MACHINE LEARNING

Data Analysis Process

o All these activities can be grouped as ...

Dat . . o e
Data Pata ata Predictive Visualization
. Preparation/ Exploration .
Collection . AT Modeling of Results
Processing Visualization

4 § 4 4

Scikit-learn
TensorFlow

Pandas Pandas

NumPy
PyTables

NumPy ...

Scikit-learn
Matplotlib

PyTables
BeautifulSoup

Matplotlib
Mayavi
Keras,

PyTorch,
Caffe, ...

What Is Machine Learning?

o Machine learning is often categorized as a subfield of
artificial intelligence.

o Inthe data science application of machine learning
methods, it’s more helpful to think of machine learning as a
means of building models of data.

o Fundamentally, machine learning involves building
mathematical models to help understand data.

Categories of Machine Learning

4
0 Supervised learning * Labeled data
Direct feedback
o Unsupervised learning + Predict outcomelfuture

o Reinforcement Learnin

Supervised

\ Learning

" Unsupervised \@¥ Reinforcement
No labels * Decision process
No feedback * Reward system

“Find hidden structure” e Learn series of actions

Supervised Learning
I
o Supervised learning
o The training data consist of a set of training examples.

o Each example is a pair consisting of an input object (typically a
vector) and a desired output.

o A supervised learning algorithm analyzes the training data and
produces an inferred model.

o Classification problems

m Convolutional Neural Networks are a great example of this, as the
images are the inputs and the outputs are the classifications of the
images (dog, cat, etc).

Supervised Learning

training data pairs

% desired
f Duck output (label)

Duck :
mi u Supervgsed Predictive
-_ Not Duck —>» Learning > Model

%‘" Not Duck

Unsupervised Learning
-z 5 |
o Unsupervised learning

o Training data consist of a set of input vectors x without any
corresponding target values.

o The goal in such unsupervised learning problems is to discover
groups of similar examples within the data

o Clustering problems
m K-Means, is an example of unsupervised learning.

Unsupervised learning
8

It can be regarded as a clustering problem.

Reinforcement Learning

.o I ___|
o Reinforcement Learning

o RLis the task of learning what actions to take, given a certain
situation/environment, so as to maximize a reward signal.

o This reward signal simply tells you whether the action (or input) that
the agent takes is good or bad.

o It doesn’t tell you anything about what the best action is.

o Another unique component of RL is that an agent’s actions will
affect the subsequent data it receives.

m For example, an agent’s action of moving left instead of right means
that the agent will receive different input from the environment at
the next time step.

Reinforcement Learning

I .
o The major components of reinforcement learning

o Set of Environment States : Such as the different states in the game
at a point in time.

o Set of Actions :Such as Up, Down ,Left ,Right and a Fire button.

o Rules of transitioning between states : We need to keep track of
the best next state we can go to.

o Rules that determine the scalar immediate reward of a transition:
For every transition that the algorithm decides to take thereis an
associated reward associated with that step.

m For example when you kill an opponent you get a positive reward
and when you get hurt you get a negative reward.

Reinforcement Learning

|
PacMan game

SCORE: 0

INTRODUCING SCIKIT-LEARN

Introducing Scikit-Learn

T

0 There are several Python libraries that provide solid
implementations of a range of machine learning algorithms.

o One of the best known is Scikit-Learn, a package that
provides efficient versions of a large number of common

algorithms.

o http://scikit-learn.org/stable/

Introducing Scikit-Learn

Classification

Identifying to which category an object belongs
to.

Applic_&_ﬂons: Spam detection, Image
reccgnltlon‘

Algorithms: SVM, nearest neighbors, random
forest, ... — Examples

Dimensionality reduction

Reducing the number of random variables to
consider.

Applications: Visualization, Increased
efficiency

Algorithms: PCA, feature selection,

non-negative matrix factorization. Examples

Regression

Predicting a continuous-valued attribute

associated with an object.

Applications: Drug response, Stock prices.

Algorithms: SVR, ridge regression, Lasso, ...
— Examples

Model selection

Comparing, validating and choosing

parameters and models.

Goal: Improved accuracy via parameter tuning

Modules: grid search, cross validation, metrics.
Examples

T

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation,
Grouping experiment outcomes
Algorithms: k-Means, spectral clustering,

mean-shift, ... Examples

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as
text for use with machine learning algorithms.

Modules: preprocessing, feature extraction.
— Examples

Data Representation in Scikit-Learn
15 45 |
o Data as table

o For example, consider the Iris (B E7E) dataset, famously analyzed
by Ronald Fisher in 1936. We can download this dataset in the form
of a Pandas DataFrame using the Seaborn library:

o Seaborn

Iris (B E1E)

o Seabornis a Python visualization library
based on matplotlib.

o It provides a high-level interface for
drawing attractive statistical graphics.

o https://seaborn.pydata.org/

Iris dataset

B _ PPe:taaT:tgorolla
import seaborn as sns |SepaI:Ca1yx
iris = sns.load_dataset('iris") ,
iris.head()

Floral axis

vary Nectary Articulation
Pedicel

Out[1]:

sepal length sepal width petal length petal width species
(%] 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa

Data Representation

T 22

o In general, we will refer to the rows of the matrix as
samples, and the number of rows as n_samples.

0 We refer to the columns of the matrix as features, and the
number of columns as n_features.

o Features matrix

0 The features matrix is assumed to be two-dimensional, with
shape [n_samples, n_features]

Data Representation

.
O Target array Feature Matrix (X) Target Vector (y)

. n_features —
o The target array is usually one - .
dimensional, with length n_samples. 2 =

O It represents the desired output
(label).

o It is usually the quantity we want to
predict from the data: in statistical
terms, it is the dependent variable.

— Dn_sam
«— Nn_sam

o In the iris case, the species column
would be considered the target.

Data Representation

10 4
%matplotlib inline
import seaborn as sns;
sns.set()
sns.pairplot(iris, hue='species', size=1.5);

0 seaborn.set(context='notebook’, style='darkgrid', palette='deep’,
font='sans-serif', font_scale=1, color _codes=False, rc=None)

o Set aesthetic parameters in one step.
O https://seaborn.pydata.org/generated/seaborn.set.html#seaborn.set

4

§

T

E

epal_wid® Iﬂlgmlh

L I

;
;

R
[% b

it

% &

w =

313- &
&b 5 2 & 5 o 2

Data Representation

22 5
o For use in Scikit-Learn, we will extract the features matrix
and target array from the DataFrame

X iris = iris.drop('species', axis=1)
X_iris.shape
out[11]: (150, 4)

y iris = iris['species']
y_iris.shape
out[13]: (150,)

Steps in using the Scikit-Learn

22 5
. Choose a class of model from Scikit-Learn.

». Choose model parameters.
3. Arrange data into a features matrix and target vector.
4. Fit the model to your data by calling the fit() method.

. Apply the model to new data:

o For supervised learning, often we predict labels for unknown data
using the predict() method.

o For unsupervised learning, we often transform or infer properties of
the data using the transform() or predict() method.

Supervised learning example
234§ |
o Simple linear regression

o The common case of fitting a line to (x, y) data.

0.0

import matplotlib.pyplot as plt

import numpy as np - e
rng = np.random.RandomState(42) - R
X = 10 * rng.rand(50)

y =2 * x -1+ rng.randn(590)

plt.scatter(x, y)

Supervised learning example
I I
o Step 1. Choose a class of model

o In Scikit-Learn, every class of model is represented by a
Python class. We can import the linear regression class:

from sklearn.linear_model import LinearRegression

Supervised learning example
25 4 |

o Step 2. Choose model parameters.

o For our linear regression example, we can instantiate the
LinearRegression class and specify that we would like to fit the
intercept using the fit_intercept parameter:

model = LinearRegression(fit_intercept=True)
model

Out[17]: LinearRegression(copy_X=True, fit_intercept=True,
n_jobs=1, normalize=False)

Supervised learning example
I mmmmm—

o Step 3. Arrange data into a features matrix and target
vector.

o We need to make the data x to a matrix of size [n_samples,
n_features].

x X = x[:, np.newaxis]
Out[18]: X.Shape
array([3.74540119, 9.50714306, ... Out[22]: (5@, 1)

* numpy.newaxis
The newaxis object can be used in all slicing
operations to create an axis of length one.

Supervised learning example

T 3722

o Step 4. Fit the model to your data

model.fit (X, y)

Out[24]: LinearRegression(copy X=True, fit intercept=True,

n_jobs=1, normalize=False)

o This fit() command causes a number of model-dependent
internal computations to take place, and the results of these
computations are stored in model-specific attributes that the

user can explore.

Supervised learning example

o Step 4. Fit the model to your data

o In Scikit-Learn, all model parameters that were learned during
the fit() process have trailing underscores; for example, in this
linear model, we have the following:

model. coef__
Out[25]: array([1.9776566])

model.intercept
Out[26]: -0.90331072553111635

These two parameters
represent the slope and
intercept of the simple
linear fit to the data.

Supervised learning example

I I ————————————————,
o Step 5. Predict labels for unknown data

o Once the model is trained, the main task of supervised
machine learning is to evaluate it based on what it says about
new data that was not part of the training set.

o In Scikit-Learn, we can do this using the predict() method.

Supervised learning example

xfit = np.linspace(-1, 11) 1
Xfit = xfit[:, np.newaxis]
yfit = model.predict(Xfit) 0
plt.scatter(x, y)
plt.plot(xfit, yfit); =

o

Supervised learning example: Iris

classification
31 F

0 We will use Gaussian naive Bayes, which proceeds by assuming each
class is drawn from a Gaussian distribution.

0 Because it is so fast and has no parameters to choose, Gaussian naive
Bayes is often a good model to use as a baseline classification, before
you explore whether improvements can be found through more

sophisticated models. kelihood Classprio probabitty
el n) PE1OPE)
l P(x) N

Posterior Probability Predictor Prior Probability

P(c|X) = P(x,|e)x P(x, | €)x--x P(x, | €)x P(c)

Supervised learning example: Iris

classification
32

o We would like to evaluate the model on data it has not
seen before, and so we will split the data into a training set
and a testing set.

o This could be done by hand, but it is more convenient to use
the train_test split utility function:

Supervised learning example: Iris
classification

o sklearn.model _selection.train_test_split(*arrays, **options)
o Split arrays or matrices into random train and test subsets
o shuffle : boolean, optional (default=True)
o random_state : int, RandomState instance or None, optional (default=None)

o http://scikit-learn.org/stable/modules/generated/sklearn.model selection.train test split.html

from sklearn.model selection import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test split(X_ iris,
y_iris, random_state=1) Training se

Supervised learning example: Iris

classification
34 F

from sklearn.naive_bayes import GaussianNB # 1. choose model class
model = GaussianNB() # 2. 1instantiate model
model.fit(Xtrain, ytrain) # 3. fit model to data

y _model = model.predict(Xtest) # 4. predict on new data

o Finally, we can use the accuracy score utility to see the fraction

of predicted labels that match their true value:

from sklearn.metrics import accuracy_score
accuracy_score(ytest, y model)

or acc = model.score(Xtest, ytest)
Out[38]: ©.97368421052631582

With an accuracy topping 97%, we see that even this very naive
classification algorithm is effective for this particular dataset!

Unsupervised learning example: Iris

dimensionality
L

0 Let’s take a look at reducing the dimensionality of the Iris
data so as to more easily visualize it.

0 Recall that the Iris data is four dimensional: there are four
features recorded for each sample.

o Often dimensionality reduction is used as an aid to
visualizing data; after all, it is much easier to plot data in
two dimensions than in four dimensions or higher!

Unsupervised learning example: Iris

dimensionality
G T,

0 Principal component analysis (PCA): It is a fast linear
dimensionality reduction technique.

original data space

component space

T I e
1] ooy

B
pad

Gene 3

=

0
S
=

PC1

Unsupervised learning example: Iris

dimensionality
3z 4$ |

import seaborn as sns

iris = sns.load dataset('iris"')
X_iris = iris.drop('species', axis=1)
y _iris = iris['species']

from sklearn.model selection import train_test split
Xtrain, Xtest, ytrain, ytest = train_test split(X_ iris, y iris,
random_state=1)

from sklearn.decomposition import PCA # 1. Choose the model class

model = PCA(n_components=2) # 2. Choose the model parameters
model.fit(X_iris) # 3. Fit to data. Notice y 1is not specified!
X_2D = model.transform(X_iris) # 4. Transform the data to two dimensions

Unsupervised learning example: Iris

dimensionality
3y
o Now use Seaborn’s Implot to show the results

15

iris['PCA1'] = X_2D[:, 0] . .
iris['PCA2'] = X_2D[:, 1] . ® :
%matplotlib inline .. i .,
sns.1lmplot("PCA1", "PCA2", ns }, 0 oty
_ - ; i Yen WY,
hue="'species', data=iris, E ' o O i
fit_reg=False); ¥ s L e
LAY N &S
e e of '.0".

We see that in the two-dimensional « N

representation, the species are fairly -o B

well separated. :

Unsupervised learning: Iris clustering
[39

0 A clustering algorithm attempts to find distinct groups of data without
reference to any labels.

0 Here we will use a powerful clustering method called a Gaussian
mixture model (GMM). oD

1

09

f

|
07 F | |

4284,
muwn 9
A5

TEEE
mwwn J
Peos

06 [_ |] N
0s / \ |I I| L

04 f f X | |
03 f H} \

02

Unsupervised learning: Iris clustering

1. Choose the model class

from sklearn.mixture import GaussianMixture

2. Choose model parameters

model = GaussianMixture(n_components=3, covariance_type='full')
3. Fit to data. Notice y is not specified!

model.fit(X_iris)

4. Determine cluster labels

y _gmm = model.predict(X iris)

iris['cluster'] = y_gmm
sns.lmplot("PCA1", "PCA2", data=iris, hue='species’,
col="'cluster', fit reg=False);

Unsupervised learning: Iris clustering
41 4 |

o Plot the results

chumler chaler =1 chuler =2
.
]
[]
. :
2] ..°~ .
~i.::’ o, }.f epian
a oo .Q ® ®y .,..é -*?nl
A .? s §}. i
-6o 00. o’
pe e
J []

APPLICATION: EXPLORING
HANDWRITTEN DIGITS

Exploring Handwritten Digits

40y
0 Let’s consider one piece of the optical character
recognition problem:

o The identification of handwritten digits.

o In the wild, this problem involves both locating and identifying
characters in an image.

Loading and visualizing the digits data

45 4
from sklearn.datasets import load digits
digits = load digits()
digits.images.shape

out[1]: (1797, 8, 8)

o The images data is a three-dimensional array:
o 1,797 samples
o each consisting of an 8 x8 grid of pixels.

Loading and visualizing the digits dat

o Let’s visualize the first hundred of these

%zmatplotlib inline
import matplotlib.pyplot as plt
fig, axes = plt.subplots(10, 10, figsize=(8, 8),
subplot kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
for i, ax in enumerate(axes.flat):
ax.imshow(digits.images[i], cmap='binary’,
interpolation="nearest"')
ax.text(0.05, 0.05, str(digits.target[i]),
transform=ax.transAxes, color="'green')

The handwritten digits EE 3
data. 014115415 |63
Each sample is EH ;
ceenamorss [OISIBIFIEISIO

LLIRIEIERY LR
FAEIEIRIEAT-1R {EA]
REIRIEACIIATI4E
MR TR A E
LFCLAF%]
AT F 4

Data Preparation

o In order to work with this data within Scikit-Learn, we need
a two-dimensional, [n_samples, n_features] representation.
o We can accomplish this by treating each pixel in the image as a

feature — that is, by flattening out the pixel arrays so that we
have a length-64 array of pixel values representing each digit.

o Additionally, we need the target array, which gives the
previously determined label for each digit.

0 These two quantities are built into the digits dataset under
the data and target attributes, respectively:

Data Preparation

0 We see here that there are 1,797 samples and 64 features.

X = digits.data
X.shape
Oout[6]: (1797, 64)

y = digits.target
y.shape
out[7]: (1797,)

Unsupervised learning: Dimensionality
reduction

o We’d like to visualize our points within the 64-dimensional
parameter space, but it’s difficult to effectively visualize
points in such a high-dimensional space.

0 Instead we’ll reduce the dimensions to 2, using an
unsupervised method.

o Here, we’ll make use of a manifold learning algorithm
called Isomap and transform the data to two dimensions.

Unsupervised learning: Dimensionality

reduction
51 F

from sklearn.manifold import Isomap

iso = Isomap(n_components=2)
iso.fit(digits.data)

data_projected = iso.transform(digits.data)
data_projected.shape

out[8]: (1797, 2)

plt.scatter(data_projected[:, @], data projected[:, 1],
c=digits.target,
edgecolor="none', alpha=0.5,
cmap=plt.cm.get _cmap('nipy spectral', 10))
plt.colorbar(label="digit label', ticks=range(10))
plt.clim(-0.5, 9.5);

Unsupervised learning: Dimensionality

reduction
| 52 |

o The different groups appear to =
be fairly well separated in the -
parameter space:

-

o This tells us that even a very
straightforward supervised
classification algorithm should
perform suitably on this data. -200;

matplotlib.pyplot.scatter()
s34 |
o matplotlib.pyplot.scatter(x, y, s=None, c=None,
marker=None, cmap=None, norm=None, vmin=None,
vmax=None, alpha=None, linewidths=None, verts=None,
edgecolors=None, hold=None, data=None, **kwargs)

o c: color, sequence, or sequence of color, optional, default: ‘b’
o alpha: alpha value, between o (transparent) and 1 (opaque)

o cmap : Colormap, optional, default: None
m matplotlib.cm.get _cmap(): Get a colormap instance

matplotlib.pyplot.colorbar(), clim()
Y I EEEE——————————,
o matplotlib.pyplot.colorbar(mappable=None, cax=None, ax=None,
%)

o Add a colorbar to a plot.

o https://matplotlib.org/api/pyplot api.html#matplotlib.pyplot.colorb
ar

o matplotlib.pyplot.clim(vmin=None, vmax=None)
o Set the color limits of the current image.
o https://matplotlib.org/api/pyplot api.html#matplotlib.pyplot.clim

Classification on digits

from sklearn.model selection import train_test split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

Xtrain, Xtest, ytrain, ytest = train_test split(X, y, random state=0)
model = GaussianNB()

model.fit(Xtrain, ytrain)

y model = model.predict(Xtest)

accuracy_score(ytest, y model)

Out[9]: ©.83333333333333337

Confusion Matrix
s £

o The single accuracy number doesn’t tell us where we’ve
gone wrong.

o One nice way to do this is to use the confusion matrix.

import seaborn as sns

from sklearn.metrics import confusion_matrix
mat = confusion matrix(ytest, y model)
sns.heatmap(mat, square=True, annot=True,
cbar=False, fmt="d")

plt.xlabel('predicted value')
plt.ylabel('true value');

plt.show()

Confusion Matrix
sz f |
o This shows us where the il °
mislabeled points tend to be:
for example, a large number of
twos here are misclassified as
either ones or eights.

true value

pradicted valus

Inputs with their predicted labels

ss 4 __
o Plot the inputs again with their predicted labels.

o We’ll use green for correct labels, and red for incorrect labels.

fig, axes = plt.subplots(10, 10, figsize=(8, 8),
subplot kw={'xticks':[], 'yticks':[]},
gridspec_kw=dict(hspace=0.1, wspace=0.1))
for i, ax in enumerate(axes.flat):
ax.imshow(digits.images[i], cmap='binary’,
interpolation="nearest"')
ax.text(0.05, 0.05, str(y _model[i]),
transform=ax.transAxes, color='green' if (ytest[i] ==
y model[i]) else 'red')

E e 1O 18 O e

-

55555555555

= - =3 7 M~ EE gy oo SEEC ey o e CH My

555555555

888888
TTTTTT
EEEEEEEE

3] ™] -t e B o B . T@

green for correct labels,
and red forincorrect

labels

