
Logic Programming with Prolog
Mathematical Logic —First Term 2023-2024

MZI

School of Computing
Telkom University

SoC Tel-U

October-November 2023

MZI (SoC Tel-U) Logic Programming October-November 2023 1 / 66

Acknowledgements I

This slide is compiled using the materials in the following sources:

1 Logic Programming with Prolog, 2nd Edition, 2013, by Max Bramer.
2 Discrete Mathematics and Its Applications (Chapter 1), 7th Edition, 2012, by
K. H. Rosen.

3 Discrete Mathematics with Applications (Chapter 3), 4th Edition, 2010, by
S. S. Epp.

4 Mathematical Logic for Computer Science (Chapter 5, 6), 2nd Edition, 2000,
by M. Ben-Ari.

5 Computational logic lecture slides at Fasilkom UI by L. Y. Stefanus.
6 Logic programming lecture slides at ILLC, University of Amsterdam by U.
Endriss.

7 Functional programming lecture slides at Fasilkom UI by A. Azurat.
8 Mathematical Logic slides in Telkom University by A. Rakhmatsyah and B.
Purnama.

MZI (SoC Tel-U) Logic Programming October-November 2023 2 / 66

Acknowledgements II

Some figures are excerpted from those sources. This slide is intended for internal
academic purpose in SoC Telkom University. No slides are ever free from error nor
incapable of being improved. Please convey your comments and corrections (if
any) to <pleasedontspam>@telkomuniversity.ac.id.

MZI (SoC Tel-U) Logic Programming October-November 2023 3 / 66

mailto:arzaki@telkomuniversity.ac.id

Contents

1 What is Prolog?

2 Prolog Installation

3 Using the Interactive Interpreter

4 Elementary Prolog Programming: Basic Facts and Queries

5 Simple Rules in Prolog

6 Representation of Quantifiers in Prolog (Supplementary)

7 Term Equality and Inequality in Prolog (Supplementary)

MZI (SoC Tel-U) Logic Programming October-November 2023 4 / 66

What is Prolog?

Contents

1 What is Prolog?

2 Prolog Installation

3 Using the Interactive Interpreter

4 Elementary Prolog Programming: Basic Facts and Queries

5 Simple Rules in Prolog

6 Representation of Quantifiers in Prolog (Supplementary)

7 Term Equality and Inequality in Prolog (Supplementary)

MZI (SoC Tel-U) Logic Programming October-November 2023 5 / 66

What is Prolog?

Epigram

A language that doesn’t affect the way you think about programming,
is not worth knowing

(Alan Jay Perlis, first recipient of Turing Award)

(Excerpted from Alan Perlis Quotes)

MZI (SoC Tel-U) Logic Programming October-November 2023 6 / 66

http://www.cs.yale.edu/homes/perlis-alan/quotes.html

What is Prolog?

Programming Language Paradigm

Imperative language: language that emphasizes on how to perform computation
as an action

Structural language: C, Pascal, Ada, Fortran, Python, Matlab/ Octave

Object oriented language: C++, Java

Descriptive language: language that emphasizes on what to perform in a
computation

Logic programming : Prolog, Flora, Logtalk

Functional programming : Haskell, ML

MZI (SoC Tel-U) Logic Programming October-November 2023 7 / 66

What is Prolog?

Programming Language Paradigm

Imperative language: language that emphasizes on how to perform computation
as an action

Structural language: C, Pascal, Ada, Fortran, Python, Matlab/ Octave

Object oriented language: C++, Java

Descriptive language: language that emphasizes on what to perform in a
computation

Logic programming : Prolog, Flora, Logtalk

Functional programming : Haskell, ML

MZI (SoC Tel-U) Logic Programming October-November 2023 7 / 66

What is Prolog?

Imperative versus Descriptive Language

In imperative language:

a group of commands is assembled together using “;”or indentation

a command is controlled using selection (with if-then-else or case-of
statements) or repetition (with for loop, while loop, or repeat-until)

a program is a set of commands for changing the value of one or more
variables (the state of the variables)

In descriptive language — logic programming:

a program is a set of expression

a program consists of facts and rules

a computation in the program is a deduction or inference

programs do not use assignment as a basic operator such as in C or Pascal

MZI (SoC Tel-U) Logic Programming October-November 2023 8 / 66

What is Prolog?

Imperative versus Descriptive Language

In imperative language:

a group of commands is assembled together using “;”or indentation

a command is controlled using selection (with if-then-else or case-of
statements) or repetition (with for loop, while loop, or repeat-until)

a program is a set of commands for changing the value of one or more
variables (the state of the variables)

In descriptive language — logic programming:

a program is a set of expression

a program consists of facts and rules

a computation in the program is a deduction or inference

programs do not use assignment as a basic operator such as in C or Pascal

MZI (SoC Tel-U) Logic Programming October-November 2023 8 / 66

What is Prolog?

Why do we need to learn logic programming?

Logic programming with Prolog is useful for following reasons:

Prolog is suitably applied for symbolical computation (i.e., a non-numerical
computation)

Prolog is suitably applied for solving problems which relate to object
conditions or the relations of several objects

Prolog is suitably applied for illustrating the reasoning process in artificial
intelligence

Because of these reasons, Prolog is suitably applied in artificial intelligence,
natural language processing, and database.

Prolog is less suitable for performing:

computations which require high numerical precision (such as graphical
computation)

computations which require high portability (such as real-time messaging
service)

MZI (SoC Tel-U) Logic Programming October-November 2023 9 / 66

What is Prolog?

Why do we need to learn logic programming?

Logic programming with Prolog is useful for following reasons:

Prolog is suitably applied for symbolical computation (i.e., a non-numerical
computation)

Prolog is suitably applied for solving problems which relate to object
conditions or the relations of several objects

Prolog is suitably applied for illustrating the reasoning process in artificial
intelligence

Because of these reasons, Prolog is suitably applied in artificial intelligence,
natural language processing, and database.

Prolog is less suitable for performing:

computations which require high numerical precision (such as graphical
computation)

computations which require high portability (such as real-time messaging
service)

MZI (SoC Tel-U) Logic Programming October-November 2023 9 / 66

What is Prolog?

Brief History of Prolog

Prolog is an acronym of Programming in Logic.
Prolog was developed between 1972-1973 by Alain Colmerauer and Phillipe
Roussel at Aix-Marseille Université, France.

The purpose of development was initially for processing natural language
(human language).

Currently, Prolog is the most widely taught logical programming language in
the world.

Prolog is also utilized in industrial world, such as by IBM and Apache.

MZI (SoC Tel-U) Logic Programming October-November 2023 10 / 66

What is Prolog?

Meet Watson: The Supercomputer

Watson is a (super) computer capable of answering questions in natural language
(English) and it is developed in IBM’s DeepQA project. The artificial intelligence
in Watson is constructed using Prolog.

MZI (SoC Tel-U) Logic Programming October-November 2023 11 / 66

What is Prolog?

Watson in Jeopardy! exhibition match. Source:.Wikipedia: Watson (Computer)

MZI (SoC Tel-U) Logic Programming October-November 2023 12 / 66

https://en.wikipedia.org/wiki/Watson_computer

Prolog Installation

Contents

1 What is Prolog?

2 Prolog Installation

3 Using the Interactive Interpreter

4 Elementary Prolog Programming: Basic Facts and Queries

5 Simple Rules in Prolog

6 Representation of Quantifiers in Prolog (Supplementary)

7 Term Equality and Inequality in Prolog (Supplementary)

MZI (SoC Tel-U) Logic Programming October-November 2023 13 / 66

Prolog Installation

Supporting Softwares

The source file for the installation can be downloaded from following links:

Amzi! Prolog (http://www.amzi.com/products/prolog_products.htm).

Logic Programming Associates Prolog (http://www.lpa.co.uk).

SWI-Prolog (http://www.swi-prolog.org/).

Visual Prolog (http://www.visual-prolog.com/).

W-Prolog (http://waitaki.otago.ac.nz/∼michael/wp/).
In this lecture slides, Prolog programs are written in SWI-Prolog syntax. All
programs in this slide are executed in SWI-Prolog 64-bit version 7.2.2 which have
been tested on Windows 7 64-bit and Linux Ubuntu 14.04 64-bit operating
system. SWI-Prolog is the simplest and easiest version of Prolog for learning logic
programming. SWI-Prolog can be run on Windows, Linux, and Macintosh
operating systems.

MZI (SoC Tel-U) Logic Programming October-November 2023 14 / 66

http://www.amzi.com/products/prolog_products.htm
http://www.lpa.co.uk
http://www.swi-prolog.org/
http://www.visual-prolog.com/
http://waitaki.otago.ac.nz/~michael/wp/

Prolog Installation

SWI-Prolog and Prolog Programming Contest

In 2013, SWI-Prolog is the only permitted Prolog variant to be used in Prolog
Programming Contest. This event is held annually in conjunction with the ICLP
(International Conference on Logic Programming).

MZI (SoC Tel-U) Logic Programming October-November 2023 15 / 66

Prolog Installation

SWI-Prolog Installation: Windows and Macintosh

For Windows and Macintosh operating system, the installation file can be
downloaded at http://www.swi-prolog.org/download/stable. For Windows
XP/ Vista/ 7/ 8 (32 or 64-bit), the installation can be performed like typical
program installation. Installation directory can be customized, for example in
C:\Program Files\swipl. Installation of SWI-Prolog has been successfully
tested in Windows 7 64-bit operating system.

MZI (SoC Tel-U) Logic Programming October-November 2023 16 / 66

http://www.swi-prolog.org/download/stable

Prolog Installation

SWI-Prolog Installation: Linux (Ubuntu)

For Linux Ubuntu operating system, SWI-Prolog installation can be performed
using PPA (Personal Package Archive). Open terminal, and then type following
command:

% sudo apt-add-repository ppa:swi-prolog/stable
% sudo apt-get update
% sudo apt-get install swi-prolog

After the installation is completed, we can run SWI-Prolog via terminal by typing
following command:

% swipl
?- emacs.

The command ?- emacs. is used to run the GUI in Linux which is similar to that
in Windows.

MZI (SoC Tel-U) Logic Programming October-November 2023 17 / 66

Prolog Installation

Illustration for running the SWI-Prolog GUI in Linux Ubuntu.

MZI (SoC Tel-U) Logic Programming October-November 2023 18 / 66

Prolog Installation

Illustration of the SWI-Prolog GUI in Linux Ubuntu.

MZI (SoC Tel-U) Logic Programming October-November 2023 19 / 66

Prolog Installation

SWI-Prolog Installation: Linux (Other Distros)

For Linux-based operating system other than Ubuntu, installation can be
performed by consulting following link:
http://www.swi-prolog.org/build/LinuxDistro.txt.

MZI (SoC Tel-U) Logic Programming October-November 2023 20 / 66

http://www.swi-prolog.org/build/LinuxDistro.txt

Prolog Installation

About SWI-Prolog

Excerpted from http://www.swi-prolog.org/:

SWI-Prolog offers a comprehensive free Prolog environment. Since its
start in 1987, SWI-Prolog development has been driven by the needs of
real world applications. SWI-Prolog is widely used in research and
education as well as commercial applications. Join over a million users
who have downloaded SWI-Prolog.

SWI is an acronym of Sociaal-Wetenschappelijke Informatica (“Social Science
Informatics”), which is a Dutch name of Human-Computer Studies research group
at the University of Amsterdam, The Netherlands. SWI-Prolog is written by Jan
Wielemaker.

MZI (SoC Tel-U) Logic Programming October-November 2023 21 / 66

http://www.swi-prolog.org/

Using the Interactive Interpreter

Contents

1 What is Prolog?

2 Prolog Installation

3 Using the Interactive Interpreter

4 Elementary Prolog Programming: Basic Facts and Queries

5 Simple Rules in Prolog

6 Representation of Quantifiers in Prolog (Supplementary)

7 Term Equality and Inequality in Prolog (Supplementary)

MZI (SoC Tel-U) Logic Programming October-November 2023 22 / 66

Using the Interactive Interpreter

Using the Interactive Interpreter

When you open SWI-Prolog, you’ll see following prompt:

1 ?-

Now try to type following command in SWI-Prolog:

write(’Hello World’),nl,write(’Welcome to Prolog’),nl.

1 ?-write(’Hello World’),nl,write(’Welcome to Prolog’),nl.

SWI-Prolog subsequently produces:

Hello World
Welcome to Prolog
true.

write and nl are two examples of built-in-predicate (BIP) in SWI-Prolog,
write(’x’) serves to show x into the screen and nl serves to move the next
output into the new line. All Prolog commands must be ended by a period
sign (.).

MZI (SoC Tel-U) Logic Programming October-November 2023 23 / 66

Using the Interactive Interpreter

Using the Interactive Interpreter

When you open SWI-Prolog, you’ll see following prompt:

1 ?-

Now try to type following command in SWI-Prolog:

write(’Hello World’),nl,write(’Welcome to Prolog’),nl.

1 ?-write(’Hello World’),nl,write(’Welcome to Prolog’),nl.

SWI-Prolog subsequently produces:

Hello World
Welcome to Prolog
true.

write and nl are two examples of built-in-predicate (BIP) in SWI-Prolog,
write(’x’) serves to show x into the screen and nl serves to move the next
output into the new line. All Prolog commands must be ended by a period
sign (.).

MZI (SoC Tel-U) Logic Programming October-November 2023 23 / 66

Using the Interactive Interpreter

Arithmetic in Interactive Interpreter

Simple arithmetic operations can be performed in SWI-Prolog interpreter.

1 ?- X is 1+2.

X = 3.
2 ?- X is 3-7.
X = -4.
3 ?- X is 2*3.
X = 6.
4 ?- X is 7/3.
X = 2.3333333333333335.
5 ?- X is 3^2. [Powering operation xy can also be expressed as x ∗ ∗y]
X = 9.
6 ?- X is 3+5*2.
X = 13.
7 ?- X = 3*3.
X = 3*3.

Arithmetic calculations in SWI-Prolog are performed using the predicate is. The
symbol = in Prolog is reserved for term equality.

MZI (SoC Tel-U) Logic Programming October-November 2023 24 / 66

Using the Interactive Interpreter

Arithmetic in Interactive Interpreter

Simple arithmetic operations can be performed in SWI-Prolog interpreter.

1 ?- X is 1+2.
X = 3.
2 ?- X is 3-7.

X = -4.
3 ?- X is 2*3.
X = 6.
4 ?- X is 7/3.
X = 2.3333333333333335.
5 ?- X is 3^2. [Powering operation xy can also be expressed as x ∗ ∗y]
X = 9.
6 ?- X is 3+5*2.
X = 13.
7 ?- X = 3*3.
X = 3*3.

Arithmetic calculations in SWI-Prolog are performed using the predicate is. The
symbol = in Prolog is reserved for term equality.

MZI (SoC Tel-U) Logic Programming October-November 2023 24 / 66

Using the Interactive Interpreter

Arithmetic in Interactive Interpreter

Simple arithmetic operations can be performed in SWI-Prolog interpreter.

1 ?- X is 1+2.
X = 3.
2 ?- X is 3-7.
X = -4.
3 ?- X is 2*3.

X = 6.
4 ?- X is 7/3.
X = 2.3333333333333335.
5 ?- X is 3^2. [Powering operation xy can also be expressed as x ∗ ∗y]
X = 9.
6 ?- X is 3+5*2.
X = 13.
7 ?- X = 3*3.
X = 3*3.

Arithmetic calculations in SWI-Prolog are performed using the predicate is. The
symbol = in Prolog is reserved for term equality.

MZI (SoC Tel-U) Logic Programming October-November 2023 24 / 66

Using the Interactive Interpreter

Arithmetic in Interactive Interpreter

Simple arithmetic operations can be performed in SWI-Prolog interpreter.

1 ?- X is 1+2.
X = 3.
2 ?- X is 3-7.
X = -4.
3 ?- X is 2*3.
X = 6.
4 ?- X is 7/3.

X = 2.3333333333333335.
5 ?- X is 3^2. [Powering operation xy can also be expressed as x ∗ ∗y]
X = 9.
6 ?- X is 3+5*2.
X = 13.
7 ?- X = 3*3.
X = 3*3.

Arithmetic calculations in SWI-Prolog are performed using the predicate is. The
symbol = in Prolog is reserved for term equality.

MZI (SoC Tel-U) Logic Programming October-November 2023 24 / 66

Using the Interactive Interpreter

Arithmetic in Interactive Interpreter

Simple arithmetic operations can be performed in SWI-Prolog interpreter.

1 ?- X is 1+2.
X = 3.
2 ?- X is 3-7.
X = -4.
3 ?- X is 2*3.
X = 6.
4 ?- X is 7/3.
X = 2.3333333333333335.
5 ?- X is 3^2. [Powering operation xy can also be expressed as x ∗ ∗y]

X = 9.
6 ?- X is 3+5*2.
X = 13.
7 ?- X = 3*3.
X = 3*3.

Arithmetic calculations in SWI-Prolog are performed using the predicate is. The
symbol = in Prolog is reserved for term equality.

MZI (SoC Tel-U) Logic Programming October-November 2023 24 / 66

Using the Interactive Interpreter

Arithmetic in Interactive Interpreter

Simple arithmetic operations can be performed in SWI-Prolog interpreter.

1 ?- X is 1+2.
X = 3.
2 ?- X is 3-7.
X = -4.
3 ?- X is 2*3.
X = 6.
4 ?- X is 7/3.
X = 2.3333333333333335.
5 ?- X is 3^2. [Powering operation xy can also be expressed as x ∗ ∗y]
X = 9.
6 ?- X is 3+5*2.

X = 13.
7 ?- X = 3*3.
X = 3*3.

Arithmetic calculations in SWI-Prolog are performed using the predicate is. The
symbol = in Prolog is reserved for term equality.

MZI (SoC Tel-U) Logic Programming October-November 2023 24 / 66

Using the Interactive Interpreter

Arithmetic in Interactive Interpreter

Simple arithmetic operations can be performed in SWI-Prolog interpreter.

1 ?- X is 1+2.
X = 3.
2 ?- X is 3-7.
X = -4.
3 ?- X is 2*3.
X = 6.
4 ?- X is 7/3.
X = 2.3333333333333335.
5 ?- X is 3^2. [Powering operation xy can also be expressed as x ∗ ∗y]
X = 9.
6 ?- X is 3+5*2.
X = 13.
7 ?- X = 3*3.

X = 3*3.

Arithmetic calculations in SWI-Prolog are performed using the predicate is. The
symbol = in Prolog is reserved for term equality.

MZI (SoC Tel-U) Logic Programming October-November 2023 24 / 66

Using the Interactive Interpreter

Arithmetic in Interactive Interpreter

Simple arithmetic operations can be performed in SWI-Prolog interpreter.

1 ?- X is 1+2.
X = 3.
2 ?- X is 3-7.
X = -4.
3 ?- X is 2*3.
X = 6.
4 ?- X is 7/3.
X = 2.3333333333333335.
5 ?- X is 3^2. [Powering operation xy can also be expressed as x ∗ ∗y]
X = 9.
6 ?- X is 3+5*2.
X = 13.
7 ?- X = 3*3.
X = 3*3.

Arithmetic calculations in SWI-Prolog are performed using the predicate is. The
symbol = in Prolog is reserved for term equality.

MZI (SoC Tel-U) Logic Programming October-November 2023 24 / 66

Using the Interactive Interpreter

More About Arithmetic Operations in Prolog

Prolog uses following arithmetical operators: +, −, ∗, /, //, and mod. Operator
// serves as an integer division operator (div operator).

1 ?- X is 9/4.

X = 2.25.
2 ?- X is 9//4.
X = 2.
3 ?- X is 9 mod 4.
X = 1.

MZI (SoC Tel-U) Logic Programming October-November 2023 25 / 66

Using the Interactive Interpreter

More About Arithmetic Operations in Prolog

Prolog uses following arithmetical operators: +, −, ∗, /, //, and mod. Operator
// serves as an integer division operator (div operator).

1 ?- X is 9/4.
X = 2.25.
2 ?- X is 9//4.

X = 2.
3 ?- X is 9 mod 4.
X = 1.

MZI (SoC Tel-U) Logic Programming October-November 2023 25 / 66

Using the Interactive Interpreter

More About Arithmetic Operations in Prolog

Prolog uses following arithmetical operators: +, −, ∗, /, //, and mod. Operator
// serves as an integer division operator (div operator).

1 ?- X is 9/4.
X = 2.25.
2 ?- X is 9//4.
X = 2.
3 ?- X is 9 mod 4.

X = 1.

MZI (SoC Tel-U) Logic Programming October-November 2023 25 / 66

Using the Interactive Interpreter

More About Arithmetic Operations in Prolog

Prolog uses following arithmetical operators: +, −, ∗, /, //, and mod. Operator
// serves as an integer division operator (div operator).

1 ?- X is 9/4.
X = 2.25.
2 ?- X is 9//4.
X = 2.
3 ?- X is 9 mod 4.
X = 1.

MZI (SoC Tel-U) Logic Programming October-November 2023 25 / 66

Using the Interactive Interpreter

Comparison of Numerical Values in Prolog

We can use SWI-Prolog to compare numerical values.

1 ?- 1 < 2.

true.
2 ?- 3-2 > 3+2.
false.
3 ?- 3+2 =:= 6-1. [symbol =:= means numerical equality]
true.
4 ?- 3+2 =\= 3-2. [symbol =\= means numerical inequality]
true.
5 ?- 3+2 >= 3-2.
true.
6 ?- 3+2 =< 3-2.
false.
7 ?- 3+2 => 3-2.
ERROR: Syntax error: Operator expected
ERROR: 3+2
ERROR: ** here **
ERROR: => 3-2.

MZI (SoC Tel-U) Logic Programming October-November 2023 26 / 66

Using the Interactive Interpreter

Comparison of Numerical Values in Prolog

We can use SWI-Prolog to compare numerical values.

1 ?- 1 < 2.
true.
2 ?- 3-2 > 3+2.

false.
3 ?- 3+2 =:= 6-1. [symbol =:= means numerical equality]
true.
4 ?- 3+2 =\= 3-2. [symbol =\= means numerical inequality]
true.
5 ?- 3+2 >= 3-2.
true.
6 ?- 3+2 =< 3-2.
false.
7 ?- 3+2 => 3-2.
ERROR: Syntax error: Operator expected
ERROR: 3+2
ERROR: ** here **
ERROR: => 3-2.

MZI (SoC Tel-U) Logic Programming October-November 2023 26 / 66

Using the Interactive Interpreter

Comparison of Numerical Values in Prolog

We can use SWI-Prolog to compare numerical values.

1 ?- 1 < 2.
true.
2 ?- 3-2 > 3+2.
false.
3 ?- 3+2 =:= 6-1. [symbol =:= means numerical equality]

true.
4 ?- 3+2 =\= 3-2. [symbol =\= means numerical inequality]
true.
5 ?- 3+2 >= 3-2.
true.
6 ?- 3+2 =< 3-2.
false.
7 ?- 3+2 => 3-2.
ERROR: Syntax error: Operator expected
ERROR: 3+2
ERROR: ** here **
ERROR: => 3-2.

MZI (SoC Tel-U) Logic Programming October-November 2023 26 / 66

Using the Interactive Interpreter

Comparison of Numerical Values in Prolog

We can use SWI-Prolog to compare numerical values.

1 ?- 1 < 2.
true.
2 ?- 3-2 > 3+2.
false.
3 ?- 3+2 =:= 6-1. [symbol =:= means numerical equality]
true.
4 ?- 3+2 =\= 3-2. [symbol =\= means numerical inequality]

true.
5 ?- 3+2 >= 3-2.
true.
6 ?- 3+2 =< 3-2.
false.
7 ?- 3+2 => 3-2.
ERROR: Syntax error: Operator expected
ERROR: 3+2
ERROR: ** here **
ERROR: => 3-2.

MZI (SoC Tel-U) Logic Programming October-November 2023 26 / 66

Using the Interactive Interpreter

Comparison of Numerical Values in Prolog

We can use SWI-Prolog to compare numerical values.

1 ?- 1 < 2.
true.
2 ?- 3-2 > 3+2.
false.
3 ?- 3+2 =:= 6-1. [symbol =:= means numerical equality]
true.
4 ?- 3+2 =\= 3-2. [symbol =\= means numerical inequality]
true.
5 ?- 3+2 >= 3-2.

true.
6 ?- 3+2 =< 3-2.
false.
7 ?- 3+2 => 3-2.
ERROR: Syntax error: Operator expected
ERROR: 3+2
ERROR: ** here **
ERROR: => 3-2.

MZI (SoC Tel-U) Logic Programming October-November 2023 26 / 66

Using the Interactive Interpreter

Comparison of Numerical Values in Prolog

We can use SWI-Prolog to compare numerical values.

1 ?- 1 < 2.
true.
2 ?- 3-2 > 3+2.
false.
3 ?- 3+2 =:= 6-1. [symbol =:= means numerical equality]
true.
4 ?- 3+2 =\= 3-2. [symbol =\= means numerical inequality]
true.
5 ?- 3+2 >= 3-2.
true.
6 ?- 3+2 =< 3-2.

false.
7 ?- 3+2 => 3-2.
ERROR: Syntax error: Operator expected
ERROR: 3+2
ERROR: ** here **
ERROR: => 3-2.

MZI (SoC Tel-U) Logic Programming October-November 2023 26 / 66

Using the Interactive Interpreter

Comparison of Numerical Values in Prolog

We can use SWI-Prolog to compare numerical values.

1 ?- 1 < 2.
true.
2 ?- 3-2 > 3+2.
false.
3 ?- 3+2 =:= 6-1. [symbol =:= means numerical equality]
true.
4 ?- 3+2 =\= 3-2. [symbol =\= means numerical inequality]
true.
5 ?- 3+2 >= 3-2.
true.
6 ?- 3+2 =< 3-2.
false.
7 ?- 3+2 => 3-2.

ERROR: Syntax error: Operator expected
ERROR: 3+2
ERROR: ** here **
ERROR: => 3-2.

MZI (SoC Tel-U) Logic Programming October-November 2023 26 / 66

Using the Interactive Interpreter

Comparison of Numerical Values in Prolog

We can use SWI-Prolog to compare numerical values.

1 ?- 1 < 2.
true.
2 ?- 3-2 > 3+2.
false.
3 ?- 3+2 =:= 6-1. [symbol =:= means numerical equality]
true.
4 ?- 3+2 =\= 3-2. [symbol =\= means numerical inequality]
true.
5 ?- 3+2 >= 3-2.
true.
6 ?- 3+2 =< 3-2.
false.
7 ?- 3+2 => 3-2.
ERROR: Syntax error: Operator expected
ERROR: 3+2
ERROR: ** here **
ERROR: => 3-2.

MZI (SoC Tel-U) Logic Programming October-November 2023 26 / 66

Using the Interactive Interpreter

Numerical Value Comparison Operators in Prolog

The numerical value comparison operators in Prolog are:

Mathematical symbol Prolog symbol
= =:=
6= =\=
< <
> >
≤ =<
≥ >=

The symbols <= and => are not the symbol for numerical value comparison
in Prolog.

MZI (SoC Tel-U) Logic Programming October-November 2023 27 / 66

Elementary Prolog Programming: Basic Facts and Queries

Contents

1 What is Prolog?

2 Prolog Installation

3 Using the Interactive Interpreter

4 Elementary Prolog Programming: Basic Facts and Queries

5 Simple Rules in Prolog

6 Representation of Quantifiers in Prolog (Supplementary)

7 Term Equality and Inequality in Prolog (Supplementary)

MZI (SoC Tel-U) Logic Programming October-November 2023 28 / 66

Elementary Prolog Programming: Basic Facts and Queries

Writing your first SWI-Prolog program

Writing a program in SWI-Prolog can be performed using any text editor (e.g.,
notepad or notepad++), however SWI-Prolog is also equipped with an editor that
can check the syntax of Prolog program built.

Creating a script in Windows
Open SWI-Prolog, then choose File → New and put an appropriate file name for
the program (make sure that the file type is Prolog Source with .pl extension).
Afterward, we can write the program in the text editor provided.

Creating a script in Linux Ubuntu
Open terminal and then type swipl, after entering SWI-Prolog type emacs.
(with . sign). Next choose File → New and put an appropriate file name for the
program (make sure that the file has .pl extension). Afterward, we can write the
program in the text editor provided.

MZI (SoC Tel-U) Logic Programming October-November 2023 29 / 66

Elementary Prolog Programming: Basic Facts and Queries

Translation of Simple Predicate Formulas to Prolog

Suppose D is a domain consisting of 12 people, where
D = {Alice,Bob, Charlie,David,Emma,F iona,
Grace,Hans, Irene, Jim,Kelly, Lily}.

Suppose Male (x) is a predicate which states that “x is a male”and Female (x) is
a predicate which states that “x is a female”.

Suppose we have following facts:

Bob, Charlie, David, Hans, and Jim are male.

Alice, Emma, Fiona, Grace, Irene, Kelly, and Lily are female.

These facts can be expressed in predicate formulas as:

Male (Bob), Male (Charlie), Male (David), Male (Hans), Male (Jim)

Female (Alice), Female (Emma), Female (Fiona), Female (Grace),
Female (Irene), Female (Kelly), Female (Lily)

MZI (SoC Tel-U) Logic Programming October-November 2023 30 / 66

Elementary Prolog Programming: Basic Facts and Queries

Translation of Simple Predicate Formulas to Prolog

Suppose D is a domain consisting of 12 people, where
D = {Alice,Bob, Charlie,David,Emma,F iona,
Grace,Hans, Irene, Jim,Kelly, Lily}.

Suppose Male (x) is a predicate which states that “x is a male”and Female (x) is
a predicate which states that “x is a female”.

Suppose we have following facts:

Bob, Charlie, David, Hans, and Jim are male.

Alice, Emma, Fiona, Grace, Irene, Kelly, and Lily are female.

These facts can be expressed in predicate formulas as:

Male (Bob), Male (Charlie), Male (David), Male (Hans), Male (Jim)

Female (Alice), Female (Emma), Female (Fiona), Female (Grace),
Female (Irene), Female (Kelly), Female (Lily)

MZI (SoC Tel-U) Logic Programming October-November 2023 30 / 66

Elementary Prolog Programming: Basic Facts and Queries

Translation of Simple Predicate Formulas to Prolog

Suppose D is a domain consisting of 12 people, where
D = {Alice,Bob, Charlie,David,Emma,F iona,
Grace,Hans, Irene, Jim,Kelly, Lily}.

Suppose Male (x) is a predicate which states that “x is a male”and Female (x) is
a predicate which states that “x is a female”.

Suppose we have following facts:

Bob, Charlie, David, Hans, and Jim are male.

Alice, Emma, Fiona, Grace, Irene, Kelly, and Lily are female.

These facts can be expressed in predicate formulas as:

Male (Bob), Male (Charlie), Male (David), Male (Hans), Male (Jim)

Female (Alice), Female (Emma), Female (Fiona), Female (Grace),
Female (Irene), Female (Kelly), Female (Lily)

MZI (SoC Tel-U) Logic Programming October-November 2023 30 / 66

Elementary Prolog Programming: Basic Facts and Queries

Prolog Script

Our previous facts can be expressed in Prolog script as follows:

% male(x) states that x is a male.
/* Bob, Charlie, David, Hans, & Jim are male */
male(bob).
male(charlie).
male(david).
male(hans).
male(jim).
% female(x) states that x is a female.
/* Alice, Emma, Fiona, Grace, Irene, Kelly, & Lily are female */
female(alice).
female(emma).
female(fiona).
female(grace).
female(irene).
female(kelly).
female(lily).

MZI (SoC Tel-U) Logic Programming October-November 2023 31 / 66

Elementary Prolog Programming: Basic Facts and Queries

Predicate is started with lowercase letter, the same thing goes for constant
term as well. Constant term cannot be started with uppercase letter.
A constant term can be written using single quotation mark, such as
male(‘Bob’).

Comments in Prolog script are preceded by % symbol or enclosed with /* and
*/ symbol.

Running Prolog program: Windows and Linux
In the text editor choose Compile → Make and then Compile → Compile
Buffer. Interpreter (or terminal in Linux) will then produce the warning stated
that the compilation process has been carried out successfully.

MZI (SoC Tel-U) Logic Programming October-November 2023 32 / 66

Elementary Prolog Programming: Basic Facts and Queries

Example of a successful compilation process in Linux Ubuntu 14.04.

MZI (SoC Tel-U) Logic Programming October-November 2023 33 / 66

Elementary Prolog Programming: Basic Facts and Queries

Queries in Prolog

After a successful compilation, we can enter several queries in interactive
interpreter (or terminal in Linux). Move to the next line is performed using enter
or tab.

?- male(bob). [Is Bob a male?]

true.
?- not(male(charlie)). [Is Charlie not a male?]
false.
?- male(bob),female(alice). [, is the ∧ operator]
true.
?- male(david),male(emma).
false.
?- male(david);male(fiona). [; is the ∨ operator]
true.
?- female(charlie);male(grace).
false.

MZI (SoC Tel-U) Logic Programming October-November 2023 34 / 66

Elementary Prolog Programming: Basic Facts and Queries

Queries in Prolog

After a successful compilation, we can enter several queries in interactive
interpreter (or terminal in Linux). Move to the next line is performed using enter
or tab.

?- male(bob). [Is Bob a male?]
true.
?- not(male(charlie)). [Is Charlie not a male?]

false.
?- male(bob),female(alice). [, is the ∧ operator]
true.
?- male(david),male(emma).
false.
?- male(david);male(fiona). [; is the ∨ operator]
true.
?- female(charlie);male(grace).
false.

MZI (SoC Tel-U) Logic Programming October-November 2023 34 / 66

Elementary Prolog Programming: Basic Facts and Queries

Queries in Prolog

After a successful compilation, we can enter several queries in interactive
interpreter (or terminal in Linux). Move to the next line is performed using enter
or tab.

?- male(bob). [Is Bob a male?]
true.
?- not(male(charlie)). [Is Charlie not a male?]
false.
?- male(bob),female(alice). [, is the ∧ operator]

true.
?- male(david),male(emma).
false.
?- male(david);male(fiona). [; is the ∨ operator]
true.
?- female(charlie);male(grace).
false.

MZI (SoC Tel-U) Logic Programming October-November 2023 34 / 66

Elementary Prolog Programming: Basic Facts and Queries

Queries in Prolog

After a successful compilation, we can enter several queries in interactive
interpreter (or terminal in Linux). Move to the next line is performed using enter
or tab.

?- male(bob). [Is Bob a male?]
true.
?- not(male(charlie)). [Is Charlie not a male?]
false.
?- male(bob),female(alice). [, is the ∧ operator]
true.
?- male(david),male(emma).

false.
?- male(david);male(fiona). [; is the ∨ operator]
true.
?- female(charlie);male(grace).
false.

MZI (SoC Tel-U) Logic Programming October-November 2023 34 / 66

Elementary Prolog Programming: Basic Facts and Queries

Queries in Prolog

After a successful compilation, we can enter several queries in interactive
interpreter (or terminal in Linux). Move to the next line is performed using enter
or tab.

?- male(bob). [Is Bob a male?]
true.
?- not(male(charlie)). [Is Charlie not a male?]
false.
?- male(bob),female(alice). [, is the ∧ operator]
true.
?- male(david),male(emma).
false.
?- male(david);male(fiona). [; is the ∨ operator]

true.
?- female(charlie);male(grace).
false.

MZI (SoC Tel-U) Logic Programming October-November 2023 34 / 66

Elementary Prolog Programming: Basic Facts and Queries

Queries in Prolog

After a successful compilation, we can enter several queries in interactive
interpreter (or terminal in Linux). Move to the next line is performed using enter
or tab.

?- male(bob). [Is Bob a male?]
true.
?- not(male(charlie)). [Is Charlie not a male?]
false.
?- male(bob),female(alice). [, is the ∧ operator]
true.
?- male(david),male(emma).
false.
?- male(david);male(fiona). [; is the ∨ operator]
true.
?- female(charlie);male(grace).

false.

MZI (SoC Tel-U) Logic Programming October-November 2023 34 / 66

Elementary Prolog Programming: Basic Facts and Queries

Queries in Prolog

After a successful compilation, we can enter several queries in interactive
interpreter (or terminal in Linux). Move to the next line is performed using enter
or tab.

?- male(bob). [Is Bob a male?]
true.
?- not(male(charlie)). [Is Charlie not a male?]
false.
?- male(bob),female(alice). [, is the ∧ operator]
true.
?- male(david),male(emma).
false.
?- male(david);male(fiona). [; is the ∨ operator]
true.
?- female(charlie);male(grace).
false.

MZI (SoC Tel-U) Logic Programming October-November 2023 34 / 66

Elementary Prolog Programming: Basic Facts and Queries

Closed World Assumption

In our previous program, we can inquire following query.

?- male(anakin).

false.
?- female(anakin).
false.
?- not(male(anakin)).
true.
?- not(female(anakin)).
true.

Remark
When Prolog process not(...) query, Prolog checked whether the fact in the
bracket, i.e., (...), is true. If the fact (...) is not true, then Prolog returns the
value false. The reasoning carried out in Prolog is based on the closed world
assumption. According to this assumption, anything is true whenever it is a fact
in the program or it can be derived from the facts in the program. In addition,
any conclusion that cannot be proved to follow from the facts and rules in the
program is false.

MZI (SoC Tel-U) Logic Programming October-November 2023 35 / 66

Elementary Prolog Programming: Basic Facts and Queries

Closed World Assumption

In our previous program, we can inquire following query.

?- male(anakin).
false.
?- female(anakin).

false.
?- not(male(anakin)).
true.
?- not(female(anakin)).
true.

Remark
When Prolog process not(...) query, Prolog checked whether the fact in the
bracket, i.e., (...), is true. If the fact (...) is not true, then Prolog returns the
value false. The reasoning carried out in Prolog is based on the closed world
assumption. According to this assumption, anything is true whenever it is a fact
in the program or it can be derived from the facts in the program. In addition,
any conclusion that cannot be proved to follow from the facts and rules in the
program is false.

MZI (SoC Tel-U) Logic Programming October-November 2023 35 / 66

Elementary Prolog Programming: Basic Facts and Queries

Closed World Assumption

In our previous program, we can inquire following query.

?- male(anakin).
false.
?- female(anakin).
false.
?- not(male(anakin)).

true.
?- not(female(anakin)).
true.

Remark
When Prolog process not(...) query, Prolog checked whether the fact in the
bracket, i.e., (...), is true. If the fact (...) is not true, then Prolog returns the
value false. The reasoning carried out in Prolog is based on the closed world
assumption. According to this assumption, anything is true whenever it is a fact
in the program or it can be derived from the facts in the program. In addition,
any conclusion that cannot be proved to follow from the facts and rules in the
program is false.

MZI (SoC Tel-U) Logic Programming October-November 2023 35 / 66

Elementary Prolog Programming: Basic Facts and Queries

Closed World Assumption

In our previous program, we can inquire following query.

?- male(anakin).
false.
?- female(anakin).
false.
?- not(male(anakin)).
true.
?- not(female(anakin)).

true.

Remark
When Prolog process not(...) query, Prolog checked whether the fact in the
bracket, i.e., (...), is true. If the fact (...) is not true, then Prolog returns the
value false. The reasoning carried out in Prolog is based on the closed world
assumption. According to this assumption, anything is true whenever it is a fact
in the program or it can be derived from the facts in the program. In addition,
any conclusion that cannot be proved to follow from the facts and rules in the
program is false.

MZI (SoC Tel-U) Logic Programming October-November 2023 35 / 66

Elementary Prolog Programming: Basic Facts and Queries

Closed World Assumption

In our previous program, we can inquire following query.

?- male(anakin).
false.
?- female(anakin).
false.
?- not(male(anakin)).
true.
?- not(female(anakin)).
true.

Remark
When Prolog process not(...) query, Prolog checked whether the fact in the
bracket, i.e., (...), is true. If the fact (...) is not true, then Prolog returns the
value false. The reasoning carried out in Prolog is based on the closed world
assumption. According to this assumption, anything is true whenever it is a fact
in the program or it can be derived from the facts in the program. In addition,
any conclusion that cannot be proved to follow from the facts and rules in the
program is false.

MZI (SoC Tel-U) Logic Programming October-November 2023 35 / 66

Elementary Prolog Programming: Basic Facts and Queries

Prolog Variables and Their Queries

Variables in Prolog always started with uppercase letters. Usually variables are
only written with one capital letter (e.g., X, Y, or Z). Variables are used in the
interpreter to show all objects which satisfy the true condition of particular
predicates.

?- male(X).

X = bob; [press tab to see the next result]
X = charlie;
X = david;
X = hans;
X = jim.

MZI (SoC Tel-U) Logic Programming October-November 2023 36 / 66

Elementary Prolog Programming: Basic Facts and Queries

Prolog Variables and Their Queries

Variables in Prolog always started with uppercase letters. Usually variables are
only written with one capital letter (e.g., X, Y, or Z). Variables are used in the
interpreter to show all objects which satisfy the true condition of particular
predicates.

?- male(X).
X = bob; [press tab to see the next result]

X = charlie;
X = david;
X = hans;
X = jim.

MZI (SoC Tel-U) Logic Programming October-November 2023 36 / 66

Elementary Prolog Programming: Basic Facts and Queries

Prolog Variables and Their Queries

Variables in Prolog always started with uppercase letters. Usually variables are
only written with one capital letter (e.g., X, Y, or Z). Variables are used in the
interpreter to show all objects which satisfy the true condition of particular
predicates.

?- male(X).
X = bob; [press tab to see the next result]
X = charlie;

X = david;
X = hans;
X = jim.

MZI (SoC Tel-U) Logic Programming October-November 2023 36 / 66

Elementary Prolog Programming: Basic Facts and Queries

Prolog Variables and Their Queries

Variables in Prolog always started with uppercase letters. Usually variables are
only written with one capital letter (e.g., X, Y, or Z). Variables are used in the
interpreter to show all objects which satisfy the true condition of particular
predicates.

?- male(X).
X = bob; [press tab to see the next result]
X = charlie;
X = david;

X = hans;
X = jim.

MZI (SoC Tel-U) Logic Programming October-November 2023 36 / 66

Elementary Prolog Programming: Basic Facts and Queries

Prolog Variables and Their Queries

Variables in Prolog always started with uppercase letters. Usually variables are
only written with one capital letter (e.g., X, Y, or Z). Variables are used in the
interpreter to show all objects which satisfy the true condition of particular
predicates.

?- male(X).
X = bob; [press tab to see the next result]
X = charlie;
X = david;
X = hans;

X = jim.

MZI (SoC Tel-U) Logic Programming October-November 2023 36 / 66

Elementary Prolog Programming: Basic Facts and Queries

Prolog Variables and Their Queries

Variables in Prolog always started with uppercase letters. Usually variables are
only written with one capital letter (e.g., X, Y, or Z). Variables are used in the
interpreter to show all objects which satisfy the true condition of particular
predicates.

?- male(X).
X = bob; [press tab to see the next result]
X = charlie;
X = david;
X = hans;
X = jim.

MZI (SoC Tel-U) Logic Programming October-November 2023 36 / 66

Elementary Prolog Programming: Basic Facts and Queries

?- female(Person).

Person = alice;
Person = emma;
Person = fiona;
Person = grace;
Person = irene;
Person = kelly;
Person = lily.

MZI (SoC Tel-U) Logic Programming October-November 2023 37 / 66

Elementary Prolog Programming: Basic Facts and Queries

?- female(Person).
Person = alice;

Person = emma;
Person = fiona;
Person = grace;
Person = irene;
Person = kelly;
Person = lily.

MZI (SoC Tel-U) Logic Programming October-November 2023 37 / 66

Elementary Prolog Programming: Basic Facts and Queries

?- female(Person).
Person = alice;
Person = emma;

Person = fiona;
Person = grace;
Person = irene;
Person = kelly;
Person = lily.

MZI (SoC Tel-U) Logic Programming October-November 2023 37 / 66

Elementary Prolog Programming: Basic Facts and Queries

?- female(Person).
Person = alice;
Person = emma;
Person = fiona;

Person = grace;
Person = irene;
Person = kelly;
Person = lily.

MZI (SoC Tel-U) Logic Programming October-November 2023 37 / 66

Elementary Prolog Programming: Basic Facts and Queries

?- female(Person).
Person = alice;
Person = emma;
Person = fiona;
Person = grace;

Person = irene;
Person = kelly;
Person = lily.

MZI (SoC Tel-U) Logic Programming October-November 2023 37 / 66

Elementary Prolog Programming: Basic Facts and Queries

?- female(Person).
Person = alice;
Person = emma;
Person = fiona;
Person = grace;
Person = irene;

Person = kelly;
Person = lily.

MZI (SoC Tel-U) Logic Programming October-November 2023 37 / 66

Elementary Prolog Programming: Basic Facts and Queries

?- female(Person).
Person = alice;
Person = emma;
Person = fiona;
Person = grace;
Person = irene;
Person = kelly;

Person = lily.

MZI (SoC Tel-U) Logic Programming October-November 2023 37 / 66

Elementary Prolog Programming: Basic Facts and Queries

?- female(Person).
Person = alice;
Person = emma;
Person = fiona;
Person = grace;
Person = irene;
Person = kelly;
Person = lily.

MZI (SoC Tel-U) Logic Programming October-November 2023 37 / 66

Elementary Prolog Programming: Basic Facts and Queries

Binary Predicate in Prolog

Suppose D is the universe of discourse in our previous example and Parent (x, y)
is a binary predicate which states that “x is the parent of y”. Suppose we have
following facts in predicate formulas:

Parent (Alice, Charlie), Parent (Bob,Charlie), Parent (Bob,Emma).

Parent (Charlie, F iona), Parent (Charlie,Grace), Parent (Emma, Irene).

Parent (Fiona,David), Parent (Fiona, Lily), Parent (Grace, Jim),
Parent (Grace,Kelly), Parent (Hans, Jim), Parent (Hans,Kelly).

MZI (SoC Tel-U) Logic Programming October-November 2023 38 / 66

Elementary Prolog Programming: Basic Facts and Queries

This fact can be expressed in Prolog script as::

% parent(x,y) states that x is a parent of y
parent(alice,charlie).
parent(bob,charlie).
parent(bob,emma).
parent(charlie,fiona).
parent(charlie,grace).
parent(emma,irene).
parent(fiona,david).
parent(fiona,lily).
parent(grace,jim).
parent(grace,kelly).
parent(hans,jim).
parent(hans,kelly).

These facts can be added to our previous Prolog script.

MZI (SoC Tel-U) Logic Programming October-November 2023 39 / 66

Elementary Prolog Programming: Basic Facts and Queries

Remark
Editing Prolog file which was created earlier can be done by:
In Windows:

In Prolog interpreter, choose File → Edit and then select the file you want
to edit, or

In a text editor, choose File → Open then select the file you want to edit.

In Linux Ubuntu: on emacs choose File → Open and then select the file you
want to edit.

MZI (SoC Tel-U) Logic Programming October-November 2023 40 / 66

Elementary Prolog Programming: Basic Facts and Queries

After the program is compiled, we can execute following queries:

?- parent(TheParent,TheKid).

TheParent = alice,
TheKid = charlie;
TheParent = bob,
TheKid = charlie;

... [several other outputs]

TheParent = hans,
TheKid = jim;
TheParent = hans,
TheKid = kelly.

MZI (SoC Tel-U) Logic Programming October-November 2023 41 / 66

Elementary Prolog Programming: Basic Facts and Queries

After the program is compiled, we can execute following queries:

?- parent(TheParent,TheKid).
TheParent = alice,
TheKid = charlie;

TheParent = bob,
TheKid = charlie;

... [several other outputs]

TheParent = hans,
TheKid = jim;
TheParent = hans,
TheKid = kelly.

MZI (SoC Tel-U) Logic Programming October-November 2023 41 / 66

Elementary Prolog Programming: Basic Facts and Queries

After the program is compiled, we can execute following queries:

?- parent(TheParent,TheKid).
TheParent = alice,
TheKid = charlie;
TheParent = bob,
TheKid = charlie;

... [several other outputs]

TheParent = hans,
TheKid = jim;
TheParent = hans,
TheKid = kelly.

MZI (SoC Tel-U) Logic Programming October-November 2023 41 / 66

Elementary Prolog Programming: Basic Facts and Queries

After the program is compiled, we can execute following queries:

?- parent(TheParent,TheKid).
TheParent = alice,
TheKid = charlie;
TheParent = bob,
TheKid = charlie;

... [several other outputs]

TheParent = hans,
TheKid = jim;

TheParent = hans,
TheKid = kelly.

MZI (SoC Tel-U) Logic Programming October-November 2023 41 / 66

Elementary Prolog Programming: Basic Facts and Queries

After the program is compiled, we can execute following queries:

?- parent(TheParent,TheKid).
TheParent = alice,
TheKid = charlie;
TheParent = bob,
TheKid = charlie;

... [several other outputs]

TheParent = hans,
TheKid = jim;
TheParent = hans,
TheKid = kelly.

MZI (SoC Tel-U) Logic Programming October-November 2023 41 / 66

Elementary Prolog Programming: Basic Facts and Queries

In order to know all of Fiona’s children, we can perform the query
parent(fiona,X). Similarly, in order to know all of Jim’s parents, we can
perform the query parent(X,jim).

?- parent(fiona,X).

X = david;
X = lily.

?- parent(X,jim).
X = grace;
X = hans.

MZI (SoC Tel-U) Logic Programming October-November 2023 42 / 66

Elementary Prolog Programming: Basic Facts and Queries

In order to know all of Fiona’s children, we can perform the query
parent(fiona,X). Similarly, in order to know all of Jim’s parents, we can
perform the query parent(X,jim).

?- parent(fiona,X).
X = david;
X = lily.

?- parent(X,jim).

X = grace;
X = hans.

MZI (SoC Tel-U) Logic Programming October-November 2023 42 / 66

Elementary Prolog Programming: Basic Facts and Queries

In order to know all of Fiona’s children, we can perform the query
parent(fiona,X). Similarly, in order to know all of Jim’s parents, we can
perform the query parent(X,jim).

?- parent(fiona,X).
X = david;
X = lily.

?- parent(X,jim).
X = grace;
X = hans.

MZI (SoC Tel-U) Logic Programming October-November 2023 42 / 66

Simple Rules in Prolog

Contents

1 What is Prolog?

2 Prolog Installation

3 Using the Interactive Interpreter

4 Elementary Prolog Programming: Basic Facts and Queries

5 Simple Rules in Prolog

6 Representation of Quantifiers in Prolog (Supplementary)

7 Term Equality and Inequality in Prolog (Supplementary)

MZI (SoC Tel-U) Logic Programming October-November 2023 43 / 66

Simple Rules in Prolog

We can add following facts to the previous Prolog script:

% adult(x) states that x is an adult.
% Alice, Bob, Charlie, Emma, Fiona, Grace, & Hans are adults.
adult(alice).
adult(bob).
adult(charlie).
adult(emma).
adult(fiona).
adult(grace).
adult(hans).
% teen(x) states that x is a teenager.
% Irene, David, & Lily are teenagers.
teen(irene).
teen(david).
teen(lily).

MZI (SoC Tel-U) Logic Programming October-November 2023 44 / 66

Simple Rules in Prolog

% kid(x) states that x is a little child.
% Jim & Kelly are little children.
kid(jim).
kid(kelly).

MZI (SoC Tel-U) Logic Programming October-November 2023 45 / 66

Simple Rules in Prolog

Translating Predicate Formulas to Prolog Script

Suppose we have following derivative predicates:

1 Gentleman (x) : “x is an adult male”. The predicate Gentleman (x) is
defined as Gentleman (x) :=

Male (x) ∧Adult (x).
2 Lady (x) : “x is an adult female”. The predicate Lady (x) is defined as
Lady (x) := Female (x) ∧Adult (x).

3 TeenBoy (x) : “x is a male teenager”. The predicate TeenBoy (x) is defined
as TeenBoy (x) := Male (x) ∧ Teen (x).

4 TeenGirl (x) : “x is a female teenager”. The predicate TeenGirl (x) is
defined as TeenGirl (x) := Female (x) ∧ Teen (x).

5 LittleBoy (x) : “x is a male little child”. The predicate LittleBoy (x) is
defined as LittleBoy (x) := Male (x) ∧Kid (x).

6 LittleGirl (x) : “x is a female little child”. The predicate LittleGirl (x) is
defined as LittleGirl (x) := Female (x) ∧Kid (x).

MZI (SoC Tel-U) Logic Programming October-November 2023 46 / 66

Simple Rules in Prolog

Translating Predicate Formulas to Prolog Script

Suppose we have following derivative predicates:

1 Gentleman (x) : “x is an adult male”. The predicate Gentleman (x) is
defined as Gentleman (x) := Male (x) ∧Adult (x).

2 Lady (x) : “x is an adult female”. The predicate Lady (x) is defined as
Lady (x) :=

Female (x) ∧Adult (x).
3 TeenBoy (x) : “x is a male teenager”. The predicate TeenBoy (x) is defined
as TeenBoy (x) := Male (x) ∧ Teen (x).

4 TeenGirl (x) : “x is a female teenager”. The predicate TeenGirl (x) is
defined as TeenGirl (x) := Female (x) ∧ Teen (x).

5 LittleBoy (x) : “x is a male little child”. The predicate LittleBoy (x) is
defined as LittleBoy (x) := Male (x) ∧Kid (x).

6 LittleGirl (x) : “x is a female little child”. The predicate LittleGirl (x) is
defined as LittleGirl (x) := Female (x) ∧Kid (x).

MZI (SoC Tel-U) Logic Programming October-November 2023 46 / 66

Simple Rules in Prolog

Translating Predicate Formulas to Prolog Script

Suppose we have following derivative predicates:

1 Gentleman (x) : “x is an adult male”. The predicate Gentleman (x) is
defined as Gentleman (x) := Male (x) ∧Adult (x).

2 Lady (x) : “x is an adult female”. The predicate Lady (x) is defined as
Lady (x) := Female (x) ∧Adult (x).

3 TeenBoy (x) : “x is a male teenager”. The predicate TeenBoy (x) is defined
as TeenBoy (x) :=

Male (x) ∧ Teen (x).
4 TeenGirl (x) : “x is a female teenager”. The predicate TeenGirl (x) is
defined as TeenGirl (x) := Female (x) ∧ Teen (x).

5 LittleBoy (x) : “x is a male little child”. The predicate LittleBoy (x) is
defined as LittleBoy (x) := Male (x) ∧Kid (x).

6 LittleGirl (x) : “x is a female little child”. The predicate LittleGirl (x) is
defined as LittleGirl (x) := Female (x) ∧Kid (x).

MZI (SoC Tel-U) Logic Programming October-November 2023 46 / 66

Simple Rules in Prolog

Translating Predicate Formulas to Prolog Script

Suppose we have following derivative predicates:

1 Gentleman (x) : “x is an adult male”. The predicate Gentleman (x) is
defined as Gentleman (x) := Male (x) ∧Adult (x).

2 Lady (x) : “x is an adult female”. The predicate Lady (x) is defined as
Lady (x) := Female (x) ∧Adult (x).

3 TeenBoy (x) : “x is a male teenager”. The predicate TeenBoy (x) is defined
as TeenBoy (x) := Male (x) ∧ Teen (x).

4 TeenGirl (x) : “x is a female teenager”. The predicate TeenGirl (x) is
defined as TeenGirl (x) :=

Female (x) ∧ Teen (x).
5 LittleBoy (x) : “x is a male little child”. The predicate LittleBoy (x) is
defined as LittleBoy (x) := Male (x) ∧Kid (x).

6 LittleGirl (x) : “x is a female little child”. The predicate LittleGirl (x) is
defined as LittleGirl (x) := Female (x) ∧Kid (x).

MZI (SoC Tel-U) Logic Programming October-November 2023 46 / 66

Simple Rules in Prolog

Translating Predicate Formulas to Prolog Script

Suppose we have following derivative predicates:

1 Gentleman (x) : “x is an adult male”. The predicate Gentleman (x) is
defined as Gentleman (x) := Male (x) ∧Adult (x).

2 Lady (x) : “x is an adult female”. The predicate Lady (x) is defined as
Lady (x) := Female (x) ∧Adult (x).

3 TeenBoy (x) : “x is a male teenager”. The predicate TeenBoy (x) is defined
as TeenBoy (x) := Male (x) ∧ Teen (x).

4 TeenGirl (x) : “x is a female teenager”. The predicate TeenGirl (x) is
defined as TeenGirl (x) := Female (x) ∧ Teen (x).

5 LittleBoy (x) : “x is a male little child”. The predicate LittleBoy (x) is
defined as LittleBoy (x) :=

Male (x) ∧Kid (x).
6 LittleGirl (x) : “x is a female little child”. The predicate LittleGirl (x) is
defined as LittleGirl (x) := Female (x) ∧Kid (x).

MZI (SoC Tel-U) Logic Programming October-November 2023 46 / 66

Simple Rules in Prolog

Translating Predicate Formulas to Prolog Script

Suppose we have following derivative predicates:

1 Gentleman (x) : “x is an adult male”. The predicate Gentleman (x) is
defined as Gentleman (x) := Male (x) ∧Adult (x).

2 Lady (x) : “x is an adult female”. The predicate Lady (x) is defined as
Lady (x) := Female (x) ∧Adult (x).

3 TeenBoy (x) : “x is a male teenager”. The predicate TeenBoy (x) is defined
as TeenBoy (x) := Male (x) ∧ Teen (x).

4 TeenGirl (x) : “x is a female teenager”. The predicate TeenGirl (x) is
defined as TeenGirl (x) := Female (x) ∧ Teen (x).

5 LittleBoy (x) : “x is a male little child”. The predicate LittleBoy (x) is
defined as LittleBoy (x) := Male (x) ∧Kid (x).

6 LittleGirl (x) : “x is a female little child”. The predicate LittleGirl (x) is
defined as LittleGirl (x) :=

Female (x) ∧Kid (x).

MZI (SoC Tel-U) Logic Programming October-November 2023 46 / 66

Simple Rules in Prolog

Translating Predicate Formulas to Prolog Script

Suppose we have following derivative predicates:

1 Gentleman (x) : “x is an adult male”. The predicate Gentleman (x) is
defined as Gentleman (x) := Male (x) ∧Adult (x).

2 Lady (x) : “x is an adult female”. The predicate Lady (x) is defined as
Lady (x) := Female (x) ∧Adult (x).

3 TeenBoy (x) : “x is a male teenager”. The predicate TeenBoy (x) is defined
as TeenBoy (x) := Male (x) ∧ Teen (x).

4 TeenGirl (x) : “x is a female teenager”. The predicate TeenGirl (x) is
defined as TeenGirl (x) := Female (x) ∧ Teen (x).

5 LittleBoy (x) : “x is a male little child”. The predicate LittleBoy (x) is
defined as LittleBoy (x) := Male (x) ∧Kid (x).

6 LittleGirl (x) : “x is a female little child”. The predicate LittleGirl (x) is
defined as LittleGirl (x) := Female (x) ∧Kid (x).

MZI (SoC Tel-U) Logic Programming October-November 2023 46 / 66

Simple Rules in Prolog

Suppose in Prolog all of those six predicates are translated respectively as
gentleman, lady, teen_boy, teen_girl, little_boy, and little_girl.
These predicates can be defined as rules which are derived from the previously
existed predicate (i.e., male, female, adult, teen, and kid). The definition are
as follows:

gentleman(X):- male(X),adult(X).
lady(X):- female(X),adult(X).

teen_boy(X):- male(X),teen(X).
teen_girl(X):- female(X),teen(X).

little_boy(X):- male(X),kid(X).
little_girl(X):- female(X),kid(X).

The expression gentleman(X):- male(X),adult(X) is an example of a clause
in Prolog.

MZI (SoC Tel-U) Logic Programming October-November 2023 47 / 66

Simple Rules in Prolog

Suppose in Prolog all of those six predicates are translated respectively as
gentleman, lady, teen_boy, teen_girl, little_boy, and little_girl.
These predicates can be defined as rules which are derived from the previously
existed predicate (i.e., male, female, adult, teen, and kid). The definition are
as follows:

gentleman(X):- male(X),adult(X).
lady(X):- female(X),adult(X).

teen_boy(X):- male(X),teen(X).
teen_girl(X):- female(X),teen(X).

little_boy(X):- male(X),kid(X).
little_girl(X):- female(X),kid(X).

The expression gentleman(X):- male(X),adult(X) is an example of a clause
in Prolog.

MZI (SoC Tel-U) Logic Programming October-November 2023 47 / 66

Clause, Fact, and Rules
A Prolog script is a collection of one or more clauses. A clause may be a fact —
something that is defined directly in the script (such as male(bob)) or rule —a
formula which is derived from one or more facts. Every clause must be ended by a
period (.).

Rules are of the form
〈head〉:- 〈t1〉,〈t2〉,...,〈tn〉 where n ≥ 1. The symbol “,”means conjunction
(∧). The symbol “,”can be replaced with “;”which means disjunction (∨).

In a clause:

〈head〉 is called the head of the clause (or the head of the rule), 〈head〉
usually defines a new predicate which is derived from the predicate in the
facts.
〈t1〉,〈t2〉,...,〈tn〉 is called the body of the clause (or the body of the
rule), body usually specifies the condition that must be met in order for the
conclusion, represented by the head, to be satisfied.
:- is called the neck of the clause, this symbol is similar to the assignment
symbol in an imperative program. Semantically this symbol is read as “if ”.

In every clause usually: every variable is started with capital letter and constant
term (object) is started with lowercase letters.

Clause, Fact, and Rules
A Prolog script is a collection of one or more clauses. A clause may be a fact —
something that is defined directly in the script (such as male(bob)) or rule —a
formula which is derived from one or more facts. Every clause must be ended by a
period (.).

Rules are of the form
〈head〉:- 〈t1〉,〈t2〉,...,〈tn〉 where n ≥ 1. The symbol “,”means conjunction
(∧). The symbol “,”can be replaced with “;”which means disjunction (∨).

In a clause:

〈head〉 is called the head of the clause (or the head of the rule), 〈head〉
usually defines a new predicate which is derived from the predicate in the
facts.

〈t1〉,〈t2〉,...,〈tn〉 is called the body of the clause (or the body of the
rule), body usually specifies the condition that must be met in order for the
conclusion, represented by the head, to be satisfied.
:- is called the neck of the clause, this symbol is similar to the assignment
symbol in an imperative program. Semantically this symbol is read as “if ”.

In every clause usually: every variable is started with capital letter and constant
term (object) is started with lowercase letters.

Clause, Fact, and Rules
A Prolog script is a collection of one or more clauses. A clause may be a fact —
something that is defined directly in the script (such as male(bob)) or rule —a
formula which is derived from one or more facts. Every clause must be ended by a
period (.).

Rules are of the form
〈head〉:- 〈t1〉,〈t2〉,...,〈tn〉 where n ≥ 1. The symbol “,”means conjunction
(∧). The symbol “,”can be replaced with “;”which means disjunction (∨).

In a clause:

〈head〉 is called the head of the clause (or the head of the rule), 〈head〉
usually defines a new predicate which is derived from the predicate in the
facts.
〈t1〉,〈t2〉,...,〈tn〉 is called the body of the clause (or the body of the
rule), body usually specifies the condition that must be met in order for the
conclusion, represented by the head, to be satisfied.

:- is called the neck of the clause, this symbol is similar to the assignment
symbol in an imperative program. Semantically this symbol is read as “if ”.

In every clause usually: every variable is started with capital letter and constant
term (object) is started with lowercase letters.

Clause, Fact, and Rules
A Prolog script is a collection of one or more clauses. A clause may be a fact —
something that is defined directly in the script (such as male(bob)) or rule —a
formula which is derived from one or more facts. Every clause must be ended by a
period (.).

Rules are of the form
〈head〉:- 〈t1〉,〈t2〉,...,〈tn〉 where n ≥ 1. The symbol “,”means conjunction
(∧). The symbol “,”can be replaced with “;”which means disjunction (∨).

In a clause:

〈head〉 is called the head of the clause (or the head of the rule), 〈head〉
usually defines a new predicate which is derived from the predicate in the
facts.
〈t1〉,〈t2〉,...,〈tn〉 is called the body of the clause (or the body of the
rule), body usually specifies the condition that must be met in order for the
conclusion, represented by the head, to be satisfied.
:- is called the neck of the clause, this symbol is similar to the assignment
symbol in an imperative program. Semantically this symbol is read as “if ”.

In every clause usually: every variable is started with capital letter and constant
term (object) is started with lowercase letters.

Simple Rules in Prolog

Declarative Semantics in Prolog

Suppose we have a clause:
〈P〉:- 〈Q〉,〈R〉.

This clause has following declarative meaning:
“〈P〉 is true if 〈Q〉 and 〈R〉 are true”, or
“if 〈Q〉 and 〈R〉 is satisfied, then 〈P〉 is also satisfied”.

Similarly, the clause 〈P〉:- 〈Q〉;〈R〉. means “if 〈Q〉 or 〈R〉 is satisfied, then 〈P〉 is
also satisfied”.

Example

We have gentlemen(X):- male(X),adult(X), which equivalent to the
predicate formula Male (x) ∧Adult (x)→ Gentleman (x). In other words, if x is
a male and x is an adult, then x is a gentleman.

MZI (SoC Tel-U) Logic Programming October-November 2023 49 / 66

Simple Rules in Prolog

Declarative Semantics in Prolog

Suppose we have a clause:
〈P〉:- 〈Q〉,〈R〉.

This clause has following declarative meaning:
“〈P〉 is true if 〈Q〉 and 〈R〉 are true”, or
“if 〈Q〉 and 〈R〉 is satisfied, then 〈P〉 is also satisfied”.

Similarly, the clause 〈P〉:- 〈Q〉;〈R〉. means “if 〈Q〉 or 〈R〉 is satisfied, then 〈P〉 is
also satisfied”.

Example
We have gentlemen(X):- male(X),adult(X), which equivalent to the
predicate formula Male (x) ∧Adult (x)→ Gentleman (x). In other words, if x is
a male and x is an adult, then x is a gentleman.

MZI (SoC Tel-U) Logic Programming October-November 2023 49 / 66

Simple Rules in Prolog

Example: Simple Translation with Disjunction

Suppose we want to express these things in our previous Prolog script:

1 every male teenager and male child loves FIFA21
2 every female teenager and female child loves Candy Crush

We can define following predicate formulas:

1 LovesFIFA21 (x) :=

TeenBoy (x) ∨ LittleBoy (x)
2 LovesCandyCrush (x) := TeenGirl (x) ∨ LittleGirl (x)

These formulas are translated to Prolog script as:

loves_FIFA21(X):- teen_boy(X); little_boy(X).
loves_CandyCrush(X):- teen_girl(X); little_girl(X).

MZI (SoC Tel-U) Logic Programming October-November 2023 50 / 66

Simple Rules in Prolog

Example: Simple Translation with Disjunction

Suppose we want to express these things in our previous Prolog script:

1 every male teenager and male child loves FIFA21
2 every female teenager and female child loves Candy Crush

We can define following predicate formulas:

1 LovesFIFA21 (x) := TeenBoy (x) ∨ LittleBoy (x)
2 LovesCandyCrush (x) :=

TeenGirl (x) ∨ LittleGirl (x)
These formulas are translated to Prolog script as:

loves_FIFA21(X):- teen_boy(X); little_boy(X).
loves_CandyCrush(X):- teen_girl(X); little_girl(X).

MZI (SoC Tel-U) Logic Programming October-November 2023 50 / 66

Simple Rules in Prolog

Example: Simple Translation with Disjunction

Suppose we want to express these things in our previous Prolog script:

1 every male teenager and male child loves FIFA21
2 every female teenager and female child loves Candy Crush

We can define following predicate formulas:

1 LovesFIFA21 (x) := TeenBoy (x) ∨ LittleBoy (x)
2 LovesCandyCrush (x) := TeenGirl (x) ∨ LittleGirl (x)

These formulas are translated to Prolog script as:

loves_FIFA21(X):- teen_boy(X); little_boy(X).
loves_CandyCrush(X):- teen_girl(X); little_girl(X).

MZI (SoC Tel-U) Logic Programming October-November 2023 50 / 66

Simple Rules in Prolog

Example: Simple Translation with Disjunction

Suppose we want to express these things in our previous Prolog script:

1 every male teenager and male child loves FIFA21
2 every female teenager and female child loves Candy Crush

We can define following predicate formulas:

1 LovesFIFA21 (x) := TeenBoy (x) ∨ LittleBoy (x)
2 LovesCandyCrush (x) := TeenGirl (x) ∨ LittleGirl (x)

These formulas are translated to Prolog script as:

loves_FIFA21(X):- teen_boy(X); little_boy(X).
loves_CandyCrush(X):- teen_girl(X); little_girl(X).

MZI (SoC Tel-U) Logic Programming October-November 2023 50 / 66

Simple Rules in Prolog

Defining a New Predicate with Term Swapping

The predicate Parent (x, y) states that “x is a parent of y”. Suppose we want to
construct a predicate Child (x, y) which states that “x is a child of y”. This
predicate can be expressed using the previously defined Parent (x, y) predicate.
Observe that

Child (x, y) means

“x is a child of y”
means “y is a parent of x”
means Parent (y, x) .

Therefore, we can define Child (x, y) := Parent (y, x). In Prolog we express this
condition as follows:

child(X,Y):- parent(Y,X).

MZI (SoC Tel-U) Logic Programming October-November 2023 51 / 66

Simple Rules in Prolog

Defining a New Predicate with Term Swapping

The predicate Parent (x, y) states that “x is a parent of y”. Suppose we want to
construct a predicate Child (x, y) which states that “x is a child of y”. This
predicate can be expressed using the previously defined Parent (x, y) predicate.
Observe that

Child (x, y) means “x is a child of y”
means

“y is a parent of x”
means Parent (y, x) .

Therefore, we can define Child (x, y) := Parent (y, x). In Prolog we express this
condition as follows:

child(X,Y):- parent(Y,X).

MZI (SoC Tel-U) Logic Programming October-November 2023 51 / 66

Simple Rules in Prolog

Defining a New Predicate with Term Swapping

The predicate Parent (x, y) states that “x is a parent of y”. Suppose we want to
construct a predicate Child (x, y) which states that “x is a child of y”. This
predicate can be expressed using the previously defined Parent (x, y) predicate.
Observe that

Child (x, y) means “x is a child of y”
means “y is a parent of x”
means

Parent (y, x) .

Therefore, we can define Child (x, y) := Parent (y, x). In Prolog we express this
condition as follows:

child(X,Y):- parent(Y,X).

MZI (SoC Tel-U) Logic Programming October-November 2023 51 / 66

Simple Rules in Prolog

Defining a New Predicate with Term Swapping

The predicate Parent (x, y) states that “x is a parent of y”. Suppose we want to
construct a predicate Child (x, y) which states that “x is a child of y”. This
predicate can be expressed using the previously defined Parent (x, y) predicate.
Observe that

Child (x, y) means “x is a child of y”
means “y is a parent of x”
means Parent (y, x) .

Therefore, we can define Child (x, y) :=

Parent (y, x). In Prolog we express this
condition as follows:

child(X,Y):- parent(Y,X).

MZI (SoC Tel-U) Logic Programming October-November 2023 51 / 66

Simple Rules in Prolog

Defining a New Predicate with Term Swapping

The predicate Parent (x, y) states that “x is a parent of y”. Suppose we want to
construct a predicate Child (x, y) which states that “x is a child of y”. This
predicate can be expressed using the previously defined Parent (x, y) predicate.
Observe that

Child (x, y) means “x is a child of y”
means “y is a parent of x”
means Parent (y, x) .

Therefore, we can define Child (x, y) := Parent (y, x). In Prolog we express this
condition as follows:

child(X,Y):- parent(Y,X).

MZI (SoC Tel-U) Logic Programming October-November 2023 51 / 66

Simple Rules in Prolog

Defining a New Predicate with Term Swapping

The predicate Parent (x, y) states that “x is a parent of y”. Suppose we want to
construct a predicate Child (x, y) which states that “x is a child of y”. This
predicate can be expressed using the previously defined Parent (x, y) predicate.
Observe that

Child (x, y) means “x is a child of y”
means “y is a parent of x”
means Parent (y, x) .

Therefore, we can define Child (x, y) := Parent (y, x). In Prolog we express this
condition as follows:

child(X,Y):- parent(Y,X).

MZI (SoC Tel-U) Logic Programming October-November 2023 51 / 66

Simple Rules in Prolog

Exercise 1

Exercise
1 Suppose there is a domain D and predicates Parent (x, y) : “x is a parent of
y”, Male (x) : “x is a male”, and Female (x) : “x is a female”. Using these
predicates alone, write the definition for the predicates Father (x, y) and
Mother (x, y). The predicate Father (x, y) means “x is a father of y”and
the predicate Mother (x, y) means “x is a mother of y”.

2 Use the result in no. 1 to define father(X,Y) and mother(X,Y) in Prolog.

Solution:

1 Father (x, y) := Parent (x, y) ∧Male (x) and
Mother (x, y) := Parent (x, y) ∧ Female (x). This is because a father is a
male parent and a mother is a female parent.

2 We have father(X,Y):- parent(X,Y),male(X) and
mother(X,Y):- parent(X,Y),female(X).

MZI (SoC Tel-U) Logic Programming October-November 2023 52 / 66

Simple Rules in Prolog

Exercise 1

Exercise
1 Suppose there is a domain D and predicates Parent (x, y) : “x is a parent of
y”, Male (x) : “x is a male”, and Female (x) : “x is a female”. Using these
predicates alone, write the definition for the predicates Father (x, y) and
Mother (x, y). The predicate Father (x, y) means “x is a father of y”and
the predicate Mother (x, y) means “x is a mother of y”.

2 Use the result in no. 1 to define father(X,Y) and mother(X,Y) in Prolog.

Solution:

1 Father (x, y) := Parent (x, y) ∧Male (x) and
Mother (x, y) := Parent (x, y) ∧ Female (x). This is because a father is a
male parent and a mother is a female parent.

2 We have father(X,Y):- parent(X,Y),male(X) and
mother(X,Y):- parent(X,Y),female(X).

MZI (SoC Tel-U) Logic Programming October-November 2023 52 / 66

Simple Rules in Prolog

Exercise 1

Exercise
1 Suppose there is a domain D and predicates Parent (x, y) : “x is a parent of
y”, Male (x) : “x is a male”, and Female (x) : “x is a female”. Using these
predicates alone, write the definition for the predicates Father (x, y) and
Mother (x, y). The predicate Father (x, y) means “x is a father of y”and
the predicate Mother (x, y) means “x is a mother of y”.

2 Use the result in no. 1 to define father(X,Y) and mother(X,Y) in Prolog.

Solution:

1 Father (x, y) := Parent (x, y) ∧Male (x) and
Mother (x, y) := Parent (x, y) ∧ Female (x). This is because a father is a
male parent and a mother is a female parent.

2 We have father(X,Y):- parent(X,Y),male(X) and
mother(X,Y):- parent(X,Y),female(X).

MZI (SoC Tel-U) Logic Programming October-November 2023 52 / 66

Representation of Quantifiers in Prolog (Supplementary)

Contents

1 What is Prolog?

2 Prolog Installation

3 Using the Interactive Interpreter

4 Elementary Prolog Programming: Basic Facts and Queries

5 Simple Rules in Prolog

6 Representation of Quantifiers in Prolog (Supplementary)

7 Term Equality and Inequality in Prolog (Supplementary)

MZI (SoC Tel-U) Logic Programming October-November 2023 53 / 66

Representation of Quantifiers in Prolog (Supplementary)

Universal Quantifiers in Prolog

Suppose we have a clause of the form:
〈head〉:- 〈t1〉,〈t2〉,...,〈tn〉 where n ≥ 1 (operator , which means conjunction
can be replaced with ; which means disjunction).
The declarative semantics of the above clause is:
If 〈t1〉, 〈t2〉, . . . , 〈tn〉 is true, then 〈head〉 is also true, or
〈t1〉 ∧ 〈t2〉 ∧ · · · ∧ 〈tn〉 → 〈head〉 is T.

Universal Quantifier in Prolog
If a variable appears in the 〈head〉 of a clause, then this variable is bounded by a
universal quantifier (∀).

Example

We’ve seen the rule gentleman(X):- male(X),adult(X). In predicate logic,
this formula can be expressed as Male (x)∧Adult (x)→ Gentleman (x). Because
X appears in the 〈head〉 of a clause, then X is bounded by a universal quantifier.
This makes the rule gentleman(X):- male(X),adult(X) is more accurately
expressed as the formula ∀x (Male (x) ∧Adult (x)→ Gentleman (x)).

MZI (SoC Tel-U) Logic Programming October-November 2023 54 / 66

Representation of Quantifiers in Prolog (Supplementary)

Universal Quantifiers in Prolog

Suppose we have a clause of the form:
〈head〉:- 〈t1〉,〈t2〉,...,〈tn〉 where n ≥ 1 (operator , which means conjunction
can be replaced with ; which means disjunction).
The declarative semantics of the above clause is:
If 〈t1〉, 〈t2〉, . . . , 〈tn〉 is true, then 〈head〉 is also true, or
〈t1〉 ∧ 〈t2〉 ∧ · · · ∧ 〈tn〉 → 〈head〉 is T.

Universal Quantifier in Prolog
If a variable appears in the 〈head〉 of a clause, then this variable is bounded by a
universal quantifier (∀).

Example
We’ve seen the rule gentleman(X):- male(X),adult(X). In predicate logic,
this formula can be expressed as Male (x)∧Adult (x)→ Gentleman (x). Because
X appears in the 〈head〉 of a clause, then X is bounded by a universal quantifier.
This makes the rule gentleman(X):- male(X),adult(X) is more accurately
expressed as the formula ∀x (Male (x) ∧Adult (x)→ Gentleman (x)).

MZI (SoC Tel-U) Logic Programming October-November 2023 54 / 66

Representation of Quantifiers in Prolog (Supplementary)

From the previous derived rule, we have:

lady(X):- female(X),adult(X) is accurately expressed as

∀x (Female (x) ∧Adult (x)→ Lady (x))

teen_boy(X):- male(X),teen(X) is accurately expressed as
∀x (Male (x) ∧ Teen (x)→ TeenBoy (x))

teen_girl(X):- female(X),teen(X) is accurately expressed as
∀x (Female (x) ∧ Teen (x)→ TeenGirl (x))

little_boy(X):- male(X),kid(X) is accurately expressed as
∀x (Male (x) ∧Kid (x)→ LittleBoy (x))

little_girl(X):- female(X),kid(X) is accurately expressed as
∀x (Female (x) ∧Kid (x)→ LittleGirl (x))

loves_FIFA21(X):- teen_boy(X);little_boy(X) is accurately expressed
as ∀x (TeenBoy (x) ∨ LittleBoy (x)→ LovesFIFA21 (x))

loves_CandyCrush(X):- teen_girl(X);little_girl(X) is accurately
expressed as ∀x (TeenGirl (x) ∨ LittleGirl (x)→ LovesCandyCrush (x))

MZI (SoC Tel-U) Logic Programming October-November 2023 55 / 66

Representation of Quantifiers in Prolog (Supplementary)

From the previous derived rule, we have:

lady(X):- female(X),adult(X) is accurately expressed as
∀x (Female (x) ∧Adult (x)→ Lady (x))

teen_boy(X):- male(X),teen(X) is accurately expressed as

∀x (Male (x) ∧ Teen (x)→ TeenBoy (x))

teen_girl(X):- female(X),teen(X) is accurately expressed as
∀x (Female (x) ∧ Teen (x)→ TeenGirl (x))

little_boy(X):- male(X),kid(X) is accurately expressed as
∀x (Male (x) ∧Kid (x)→ LittleBoy (x))

little_girl(X):- female(X),kid(X) is accurately expressed as
∀x (Female (x) ∧Kid (x)→ LittleGirl (x))

loves_FIFA21(X):- teen_boy(X);little_boy(X) is accurately expressed
as ∀x (TeenBoy (x) ∨ LittleBoy (x)→ LovesFIFA21 (x))

loves_CandyCrush(X):- teen_girl(X);little_girl(X) is accurately
expressed as ∀x (TeenGirl (x) ∨ LittleGirl (x)→ LovesCandyCrush (x))

MZI (SoC Tel-U) Logic Programming October-November 2023 55 / 66

Representation of Quantifiers in Prolog (Supplementary)

From the previous derived rule, we have:

lady(X):- female(X),adult(X) is accurately expressed as
∀x (Female (x) ∧Adult (x)→ Lady (x))

teen_boy(X):- male(X),teen(X) is accurately expressed as
∀x (Male (x) ∧ Teen (x)→ TeenBoy (x))

teen_girl(X):- female(X),teen(X) is accurately expressed as

∀x (Female (x) ∧ Teen (x)→ TeenGirl (x))

little_boy(X):- male(X),kid(X) is accurately expressed as
∀x (Male (x) ∧Kid (x)→ LittleBoy (x))

little_girl(X):- female(X),kid(X) is accurately expressed as
∀x (Female (x) ∧Kid (x)→ LittleGirl (x))

loves_FIFA21(X):- teen_boy(X);little_boy(X) is accurately expressed
as ∀x (TeenBoy (x) ∨ LittleBoy (x)→ LovesFIFA21 (x))

loves_CandyCrush(X):- teen_girl(X);little_girl(X) is accurately
expressed as ∀x (TeenGirl (x) ∨ LittleGirl (x)→ LovesCandyCrush (x))

MZI (SoC Tel-U) Logic Programming October-November 2023 55 / 66

Representation of Quantifiers in Prolog (Supplementary)

From the previous derived rule, we have:

lady(X):- female(X),adult(X) is accurately expressed as
∀x (Female (x) ∧Adult (x)→ Lady (x))

teen_boy(X):- male(X),teen(X) is accurately expressed as
∀x (Male (x) ∧ Teen (x)→ TeenBoy (x))

teen_girl(X):- female(X),teen(X) is accurately expressed as
∀x (Female (x) ∧ Teen (x)→ TeenGirl (x))

little_boy(X):- male(X),kid(X) is accurately expressed as

∀x (Male (x) ∧Kid (x)→ LittleBoy (x))

little_girl(X):- female(X),kid(X) is accurately expressed as
∀x (Female (x) ∧Kid (x)→ LittleGirl (x))

loves_FIFA21(X):- teen_boy(X);little_boy(X) is accurately expressed
as ∀x (TeenBoy (x) ∨ LittleBoy (x)→ LovesFIFA21 (x))

loves_CandyCrush(X):- teen_girl(X);little_girl(X) is accurately
expressed as ∀x (TeenGirl (x) ∨ LittleGirl (x)→ LovesCandyCrush (x))

MZI (SoC Tel-U) Logic Programming October-November 2023 55 / 66

Representation of Quantifiers in Prolog (Supplementary)

From the previous derived rule, we have:

lady(X):- female(X),adult(X) is accurately expressed as
∀x (Female (x) ∧Adult (x)→ Lady (x))

teen_boy(X):- male(X),teen(X) is accurately expressed as
∀x (Male (x) ∧ Teen (x)→ TeenBoy (x))

teen_girl(X):- female(X),teen(X) is accurately expressed as
∀x (Female (x) ∧ Teen (x)→ TeenGirl (x))

little_boy(X):- male(X),kid(X) is accurately expressed as
∀x (Male (x) ∧Kid (x)→ LittleBoy (x))

little_girl(X):- female(X),kid(X) is accurately expressed as

∀x (Female (x) ∧Kid (x)→ LittleGirl (x))

loves_FIFA21(X):- teen_boy(X);little_boy(X) is accurately expressed
as ∀x (TeenBoy (x) ∨ LittleBoy (x)→ LovesFIFA21 (x))

loves_CandyCrush(X):- teen_girl(X);little_girl(X) is accurately
expressed as ∀x (TeenGirl (x) ∨ LittleGirl (x)→ LovesCandyCrush (x))

MZI (SoC Tel-U) Logic Programming October-November 2023 55 / 66

Representation of Quantifiers in Prolog (Supplementary)

From the previous derived rule, we have:

lady(X):- female(X),adult(X) is accurately expressed as
∀x (Female (x) ∧Adult (x)→ Lady (x))

teen_boy(X):- male(X),teen(X) is accurately expressed as
∀x (Male (x) ∧ Teen (x)→ TeenBoy (x))

teen_girl(X):- female(X),teen(X) is accurately expressed as
∀x (Female (x) ∧ Teen (x)→ TeenGirl (x))

little_boy(X):- male(X),kid(X) is accurately expressed as
∀x (Male (x) ∧Kid (x)→ LittleBoy (x))

little_girl(X):- female(X),kid(X) is accurately expressed as
∀x (Female (x) ∧Kid (x)→ LittleGirl (x))

loves_FIFA21(X):- teen_boy(X);little_boy(X) is accurately expressed
as

∀x (TeenBoy (x) ∨ LittleBoy (x)→ LovesFIFA21 (x))

loves_CandyCrush(X):- teen_girl(X);little_girl(X) is accurately
expressed as ∀x (TeenGirl (x) ∨ LittleGirl (x)→ LovesCandyCrush (x))

MZI (SoC Tel-U) Logic Programming October-November 2023 55 / 66

Representation of Quantifiers in Prolog (Supplementary)

From the previous derived rule, we have:

lady(X):- female(X),adult(X) is accurately expressed as
∀x (Female (x) ∧Adult (x)→ Lady (x))

teen_boy(X):- male(X),teen(X) is accurately expressed as
∀x (Male (x) ∧ Teen (x)→ TeenBoy (x))

teen_girl(X):- female(X),teen(X) is accurately expressed as
∀x (Female (x) ∧ Teen (x)→ TeenGirl (x))

little_boy(X):- male(X),kid(X) is accurately expressed as
∀x (Male (x) ∧Kid (x)→ LittleBoy (x))

little_girl(X):- female(X),kid(X) is accurately expressed as
∀x (Female (x) ∧Kid (x)→ LittleGirl (x))

loves_FIFA21(X):- teen_boy(X);little_boy(X) is accurately expressed
as ∀x (TeenBoy (x) ∨ LittleBoy (x)→ LovesFIFA21 (x))

loves_CandyCrush(X):- teen_girl(X);little_girl(X) is accurately
expressed as

∀x (TeenGirl (x) ∨ LittleGirl (x)→ LovesCandyCrush (x))

MZI (SoC Tel-U) Logic Programming October-November 2023 55 / 66

Representation of Quantifiers in Prolog (Supplementary)

From the previous derived rule, we have:

lady(X):- female(X),adult(X) is accurately expressed as
∀x (Female (x) ∧Adult (x)→ Lady (x))

teen_boy(X):- male(X),teen(X) is accurately expressed as
∀x (Male (x) ∧ Teen (x)→ TeenBoy (x))

teen_girl(X):- female(X),teen(X) is accurately expressed as
∀x (Female (x) ∧ Teen (x)→ TeenGirl (x))

little_boy(X):- male(X),kid(X) is accurately expressed as
∀x (Male (x) ∧Kid (x)→ LittleBoy (x))

little_girl(X):- female(X),kid(X) is accurately expressed as
∀x (Female (x) ∧Kid (x)→ LittleGirl (x))

loves_FIFA21(X):- teen_boy(X);little_boy(X) is accurately expressed
as ∀x (TeenBoy (x) ∨ LittleBoy (x)→ LovesFIFA21 (x))

loves_CandyCrush(X):- teen_girl(X);little_girl(X) is accurately
expressed as ∀x (TeenGirl (x) ∨ LittleGirl (x)→ LovesCandyCrush (x))

MZI (SoC Tel-U) Logic Programming October-November 2023 55 / 66

Representation of Quantifiers in Prolog (Supplementary)

In addition

child(X,Y):- parent(Y,X) is accurately expressed as

∀x∀y (Parent (y, x)→ Child (x, y))

father(X,Y):- parent(X,Y),male(X) is accurately expressed as
∀x∀y (Parent (x, y) ∧Male (x)→ Father (x, y))

mother(X,Y):- parent(X,Y),female(X) is accurately expressed as
∀x∀y (Parent (x, y) ∧ Female (x)→ Mother (x, y))

MZI (SoC Tel-U) Logic Programming October-November 2023 56 / 66

Representation of Quantifiers in Prolog (Supplementary)

In addition

child(X,Y):- parent(Y,X) is accurately expressed as
∀x∀y (Parent (y, x)→ Child (x, y))

father(X,Y):- parent(X,Y),male(X) is accurately expressed as

∀x∀y (Parent (x, y) ∧Male (x)→ Father (x, y))

mother(X,Y):- parent(X,Y),female(X) is accurately expressed as
∀x∀y (Parent (x, y) ∧ Female (x)→ Mother (x, y))

MZI (SoC Tel-U) Logic Programming October-November 2023 56 / 66

Representation of Quantifiers in Prolog (Supplementary)

In addition

child(X,Y):- parent(Y,X) is accurately expressed as
∀x∀y (Parent (y, x)→ Child (x, y))

father(X,Y):- parent(X,Y),male(X) is accurately expressed as
∀x∀y (Parent (x, y) ∧Male (x)→ Father (x, y))

mother(X,Y):- parent(X,Y),female(X) is accurately expressed as

∀x∀y (Parent (x, y) ∧ Female (x)→ Mother (x, y))

MZI (SoC Tel-U) Logic Programming October-November 2023 56 / 66

Representation of Quantifiers in Prolog (Supplementary)

In addition

child(X,Y):- parent(Y,X) is accurately expressed as
∀x∀y (Parent (y, x)→ Child (x, y))

father(X,Y):- parent(X,Y),male(X) is accurately expressed as
∀x∀y (Parent (x, y) ∧Male (x)→ Father (x, y))

mother(X,Y):- parent(X,Y),female(X) is accurately expressed as
∀x∀y (Parent (x, y) ∧ Female (x)→ Mother (x, y))

MZI (SoC Tel-U) Logic Programming October-November 2023 56 / 66

Representation of Quantifiers in Prolog (Supplementary)

Existential Quantifiers in Prolog

Suppose we want to construct predicate Grandparent(x, y) : “x is a grandparent
of y”. We can define this predicate using the previously defined Parent(x, y)
predicate. Observe that:

Grandparent(x, y) means

“x is a grandparent of y”
means “there exists z such that x is a parent of z

and z is a parent of y”
means there is z such that Parent (x, z) ∧ Parent (z, y)
means ∃z (Parent (x, z) ∧ Parent (z, y)).

We can translate this expression in Prolog as:

grandparent(X,Y):- parent(X,Z),parent(Z,Y).

MZI (SoC Tel-U) Logic Programming October-November 2023 57 / 66

Representation of Quantifiers in Prolog (Supplementary)

Existential Quantifiers in Prolog

Suppose we want to construct predicate Grandparent(x, y) : “x is a grandparent
of y”. We can define this predicate using the previously defined Parent(x, y)
predicate. Observe that:

Grandparent(x, y) means “x is a grandparent of y”
means

“there exists z such that x is a parent of z
and z is a parent of y”

means there is z such that Parent (x, z) ∧ Parent (z, y)
means ∃z (Parent (x, z) ∧ Parent (z, y)).

We can translate this expression in Prolog as:

grandparent(X,Y):- parent(X,Z),parent(Z,Y).

MZI (SoC Tel-U) Logic Programming October-November 2023 57 / 66

Representation of Quantifiers in Prolog (Supplementary)

Existential Quantifiers in Prolog

Suppose we want to construct predicate Grandparent(x, y) : “x is a grandparent
of y”. We can define this predicate using the previously defined Parent(x, y)
predicate. Observe that:

Grandparent(x, y) means “x is a grandparent of y”
means “there exists z such that x is a parent of z

and z is a parent of y”
means

there is z such that Parent (x, z) ∧ Parent (z, y)
means ∃z (Parent (x, z) ∧ Parent (z, y)).

We can translate this expression in Prolog as:

grandparent(X,Y):- parent(X,Z),parent(Z,Y).

MZI (SoC Tel-U) Logic Programming October-November 2023 57 / 66

Representation of Quantifiers in Prolog (Supplementary)

Existential Quantifiers in Prolog

Suppose we want to construct predicate Grandparent(x, y) : “x is a grandparent
of y”. We can define this predicate using the previously defined Parent(x, y)
predicate. Observe that:

Grandparent(x, y) means “x is a grandparent of y”
means “there exists z such that x is a parent of z

and z is a parent of y”
means there is z such that Parent (x, z) ∧ Parent (z, y)
means

∃z (Parent (x, z) ∧ Parent (z, y)).

We can translate this expression in Prolog as:

grandparent(X,Y):- parent(X,Z),parent(Z,Y).

MZI (SoC Tel-U) Logic Programming October-November 2023 57 / 66

Representation of Quantifiers in Prolog (Supplementary)

Existential Quantifiers in Prolog

Suppose we want to construct predicate Grandparent(x, y) : “x is a grandparent
of y”. We can define this predicate using the previously defined Parent(x, y)
predicate. Observe that:

Grandparent(x, y) means “x is a grandparent of y”
means “there exists z such that x is a parent of z

and z is a parent of y”
means there is z such that Parent (x, z) ∧ Parent (z, y)
means ∃z (Parent (x, z) ∧ Parent (z, y)).

We can translate this expression in Prolog as:

grandparent(X,Y):-

parent(X,Z),parent(Z,Y).

MZI (SoC Tel-U) Logic Programming October-November 2023 57 / 66

Representation of Quantifiers in Prolog (Supplementary)

Existential Quantifiers in Prolog

Suppose we want to construct predicate Grandparent(x, y) : “x is a grandparent
of y”. We can define this predicate using the previously defined Parent(x, y)
predicate. Observe that:

Grandparent(x, y) means “x is a grandparent of y”
means “there exists z such that x is a parent of z

and z is a parent of y”
means there is z such that Parent (x, z) ∧ Parent (z, y)
means ∃z (Parent (x, z) ∧ Parent (z, y)).

We can translate this expression in Prolog as:

grandparent(X,Y):- parent(X,Z),parent(Z,Y).

MZI (SoC Tel-U) Logic Programming October-November 2023 57 / 66

Representation of Quantifiers in Prolog (Supplementary)

Existential Quantifier in Prolog
If a variable appears in the body of a clause but does not appear in the 〈head〉 of
that clause, then this variable is bounded by an existential quantifier (∃).

As a result, the corresponding predicate formula for the script:

grandparent(X,Y):- parent(X,Z),parent(Z,Y).

is

∀x∀y (∃z (Parent (x, z) ∧ Parent (z, y))→ Grandparent (x, y)) or

∀x∀y∃z (Parent (x, z) ∧ Parent (z, y)→ Grandparent (x, y)) .

MZI (SoC Tel-U) Logic Programming October-November 2023 58 / 66

Representation of Quantifiers in Prolog (Supplementary)

Existential Quantifier in Prolog
If a variable appears in the body of a clause but does not appear in the 〈head〉 of
that clause, then this variable is bounded by an existential quantifier (∃).

As a result, the corresponding predicate formula for the script:

grandparent(X,Y):- parent(X,Z),parent(Z,Y).

is

∀x∀y (∃z (Parent (x, z) ∧ Parent (z, y))→ Grandparent (x, y)) or

∀x∀y∃z (Parent (x, z) ∧ Parent (z, y)→ Grandparent (x, y)) .

MZI (SoC Tel-U) Logic Programming October-November 2023 58 / 66

Representation of Quantifiers in Prolog (Supplementary)

Using the facts from our previous program, the query result for
grandparent(Grandparent,Grandkid) is:

?- grandparent(Grandparent,Grandkid).

Grandparent = alice,
Grandkid = fiona ;
Grandparent = alice,
Grandkid = grace ;

... [several other outputs]

Grandparent = charlie,
Grandkid = kelly;

MZI (SoC Tel-U) Logic Programming October-November 2023 59 / 66

Representation of Quantifiers in Prolog (Supplementary)

Using the facts from our previous program, the query result for
grandparent(Grandparent,Grandkid) is:

?- grandparent(Grandparent,Grandkid).
Grandparent = alice,
Grandkid = fiona ;

Grandparent = alice,
Grandkid = grace ;

... [several other outputs]

Grandparent = charlie,
Grandkid = kelly;

MZI (SoC Tel-U) Logic Programming October-November 2023 59 / 66

Representation of Quantifiers in Prolog (Supplementary)

Using the facts from our previous program, the query result for
grandparent(Grandparent,Grandkid) is:

?- grandparent(Grandparent,Grandkid).
Grandparent = alice,
Grandkid = fiona ;
Grandparent = alice,
Grandkid = grace ;

... [several other outputs]

Grandparent = charlie,
Grandkid = kelly;

MZI (SoC Tel-U) Logic Programming October-November 2023 59 / 66

Representation of Quantifiers in Prolog (Supplementary)

Using the facts from our previous program, the query result for
grandparent(Grandparent,Grandkid) is:

?- grandparent(Grandparent,Grandkid).
Grandparent = alice,
Grandkid = fiona ;
Grandparent = alice,
Grandkid = grace ;

... [several other outputs]

Grandparent = charlie,
Grandkid = kelly;

MZI (SoC Tel-U) Logic Programming October-November 2023 59 / 66

Representation of Quantifiers in Prolog (Supplementary)

Singleton Variable

Suppose we want to construct a predicate Has-a-Child(x) : “x has a child”. This
predicate is true if there is a y such that Parent (x, y) is true. In other words, x
has a child if there is a y such that x is the parent of y. Therefore,
Has-a-Child(x) can be expressed as

Has-a-Child (x) :=

∃yParent (x, y) .

Or in an implication from ∀x (∃y (Parent (x, y)→ Has-a-Child (x))). If this
expression is translated directly to Prolog, then we have following script:

has_a_child(X):- parent(X,Y).

The above script cannot be compiled by SWI-Prolog, SWI-Prolog produce a
warning: Singleton variables: [Y].

MZI (SoC Tel-U) Logic Programming October-November 2023 60 / 66

Representation of Quantifiers in Prolog (Supplementary)

Singleton Variable

Suppose we want to construct a predicate Has-a-Child(x) : “x has a child”. This
predicate is true if there is a y such that Parent (x, y) is true. In other words, x
has a child if there is a y such that x is the parent of y. Therefore,
Has-a-Child(x) can be expressed as

Has-a-Child (x) := ∃yParent (x, y) .

Or in an implication from

∀x (∃y (Parent (x, y)→ Has-a-Child (x))). If this
expression is translated directly to Prolog, then we have following script:

has_a_child(X):- parent(X,Y).

The above script cannot be compiled by SWI-Prolog, SWI-Prolog produce a
warning: Singleton variables: [Y].

MZI (SoC Tel-U) Logic Programming October-November 2023 60 / 66

Representation of Quantifiers in Prolog (Supplementary)

Singleton Variable

Suppose we want to construct a predicate Has-a-Child(x) : “x has a child”. This
predicate is true if there is a y such that Parent (x, y) is true. In other words, x
has a child if there is a y such that x is the parent of y. Therefore,
Has-a-Child(x) can be expressed as

Has-a-Child (x) := ∃yParent (x, y) .

Or in an implication from ∀x (∃y (Parent (x, y)→ Has-a-Child (x))). If this
expression is translated directly to Prolog, then we have following script:

has_a_child(X):- parent(X,Y).

The above script cannot be compiled by SWI-Prolog, SWI-Prolog produce a
warning: Singleton variables: [Y].

MZI (SoC Tel-U) Logic Programming October-November 2023 60 / 66

Representation of Quantifiers in Prolog (Supplementary)

Singleton Variable

Suppose we want to construct a predicate Has-a-Child(x) : “x has a child”. This
predicate is true if there is a y such that Parent (x, y) is true. In other words, x
has a child if there is a y such that x is the parent of y. Therefore,
Has-a-Child(x) can be expressed as

Has-a-Child (x) := ∃yParent (x, y) .

Or in an implication from ∀x (∃y (Parent (x, y)→ Has-a-Child (x))). If this
expression is translated directly to Prolog, then we have following script:

has_a_child(X):- parent(X,Y).

The above script cannot be compiled by SWI-Prolog, SWI-Prolog produce a
warning: Singleton variables: [Y].

MZI (SoC Tel-U) Logic Programming October-November 2023 60 / 66

Representation of Quantifiers in Prolog (Supplementary)

About Singleton Variable
A singleton variable can be a variable which appears in the body of a clause of a
binary predicate (or any n-ary predicate with n ≥ 2) , but does not appear in the
〈head〉 of the clause.

We can fix this singleton variable problem by performing one of these following
procedure:

1 Add an “_”(underscore) in front of the singleton variable. For example, the
script of has_a_child(X) becomes:

has_a_child(X):- parent(X,_Y).

2 Add an additional expression concerning the singleton variable which does
not change the declarative semantics of the clause formed. Because the
domain of Y is the set of all humans and Y is either male(Y) or female(Y),
then the script for has_a_child(X) becomes:

has_a_child(X):- parent(X,Y),(male(Y);female(Y)).

This script is represented in predicate formula as:
∀x (∃yParent (x, y) ∧ (Male (y) ∨ Female (y))→ Has-a-Child (x)).

MZI (SoC Tel-U) Logic Programming October-November 2023 61 / 66

Representation of Quantifiers in Prolog (Supplementary)

About Singleton Variable
A singleton variable can be a variable which appears in the body of a clause of a
binary predicate (or any n-ary predicate with n ≥ 2) , but does not appear in the
〈head〉 of the clause.

We can fix this singleton variable problem by performing one of these following
procedure:

1 Add an “_”(underscore) in front of the singleton variable. For example, the
script of has_a_child(X) becomes:

has_a_child(X):- parent(X,_Y).

2 Add an additional expression concerning the singleton variable which does
not change the declarative semantics of the clause formed. Because the
domain of Y is the set of all humans and Y is either male(Y) or female(Y),
then the script for has_a_child(X) becomes:

has_a_child(X):- parent(X,Y),(male(Y);female(Y)).

This script is represented in predicate formula as:
∀x (∃yParent (x, y) ∧ (Male (y) ∨ Female (y))→ Has-a-Child (x)).

MZI (SoC Tel-U) Logic Programming October-November 2023 61 / 66

Representation of Quantifiers in Prolog (Supplementary)

About Singleton Variable
A singleton variable can be a variable which appears in the body of a clause of a
binary predicate (or any n-ary predicate with n ≥ 2) , but does not appear in the
〈head〉 of the clause.

We can fix this singleton variable problem by performing one of these following
procedure:

1 Add an “_”(underscore) in front of the singleton variable. For example, the
script of has_a_child(X) becomes:

has_a_child(X):- parent(X,_Y).

2 Add an additional expression concerning the singleton variable which does
not change the declarative semantics of the clause formed. Because the
domain of Y is the set of all humans and Y is either male(Y) or female(Y),
then the script for has_a_child(X) becomes:

has_a_child(X):- parent(X,Y),(male(Y);female(Y)).

This script is represented in predicate formula as:

∀x (∃yParent (x, y) ∧ (Male (y) ∨ Female (y))→ Has-a-Child (x)).

MZI (SoC Tel-U) Logic Programming October-November 2023 61 / 66

Representation of Quantifiers in Prolog (Supplementary)

About Singleton Variable
A singleton variable can be a variable which appears in the body of a clause of a
binary predicate (or any n-ary predicate with n ≥ 2) , but does not appear in the
〈head〉 of the clause.

We can fix this singleton variable problem by performing one of these following
procedure:

1 Add an “_”(underscore) in front of the singleton variable. For example, the
script of has_a_child(X) becomes:

has_a_child(X):- parent(X,_Y).

2 Add an additional expression concerning the singleton variable which does
not change the declarative semantics of the clause formed. Because the
domain of Y is the set of all humans and Y is either male(Y) or female(Y),
then the script for has_a_child(X) becomes:

has_a_child(X):- parent(X,Y),(male(Y);female(Y)).

This script is represented in predicate formula as:
∀x (∃yParent (x, y) ∧ (Male (y) ∨ Female (y))→ Has-a-Child (x)).

MZI (SoC Tel-U) Logic Programming October-November 2023 61 / 66

Representation of Quantifiers in Prolog (Supplementary)

Exercise 2

Exercise
1 Suppose there is a domain D and predicates Father (x, y) : “x is a father of
y”and Mother (x, y) : “x is a mother of y”. Using these predicates alone,
write the definition for the predicates Is-a-Daddy(x) and Is-a-Mommy(x).
The predicate Is-a-Daddy(x) means “x is a daddy (a father)” and the
predicate Is-a-Mommy(x) means “x is a mommy (a mother)”.

2 Use the result in no. 1 to define is_a_daddy(X) and is_a_mommy(X) in
Prolog.

MZI (SoC Tel-U) Logic Programming October-November 2023 62 / 66

Representation of Quantifiers in Prolog (Supplementary)

Solution:

1 Is-a-Daddy(x) := ∃yFather (x, y) and Is-a-Mommy(x) := ∃yMother (x, y).
2 We have
is_a_daddy(X):- father(X,_Y) and
is_a_mommy(X):- mother(X,_Y).
The script can also be expressed as:
is_a_daddy(X):- father(X,Y),(male(Y);female(Y)) and
is_a_mommy(X):- mother(X,Y),(male(Y);female(Y)).

MZI (SoC Tel-U) Logic Programming October-November 2023 63 / 66

Representation of Quantifiers in Prolog (Supplementary)

Solution:

1 Is-a-Daddy(x) := ∃yFather (x, y) and Is-a-Mommy(x) := ∃yMother (x, y).

2 We have
is_a_daddy(X):- father(X,_Y) and
is_a_mommy(X):- mother(X,_Y).
The script can also be expressed as:
is_a_daddy(X):- father(X,Y),(male(Y);female(Y)) and
is_a_mommy(X):- mother(X,Y),(male(Y);female(Y)).

MZI (SoC Tel-U) Logic Programming October-November 2023 63 / 66

Representation of Quantifiers in Prolog (Supplementary)

Solution:

1 Is-a-Daddy(x) := ∃yFather (x, y) and Is-a-Mommy(x) := ∃yMother (x, y).
2 We have
is_a_daddy(X):- father(X,_Y) and
is_a_mommy(X):- mother(X,_Y).
The script can also be expressed as:

is_a_daddy(X):- father(X,Y),(male(Y);female(Y)) and
is_a_mommy(X):- mother(X,Y),(male(Y);female(Y)).

MZI (SoC Tel-U) Logic Programming October-November 2023 63 / 66

Representation of Quantifiers in Prolog (Supplementary)

Solution:

1 Is-a-Daddy(x) := ∃yFather (x, y) and Is-a-Mommy(x) := ∃yMother (x, y).
2 We have
is_a_daddy(X):- father(X,_Y) and
is_a_mommy(X):- mother(X,_Y).
The script can also be expressed as:
is_a_daddy(X):- father(X,Y),(male(Y);female(Y)) and
is_a_mommy(X):- mother(X,Y),(male(Y);female(Y)).

MZI (SoC Tel-U) Logic Programming October-November 2023 63 / 66

Term Equality and Inequality in Prolog (Supplementary)

Contents

1 What is Prolog?

2 Prolog Installation

3 Using the Interactive Interpreter

4 Elementary Prolog Programming: Basic Facts and Queries

5 Simple Rules in Prolog

6 Representation of Quantifiers in Prolog (Supplementary)

7 Term Equality and Inequality in Prolog (Supplementary)

MZI (SoC Tel-U) Logic Programming October-November 2023 64 / 66

Term Equality and Inequality in Prolog (Supplementary)

Term Equality and Inequality in Prolog

Suppose t1 and t2 are two terms in Prolog, we can inspect the equality and
inequality for t1 and t2 using the operators == or = (for equality) and \== or \=
(for inequality).

Suppose the predicate Sibling (x, y) means “x is a sibling (brother/ sister) of y”.
We can define this predicate using the previously defined Parent(z, y) predicate as
follows:

Sibling(x, y) means

“x is a sibling of y”
means “x and y are different people

who have common parents”
means there exists z such that Parent(z, x) and Parent(z, y)

and x 6= y
means ∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y).

In predicate logic we have
Sibling(x, y) := ∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y), which gives us the
formula
∀x∀y (∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y)→ Sibling (x, y)).

MZI (SoC Tel-U) Logic Programming October-November 2023 65 / 66

Term Equality and Inequality in Prolog (Supplementary)

Term Equality and Inequality in Prolog

Suppose t1 and t2 are two terms in Prolog, we can inspect the equality and
inequality for t1 and t2 using the operators == or = (for equality) and \== or \=
(for inequality).

Suppose the predicate Sibling (x, y) means “x is a sibling (brother/ sister) of y”.
We can define this predicate using the previously defined Parent(z, y) predicate as
follows:

Sibling(x, y) means “x is a sibling of y”
means

“x and y are different people
who have common parents”

means there exists z such that Parent(z, x) and Parent(z, y)
and x 6= y

means ∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y).

In predicate logic we have
Sibling(x, y) := ∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y), which gives us the
formula
∀x∀y (∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y)→ Sibling (x, y)).

MZI (SoC Tel-U) Logic Programming October-November 2023 65 / 66

Term Equality and Inequality in Prolog (Supplementary)

Term Equality and Inequality in Prolog

Suppose t1 and t2 are two terms in Prolog, we can inspect the equality and
inequality for t1 and t2 using the operators == or = (for equality) and \== or \=
(for inequality).

Suppose the predicate Sibling (x, y) means “x is a sibling (brother/ sister) of y”.
We can define this predicate using the previously defined Parent(z, y) predicate as
follows:

Sibling(x, y) means “x is a sibling of y”
means “x and y are different people

who have common parents”
means

there exists z such that Parent(z, x) and Parent(z, y)
and x 6= y

means ∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y).

In predicate logic we have
Sibling(x, y) := ∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y), which gives us the
formula
∀x∀y (∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y)→ Sibling (x, y)).

MZI (SoC Tel-U) Logic Programming October-November 2023 65 / 66

Term Equality and Inequality in Prolog (Supplementary)

Term Equality and Inequality in Prolog

Suppose t1 and t2 are two terms in Prolog, we can inspect the equality and
inequality for t1 and t2 using the operators == or = (for equality) and \== or \=
(for inequality).

Suppose the predicate Sibling (x, y) means “x is a sibling (brother/ sister) of y”.
We can define this predicate using the previously defined Parent(z, y) predicate as
follows:

Sibling(x, y) means “x is a sibling of y”
means “x and y are different people

who have common parents”
means there exists z such that Parent(z, x) and Parent(z, y)

and x 6= y
means

∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y).

In predicate logic we have
Sibling(x, y) := ∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y), which gives us the
formula
∀x∀y (∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y)→ Sibling (x, y)).

MZI (SoC Tel-U) Logic Programming October-November 2023 65 / 66

Term Equality and Inequality in Prolog (Supplementary)

Term Equality and Inequality in Prolog

Suppose t1 and t2 are two terms in Prolog, we can inspect the equality and
inequality for t1 and t2 using the operators == or = (for equality) and \== or \=
(for inequality).

Suppose the predicate Sibling (x, y) means “x is a sibling (brother/ sister) of y”.
We can define this predicate using the previously defined Parent(z, y) predicate as
follows:

Sibling(x, y) means “x is a sibling of y”
means “x and y are different people

who have common parents”
means there exists z such that Parent(z, x) and Parent(z, y)

and x 6= y
means ∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y).

In predicate logic we have
Sibling(x, y) := ∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y), which gives us the
formula
∀x∀y (∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y)→ Sibling (x, y)).

MZI (SoC Tel-U) Logic Programming October-November 2023 65 / 66

Term Equality and Inequality in Prolog (Supplementary)

In Prolog, the predicate formula
∀x∀y (∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y)→ Sibling (x, y)) can be
expressed using following rule:

sibling(X,Y):-
parent(Z,X), % Z is a parent of X
parent(Z,Y), % Z is a parent of Y
X \== Y. % X and Y are different people

The above script is an another writing of the following expression:

sibling(X,Y):- parent(Z,X),parent(Z,Y),X \== Y.

MZI (SoC Tel-U) Logic Programming October-November 2023 66 / 66

Term Equality and Inequality in Prolog (Supplementary)

In Prolog, the predicate formula
∀x∀y (∃z (Parent (z, x) ∧ Parent (z, y)) ∧ (x 6= y)→ Sibling (x, y)) can be
expressed using following rule:

sibling(X,Y):-
parent(Z,X), % Z is a parent of X
parent(Z,Y), % Z is a parent of Y
X \== Y. % X and Y are different people

The above script is an another writing of the following expression:

sibling(X,Y):- parent(Z,X),parent(Z,Y),X \== Y.

MZI (SoC Tel-U) Logic Programming October-November 2023 66 / 66

	What is Prolog?
	Prolog Installation
	Using the Interactive Interpreter
	Elementary Prolog Programming: Basic Facts and Queries
	Simple Rules in Prolog
	Representation of Quantifiers in Prolog (Supplementary)
	Term Equality and Inequality in Prolog (Supplementary)

