Binomial Coefficients (Supplementary)

Discrete Mathematics - Second Term 2022-2023

MZI

School of Computing
Telkom University

SoC Tel-U

April 2023

Acknowledgements

This slide is composed based on the following materials:
(1) Discrete Mathematics and Its Applications, 8th Edition, 2019, by K. H. Rosen (main).
(3) Discrete Mathematics with Applications, 5th Edition., 2018, by S. S. Epp.

- Mathematics for Computer Science. MIT, 2010, by E. Lehman, F. T. Leighton, A. R. Meyer.
- Slide for Matematika Diskret 2 (2012). Fasilkom UI, by B. H. Widjaja.
© Slide for Matematika Diskret. Telkom University, by B. Purnama.
Some of the pictures are taken from the above resources. This slide is intended for academic purpose at FIF Telkom University. If you have any suggestions/comments/questions related with the material on this slide, send an email to <pleasedontspam>@telkomuniversity.ac.id.

Contents

(1) Binomial Coefficient: Motivation
(2) The Binomial Theorem
(3) Pascal Triangle and Pascal Identity
(4) Exercise
(5) Challenging Problems

Contents

(1) Binomial Coefficient: Motivation

(2) The Binomial Theorem

(3) Pascal Triangle and Pascal Identity
(4) Exercise
(5) Challenging Problems

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
(x+y)^{2}=
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=
\end{aligned}
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+
\end{aligned}
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+3 x^{2} y+
\end{aligned}
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+
\end{aligned}
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
(x+y)^{2} & =x^{2}+2 x y+y^{2} \\
(x+y)^{3} & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x+y)^{4} & =
\end{aligned}
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
(x+y)^{2} & =x^{2}+2 x y+y^{2} \\
(x+y)^{3} & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x+y)^{4} & =x^{4}+
\end{aligned}
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x+y)^{4}=x^{4}+4 x^{3} y+
\end{aligned}
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
(x+y)^{2} & =x^{2}+2 x y+y^{2} \\
(x+y)^{3} & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x+y)^{4} & =x^{4}+4 x^{3} y+6 x^{2} y^{2}+
\end{aligned}
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
(x+y)^{2} & =x^{2}+2 x y+y^{2} \\
(x+y)^{3} & =x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
(x+y)^{4} & =x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+
\end{aligned}
$$

Binomial Coefficient: Motivation

In high school, we have learn these algebraic expressions:

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4},
\end{aligned}
$$

what is the general expression for $(x+y)^{n}$ for $n \geq 2$?

The Idea for Coefficients Expansion

To find the expression for $(x+y)^{n}$ we start from $(x+y)^{4}$. We see that

$$
(x+y)^{4}=\underbrace{(x+y)}_{S_{1}} \underbrace{(x+y)}_{S_{2}} \underbrace{(x+y)}_{S_{3}} \underbrace{(x+y)}_{S_{4}}
$$

A summand of $(x+y)^{4}$ must contain:

The Idea for Coefficients Expansion

To find the expression for $(x+y)^{n}$ we start from $(x+y)^{4}$. We see that

$$
(x+y)^{4}=\underbrace{(x+y)}_{S_{1}} \underbrace{(x+y)}_{S_{2}} \underbrace{(x+y)}_{S_{3}} \underbrace{(x+y)}_{S_{4}}
$$

A summand of $(x+y)^{4}$ must contain:

- one variable x or y from S_{1}, but not both,
- one variable x or y from S_{2}, but not both,
- one variable x or y from S_{3}, but not both, and
- one variable x or y from S_{4}, but not both.

We can write the expansion of $(x+y)^{4}$ as

$$
(x+y)^{4}=
$$

We can write the expansion of $(x+y)^{4}$ as

$$
\begin{aligned}
(x+y)^{4}= & x x x x+x x x y+x x y x+x x y y+x y x x+x y x y+x y y x+x y y y \\
& +y x x x+y x x y+y x y x+y x y y+y y x x+y y x y+y y y x+y y y y .
\end{aligned}
$$

All the summands must be of the form $r_{1} r_{2} r_{3} r_{4}$ where $r_{i} \in\{x, y\}$ for $1 \leq i \leq 4$. Observe that:

- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y.
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{0}$ ways. Similarly, it can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{4}$ ways to do so.
- The coefficient of $x^{3} y$ can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y.
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{0}$ ways. Similarly, it can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{4}$ ways to do so.
- The coefficient of $x^{3} y$ can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in ($\left.\begin{array}{l}4 \\ 0\end{array}\right)$ ways. Similarly, it can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{4}$ ways to do so.
- The coefficient of $x^{3} y$ can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{1}$ ways. Similarly, it can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{3}$ ways to do so.
- The coefficient of $x^{2} y^{2}$ can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y.
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{0}$ ways. Similarly, it can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{4}$ ways to do so.
- The coefficient of $x^{3} y$ can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{1}$ ways. Similarly, it can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{3}$ ways to do so.
- The coefficient of $x^{2} y^{2}$ can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{0}$ ways. Similarly, it can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{4}$ ways to do so.
- The coefficient of $x^{3} y$ can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{1}$ ways. Similarly, it can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{3}$ ways to do so.
- The coefficient of $x^{2} y^{2}$ can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in $\binom{4}{2}$ ways. Similarly, it can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{2}$ ways to do so.
- The coefficient of $x y^{3}$ can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y.
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{0}$ ways. Similarly, it can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{4}$ ways to do so.
- The coefficient of $x^{3} y$ can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{1}$ ways. Similarly, it can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{3}$ ways to do so.
- The coefficient of $x^{2} y^{2}$ can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in $\binom{4}{2}$ ways. Similarly, it can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{2}$ ways to do so.
- The coefficient of $x y^{3}$ can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{0}$ ways. Similarly, it can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{4}$ ways to do so.
- The coefficient of $x^{3} y$ can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{1}$ ways. Similarly, it can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{3}$ ways to do so.
- The coefficient of $x^{2} y^{2}$ can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in $\binom{4}{2}$ ways. Similarly, it can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{2}$ ways to do so.
- The coefficient of $x y^{3}$ can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in $\binom{4}{3}$ ways. Similarly, it can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to x, so, we have $\binom{4}{1}$ ways to do so.
- The coefficient of y^{4} can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y.
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{0}$ ways. Similarly, it can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{4}$ ways to do so.
- The coefficient of $x^{3} y$ can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{1}$ ways. Similarly, it can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{3}$ ways to do so.
- The coefficient of $x^{2} y^{2}$ can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in $\binom{4}{2}$ ways. Similarly, it can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{2}$ ways to do so.
- The coefficient of $x y^{3}$ can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in $\binom{4}{3}$ ways. Similarly, it can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to x, so, we have $\binom{4}{1}$ ways to do so.
- The coefficient of y^{4} can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in
- The coefficient of x^{4} can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{0}$ ways. Similarly, it can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{4}$ ways to do so.
- The coefficient of $x^{3} y$ can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to y. This can be done in $\binom{4}{1}$ ways. Similarly, it can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{3}$ ways to do so.
- The coefficient of $x^{2} y^{2}$ can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in $\binom{4}{2}$ ways. Similarly, it can be obtained if exactly 2 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to x, so, we have $\binom{4}{2}$ ways to do so.
- The coefficient of $x y^{3}$ can be obtained if exactly 3 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in $\binom{4}{3}$ ways. Similarly, it can be obtained if exactly 1 of $r_{1}, r_{2}, r_{3}, r_{4}$ equals to x, so, we have $\binom{4}{1}$ ways to do so.
- The coefficient of y^{4} can be obtained if exactly 4 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y. This can be done in $\binom{4}{4}$ ways. Similarly, it can be obtained if exactly 0 of $r_{1}, r_{2}, r_{3}, r_{4}$ equal to y, so, we have $\binom{4}{0}$ ways to do so.

So, we have

$$
(x+y)^{4}=
$$

So, we have

$$
\begin{aligned}
(x+y)^{4} & =\binom{4}{0} x^{4}+\binom{4}{1} x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{3} x y^{3}+\binom{4}{4} y^{4} \\
& =
\end{aligned}
$$

So, we have

$$
\begin{aligned}
(x+y)^{4} & =\binom{4}{0} x^{4}+\binom{4}{1} x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{3} x y^{3}+\binom{4}{4} y^{4} \\
& =\binom{4}{4} x^{4}+\binom{4}{3} x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{1} x y^{3}+\binom{4}{0} y^{4} \\
& =
\end{aligned}
$$

So, we have

$$
\begin{aligned}
(x+y)^{4} & =\binom{4}{0} x^{4}+\binom{4}{1} x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{3} x y^{3}+\binom{4}{4} y^{4} \\
& =\binom{4}{4} x^{4}+\binom{4}{3} x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{1} x y^{3}+\binom{4}{0} y^{4} \\
& =x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}
\end{aligned}
$$

Contents

(1) Binomial Coefficient: Motivation

(2) The Binomial Theorem

3 Pascal Triangle and Pascal Identity
(4) Exercise
(5) Challenging Problems

The Binomial Theorem

Theorem

For every $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& (x+y)^{n} \\
= & \sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}=\sum_{j=0}^{n}\binom{n}{n-j} x^{n-j} y^{j} \\
= & \binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n} .
\end{aligned}
$$

Proof (Proof can be also obtained using induction)

The equation is obviously true for $n=1$.

The Binomial Theorem

Theorem

For every $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& (x+y)^{n} \\
= & \sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}=\sum_{j=0}^{n}\binom{n}{n-j} x^{n-j} y^{j} \\
= & \binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n} .
\end{aligned}
$$

Proof (Proof can be also obtained using induction)

The equation is obviously true for $n=1$. Now, assume that $n \geq 2$.

The Binomial Theorem

Theorem

For every $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& (x+y)^{n} \\
= & \sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}=\sum_{j=0}^{n}\binom{n}{n-j} x^{n-j} y^{j} \\
= & \binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n}
\end{aligned}
$$

Proof (Proof can be also obtained using induction)

The equation is obviously true for $n=1$. Now, assume that $n \geq 2$. Without using commutativity and associativity of real numbers arithmetic, every summand in the expansion can be written as $r_{1} r_{2} \cdots r_{n}$ with $r_{i} \in\{x, y\}, \forall i(1 \leq i \leq n)$.

The Binomial Theorem

Theorem

For every $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& (x+y)^{n} \\
= & \sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}=\sum_{j=0}^{n}\binom{n}{n-j} x^{n-j} y^{j} \\
= & \binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n} .
\end{aligned}
$$

Proof (Proof can be also obtained using induction)

The equation is obviously true for $n=1$. Now, assume that $n \geq 2$. Without using commutativity and associativity of real numbers arithmetic, every summand in the expansion can be written as $r_{1} r_{2} \cdots r_{n}$ with $r_{i} \in\{x, y\}, \forall i(1 \leq i \leq n)$. Observe that the coefficient of $x^{n-j} y^{j}$ can be obtained by assigning value to $r_{1} r_{2} \cdots r_{n}$ such that exactly j of $r_{1}, r_{2} \ldots, r_{n}$ equal to y

The Binomial Theorem

Theorem

For every $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& (x+y)^{n} \\
= & \sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}=\sum_{j=0}^{n}\binom{n}{n-j} x^{n-j} y^{j} \\
= & \binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n} .
\end{aligned}
$$

Proof (Proof can be also obtained using induction)

The equation is obviously true for $n=1$. Now, assume that $n \geq 2$. Without using commutativity and associativity of real numbers arithmetic, every summand in the expansion can be written as $r_{1} r_{2} \cdots r_{n}$ with $r_{i} \in\{x, y\}, \forall i(1 \leq i \leq n)$. Observe that the coefficient of $x^{n-j} y^{j}$ can be obtained by assigning value to $r_{1} r_{2} \cdots r_{n}$ such that exactly j of $r_{1}, r_{2} \ldots, r_{n}$ equal to y (or $n-j$ of $r_{1}, r_{2} \ldots, r_{n}$ equal to $x)$.

The Binomial Theorem

Theorem

For every $x, y \in \mathbb{R}$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
& (x+y)^{n} \\
= & \sum_{j=0}^{n}\binom{n}{j} x^{n-j} y^{j}=\sum_{j=0}^{n}\binom{n}{n-j} x^{n-j} y^{j} \\
= & \binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2}+\cdots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} y^{n} .
\end{aligned}
$$

Proof (Proof can be also obtained using induction)

The equation is obviously true for $n=1$. Now, assume that $n \geq 2$. Without using commutativity and associativity of real numbers arithmetic, every summand in the expansion can be written as $r_{1} r_{2} \cdots r_{n}$ with $r_{i} \in\{x, y\}, \forall i(1 \leq i \leq n)$. Observe that the coefficient of $x^{n-j} y^{j}$ can be obtained by assigning value to $r_{1} r_{2} \cdots r_{n}$ such that exactly j of $r_{1}, r_{2} \ldots, r_{n}$ equal to y (or $n-j$ of $r_{1}, r_{2} \ldots, r_{n}$ equal to x). Thus, the coefficient of $x^{n-j} y^{j}$ is $\binom{n}{j}$ (which is also equal to $\binom{n}{n-j}$).

Contents

(1) Binomial Coefficient: Motivation

(2) The Binomial Theorem
(3) Pascal Triangle and Pascal Identity

Pascal Triangle and Pascal's Identity

In high school we have learned that the expansion of $(x+y)^{n}$ can be obtained by using Pascal's triangle below.

Pascal's Identity

Theorem

Given two positive integers n and k with $n>k$, then $\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}$.

Proof

The proof is left as one of the challenging problems at the end of this slide.

Contents

(1) Binomial Coefficient: Motivation

(2) The Binomial Theorem
(3) Pascal Triangle and Pascal Identity
(4) Exercise
(5) Challenging Problems

Exercise

Exercise

(1) Find the coefficient of $x^{2} y^{3}$ in the expansion of $(x-y)^{5}$.
(2) Find the coefficient of $x^{12} y^{13}$ in the expansion of $(2 x-3 y)^{25}$.
(0) Find the coefficient of x^{18} in the expansion of $\left(x+\frac{1}{x}\right)^{100}$.

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=$

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=$

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=2$, so the summand in the form of $x^{2} y^{3}$ is

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=2$, so the summand in the form of $x^{2} y^{3}$ is

$$
\binom{5}{2} \cdot(x)^{2}(-y)^{5-2}=
$$

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=2$, so the summand in the form of $x^{2} y^{3}$ is

$$
\binom{5}{2} \cdot(x)^{2}(-y)^{5-2}=\binom{5}{2}(x)^{2}(-y)^{3}=
$$

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=2$, so the summand in the form of $x^{2} y^{3}$ is

$$
\binom{5}{2} \cdot(x)^{2}(-y)^{5-2}=\binom{5}{2}(x)^{2}(-y)^{3}=-\binom{5}{2} x^{2} y^{3} .
$$

Thus, the coefficient of $x^{2} y^{3}$ is $-\binom{5}{2}=-10$.
(2) Observe that $(2 x-3 y)^{25}=$

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=2$, so the summand in the form of $x^{2} y^{3}$ is

$$
\binom{5}{2} \cdot(x)^{2}(-y)^{5-2}=\binom{5}{2}(x)^{2}(-y)^{3}=-\binom{5}{2} x^{2} y^{3} .
$$

Thus, the coefficient of $x^{2} y^{3}$ is $-\binom{5}{2}=-10$.
(2) Observe that $(2 x-3 y)^{25}=\sum_{j=0}^{25}\binom{25}{j}(2 x)^{j}(-3 y)^{25-j}$. The coefficient of $x^{12} y^{13}$ can be obtained if $j=$

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=2$, so the summand in the form of $x^{2} y^{3}$ is

$$
\binom{5}{2} \cdot(x)^{2}(-y)^{5-2}=\binom{5}{2}(x)^{2}(-y)^{3}=-\binom{5}{2} x^{2} y^{3}
$$

Thus, the coefficient of $x^{2} y^{3}$ is $-\binom{5}{2}=-10$.
(3) Observe that $(2 x-3 y)^{25}=\sum_{j=0}^{25}\binom{25}{j}(2 x)^{j}(-3 y)^{25-j}$. The coefficient of $x^{12} y^{13}$ can be obtained if $j=12$, so the summand in the form of $x^{12} y^{13}$ is

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=2$, so the summand in the form of $x^{2} y^{3}$ is

$$
\binom{5}{2} \cdot(x)^{2}(-y)^{5-2}=\binom{5}{2}(x)^{2}(-y)^{3}=-\binom{5}{2} x^{2} y^{3} .
$$

Thus, the coefficient of $x^{2} y^{3}$ is $-\binom{5}{2}=-10$.
(3) Observe that $(2 x-3 y)^{25}=\sum_{j=0}^{25}\binom{25}{j}(2 x)^{j}(-3 y)^{25-j}$. The coefficient of $x^{12} y^{13}$ can be obtained if $j=12$, so the summand in the form of $x^{12} y^{13}$ is

$$
\binom{25}{12} \cdot(2 x)^{12}(-3 y)^{13}=
$$

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=2$, so the summand in the form of $x^{2} y^{3}$ is

$$
\binom{5}{2} \cdot(x)^{2}(-y)^{5-2}=\binom{5}{2}(x)^{2}(-y)^{3}=-\binom{5}{2} x^{2} y^{3} .
$$

Thus, the coefficient of $x^{2} y^{3}$ is $-\binom{5}{2}=-10$.
(2) Observe that $(2 x-3 y)^{25}=\sum_{j=0}^{25}\binom{25}{j}(2 x)^{j}(-3 y)^{25-j}$. The coefficient of $x^{12} y^{13}$ can be obtained if $j=12$, so the summand in the form of $x^{12} y^{13}$ is

$$
\binom{25}{12} \cdot(2 x)^{12}(-3 y)^{13}=\binom{25}{12} \cdot 2^{12}(-3)^{13} \cdot x^{12} y^{13}
$$

Solution: No. 1 and No. 2

(1) Observe that $(x-y)^{5}=(x+(-y))^{5}=\sum_{j=0}^{5}\binom{5}{j}(x)^{j}(-y)^{5-j}$. The coefficient of $x^{2} y^{3}$ can be obtained if $j=2$, so the summand in the form of $x^{2} y^{3}$ is

$$
\binom{5}{2} \cdot(x)^{2}(-y)^{5-2}=\binom{5}{2}(x)^{2}(-y)^{3}=-\binom{5}{2} x^{2} y^{3} .
$$

Thus, the coefficient of $x^{2} y^{3}$ is $-\binom{5}{2}=-10$.
(2) Observe that $(2 x-3 y)^{25}=\sum_{j=0}^{25}\binom{25}{j}(2 x)^{j}(-3 y)^{25-j}$. The coefficient of $x^{12} y^{13}$ can be obtained if $j=12$, so the summand in the form of $x^{12} y^{13}$ is

$$
\begin{aligned}
\binom{25}{12} \cdot(2 x)^{12}(-3 y)^{13} & =\binom{25}{12} \cdot 2^{12}(-3)^{13} \cdot x^{12} y^{13} \\
& =-\binom{25}{12} \cdot 2^{12} \cdot 3^{13} \cdot x^{12} y^{13}
\end{aligned}
$$

Thus, the coefficient of $x^{12} y^{13}$ is $-\binom{25}{12} \cdot 2^{12} \cdot 3^{13}$.

Solution: No. 3

(- Observe that $\left(x+\frac{1}{x}\right)^{100}=$

Solution: No. 3

(3) Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$.

Solution: No. 3

(3) Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=
$$

Solution: No. 3

(3) Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=\left(x^{100-j}\right)\left(x^{-1}\right)^{j}=
$$

Solution: No. 3

(3) Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=\left(x^{100-j}\right)\left(x^{-1}\right)^{j}=x^{100-j} \cdot x^{-j}=
$$

Solution: No. 3

(3) Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=\left(x^{100-j}\right)\left(x^{-1}\right)^{j}=x^{100-j} \cdot x^{-j}=x^{100-2 j}
$$

Hence, $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot x^{100-2 j}$.

Solution: No. 3

(3) Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=\left(x^{100-j}\right)\left(x^{-1}\right)^{j}=x^{100-j} \cdot x^{-j}=x^{100-2 j}
$$

Hence, $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot x^{100-2 j}$. The coefficient of x^{18} can be obtained if

Solution: No. 3

(3) Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=\left(x^{100-j}\right)\left(x^{-1}\right)^{j}=x^{100-j} \cdot x^{-j}=x^{100-2 j}
$$

Hence, $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot x^{100-2 j}$. The coefficient of x^{18} can be obtained if $100-2 j=$

Solution: No. 3

(3) Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=\left(x^{100-j}\right)\left(x^{-1}\right)^{j}=x^{100-j} \cdot x^{-j}=x^{100-2 j}
$$

Hence, $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot x^{100-2 j}$. The coefficient of x^{18} can be obtained if $100-2 j=18$,

Solution: No. 3

(0) Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=\left(x^{100-j}\right)\left(x^{-1}\right)^{j}=x^{100-j} \cdot x^{-j}=x^{100-2 j}
$$

Hence, $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot x^{100-2 j}$. The coefficient of x^{18} can be obtained if $100-2 j=18$, so $2 j=82 \Rightarrow j=41$.

Solution: No. 3

(- Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=\left(x^{100-j}\right)\left(x^{-1}\right)^{j}=x^{100-j} \cdot x^{-j}=x^{100-2 j}
$$

Hence, $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot x^{100-2 j}$. The coefficient of x^{18} can be obtained if $100-2 j=18$, so $2 j=82 \Rightarrow j=41$. Therefore, the coefficient of X^{18} is $\binom{100}{41}=\binom{100}{59}=$

Solution: No. 3

(- Observe that $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot\left(x^{100-j}\right)\left(\frac{1}{x}\right)^{j}$. We have

$$
x^{100-j} \cdot\left(\frac{1}{x}\right)^{j}=\left(x^{100-j}\right)\left(x^{-1}\right)^{j}=x^{100-j} \cdot x^{-j}=x^{100-2 j}
$$

Hence, $\left(x+\frac{1}{x}\right)^{100}=\sum_{j=0}^{100}\binom{100}{j} \cdot x^{100-2 j}$. The coefficient of x^{18} can be obtained if $100-2 j=18$, so $2 j=82 \Rightarrow j=41$. Therefore, the coefficient of x^{18} is $\binom{100}{41}=\binom{100}{59}=20116440213369968050635175200$.

Contents

(1) Binomial Coefficient: Motivation

(2) The Binomial Theorem
(3) Pascal Triangle and Pascal Identity
(4) Exercise
(5) Challenging Problems

Challenging Problems

Challenging Problems

(1) A closed form of a mathematical expression is an expression that does not include sigma notation or equivalent sums of terms that change depending on the domain. For example, we are familiar with these expressions:
$-1+2+3+\cdots+n=\sum_{i=1}^{n} i=\frac{(n)(n+1)}{2}$, the form $\frac{(n)(n+1)}{2}$ is the closed form of $\sum_{i=1}^{n} i$,

- $1+\frac{1}{2}+\frac{1}{4}+\cdots=\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}=\frac{1}{1-\frac{1}{2}}=2$, the value 2 is the closed form of $\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i}$.
Find the closed form of
- $\sum_{j=0}^{n}\binom{n}{j}$
- $\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}$
- $\sum_{j=0}^{n}\binom{n}{j} 2^{j}$
(3) Prove the Pascal's identity.

