pemilihan tur yang terdiri dari dua kota dengan jarak antar kota maksimum, berulang kali memilih kota dengan jarak maksimum ke tetangga terdekat di antara titik yang belum terpilih, dan memasukkannya seperti dalam Nearest Neinhbor.

$\mathrm{n}=$ number of nodes $=5$
$\mathrm{c}_{33}=$ Euclidian distance between
node 3 and node 5
- = A subtour (this one has orily two edges)
- A tour

Tahapan Algoritma Farthest Insertion

1. For every node v not in the cycle, $\operatorname{dist}(v)$ is the distance to v from that node in the current cycle from which v is closest
2. Each time a new node f is added to the cycle, the dist array is updates such that its entries are the minimum of the current entries in the dist array and the f th row in W
3. Having settled on the Selection step, let us now look at the Insertion step. Assume that there are k nodes in the current cycle, and the next (farthest) node to be inserted is f.
4. We examine every edge (i,j) in the current tour to determine the insertion cost of/between node i and j , which is

$$
c_{i j}=w_{i f}+w_{f j}-w_{i j}
$$

Tahapan Algoritma Farthest Insertion

6. Among all k edges in the cycle we select $\operatorname{edge}(t, h)$ - with tail t and head h - for which $c_{t h}$ has the smallest value $\left(c_{i j}\right.$ could be negative). Then insert node f between t and h. The weight of the cycle is updated. We also update the dist array
7. To keep track of V_{T}, the nodes in the current cycle, as well as E_{T}, the edges in the current cycle, we will maintain an array, cycle, of length n, defined - as follows; cycle $(i)=0$ if and only if node i is not in the current cycle; and cycle $(i)=j$ if and only if (i, j) is an edge in the current cycle

Contoh Permasalahan TSP

- Terdapat 6 kota yang harus dikunjungi oleh seorang pedagang.
- Buat rute kunjungan pedagang ke 6 kota!
1
2
3
4
5
6 $\quad\left[\begin{array}{rrrrrr}1 & 2 & 3 & 4 & 5 & 6 \\ \infty & 3 & 93 & 13 & 33 & 9 \\ 4 & \infty & 77 & 42 & 21 & 16 \\ 45 & 17 & \infty & 36 & 16 & 28 \\ 39 & 90 & 80 & \infty & 56 & 7 \\ 28 & 46 & 88 & 33 & \infty & 25 \\ 3 & 88 & 18 & 46 & 92 & \infty\end{array}\right]$

Algoritma Farthest-Insertion

1.Let us arbitrarily pick node 1 as the starting node s. The dist array at this juncture will be

$$
\text { dist }=(-, 3,93,13,33,9)
$$

which is row 1 of weight matrix W, except dist (1), which is immaterial. The other
2 array is
 corresponding tó node 3. Therefore, the subtour is enlarged to $(1,3,1)$ and the total distance traveled (tweight) is

$$
w_{13}+w_{31}=93+45=138 .
$$

The dist array is now modified to have entries that are the smaller of dist and row 3 of W.

12				6	That is dist $=(-, 3,-, 13, \underline{16}, 9)$			
1 [$\quad\left[\begin{array}{ll}\infty & 3\end{array}\right.$		13		97				
2.4		42		16	and cycle $=(3,0,1,0,0,0)$;			
$3{ }^{3}$	∞	36		28				
$\begin{aligned} & 4 \\ & 5\end{aligned} . \begin{array}{lll}39 & 90\end{array}$	80	∞	56	7	the sub-tour is $(1,3,1)$.			
5 6 $\left[\begin{array}{rr}28 & 46 \\ 3 & 88\end{array}\right.$		33 46		25 ∞				
	1			2	3	4	5	6
w_{1}.	-			3	-	13	33	9
w_{3}.	-			17	-	36	16	28
$\min \left\{w_{1}, w_{3}.\right\}$	-			3	-	13	16	9

Algoritma Farthest-Insertion

- Now in the second iteration the farthest node from the current sub-tour is 5 , corresponding to the largest value, 16, in the dist array. Node 5 can be inserted in two different ways. The insertion costs are

$$
\begin{aligned}
& c_{13}=w_{15}+w_{53}-w_{13}=33+88-93=28 \\
& c_{31}=w_{35}+w_{51}-w_{31}=16+28-45=-1(*)
\end{aligned}
$$

Performing the insertion with lower cost, we obtain tweight $=138-1=137$, and the two arrays are

$$
\begin{array}{r}
\text { cycle }=(3,0,5,0,1,0) ; \text { the sub-tour is }(1,3,5,1) . \\
\text { dist }=(-, 3,-, 13,-, 9)
\end{array}
$$

Algoritma Farthest-Insertion

- In the third iteration, node 4 is the farthest. The three insertion costs of node 4 are

$$
\begin{aligned}
& c_{13}=w_{14}+w_{43}-w_{13}=0(*) \\
& c_{35}=w_{34}+w_{45}-w_{35}=76 \\
& c_{51}=w_{54}+w_{41}-w_{51}=44
\end{aligned}
$$

We, therefore, perform the lowest-cost insertion (at zero cost). The new sub-tour is ($1,4,3,5,1$), with a value tweight of 137 .

The updated arrays are

$$
\begin{aligned}
& \text { cycle }=(4,0,5,3,1,0) \\
& \text { dist }=(-, 3,-,-,-, 7)
\end{aligned}
$$

Algoritma Farthest-Insertion

- In the fifth and the last iteration, we must insert node 2. Its five insertion costs are

$$
c_{14}=32, c_{46}=99, c_{63}=147, c_{35}=22(*), \text { and } c_{51}=22(*) .
$$

There are two minimum values; we could pick either. Let us choose C_{35}. Then we obtain the final solution as (1,4,6,3,2,5,1), with the total distance traveled

$$
\text { tweight }=82+22=104
$$

