Generalized Permutation and Combination

Discrete Mathematics - Second Term 2022-2023

MZI
School of Computing
Telkom University

SoC Tel-U

April 2023

Acknowledgements

This slide is composed based on the following materials:
(1) Discrete Mathematics and Its Applications, 8th Edition, 2019, by K. H. Rosen (main).
(2) Discrete Mathematics with Applications, 5th Edition, 2018, by S. S. Epp.

- Mathematics for Computer Science. MIT, 2010, by E. Lehman, F. T. Leighton, A. R. Meyer.
- Slide for Matematika Diskret 2 (2012). Fasilkom UI, by B. H. Widjaja.
© Slide for Matematika Diskret. Telkom University, by B. Purnama.
Some of the pictures are taken from the above resources. This slide is intended for academic purpose at FIF Telkom University. If you have any suggestions/comments/questions related with the material on this slide, send an email to <pleasedontspam>@telkomuniversity.ac.id.

Course Material

(1) Permutation with Repetition
(2) Permutation with Identical Object
(3) Combination with Repetition

44 Challenging Problems
(5) Summary of Formula

Contents

(1) Permutation with Repetition

(2) Permutation with Identical Object

(3) Combination with Repetition

4 Challenging Problems
(5) Summary of Formula

Permutation with Repetition

Definition (Permutation with Repetition)

Permutation with repetition is a permutation that allows similar objects occur more than once.

Example

How many string of length 10 that can be composed only from capital letter if each capital letter can be used more than once?

Solution:

Permutation with Repetition

Definition (Permutation with Repetition)

Permutation with repetition is a permutation that allows similar objects occur more than once.

Example

How many string of length 10 that can be composed only from capital letter if each capital letter can be used more than once?

Solution: Suppose the string is $s_{1} s_{2} \cdots s_{10}$.

Permutation with Repetition

Definition (Permutation with Repetition)

Permutation with repetition is a permutation that allows similar objects occur more than once.

Example

How many string of length 10 that can be composed only from capital letter if each capital letter can be used more than once?

Solution: Suppose the string is $s_{1} s_{2} \cdots s_{10}$. There are 26 capital letters and each letter can be reused, then there are

Permutation with Repetition

Definition (Permutation with Repetition)

Permutation with repetition is a permutation that allows similar objects occur more than once.

Example

How many string of length 10 that can be composed only from capital letter if each capital letter can be used more than once?

Solution: Suppose the string is $s_{1} s_{2} \cdots s_{10}$. There are 26 capital letters and each letter can be reused, then there are 26 possibilities for each character s_{i} ($1 \leq i \leq 10$).

Permutation with Repetition

Definition (Permutation with Repetition)

Permutation with repetition is a permutation that allows similar objects occur more than once.

Example

How many string of length 10 that can be composed only from capital letter if each capital letter can be used more than once?

Solution: Suppose the string is $s_{1} s_{2} \cdots s_{10}$. There are 26 capital letters and each letter can be reused, then there are 26 possibilities for each character s_{i} $(1 \leq i \leq 10)$. Based on the product rule, there are

Permutation with Repetition

Definition (Permutation with Repetition)

Permutation with repetition is a permutation that allows similar objects occur more than once.

Example

How many string of length 10 that can be composed only from capital letter if each capital letter can be used more than once?

Solution: Suppose the string is $s_{1} s_{2} \cdots s_{10}$. There are 26 capital letters and each letter can be reused, then there are 26 possibilities for each character s_{i} $(1 \leq i \leq 10)$. Based on the product rule, there are 26^{10} strings of length 10 that can be composed from capital letters.

Theorem (The number of Permutation with Repetition)

The number of r-permutation of a set with n elements that allows repetition is n^{r}.

Proof

Obvious (by using the product rule).

Contents

(1) Permutation with Repetition

(2) Permutation with Identical Object
(3) Combination with Repetition

4 Challenging Problems
(5) Summary of Formula

Permutation with Identical Object

Definition

Permutation with identical object is a permutation of n objects that consists of exactly k types of identical object.

Theorem

Given a collection of objects that consists of k types, if each type contain $n_{1}, n_{2}, \cdots, n_{k}$ identical objects, respectively, then the number of different permutations of the objects is

$$
\frac{\left(n_{1}+n_{2}+\cdots+n_{k}\right)!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

sometimes the above expression is written as $P\left(n ; n_{1}, \ldots, n_{k}\right)$.

Proof

The proof can be obtained easily through the product rule and the division rule.

Problem 1

Exercise

(1) Determine the number of different strings that can be composed from all of the letters in the word ZOOKEEPER if all of the letters in the string must be used.
(2) Determine the number of different strings that can be composed from all of the letters in the word MISSISSIPPI if all of the letters in the string must be used.
(0) On the shelf, there are 8 books consisting of 4 algorithm books, 2 discrete math books, and 2 statistics books. Determine the number of different ways to arrange these books on the shelf.

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P E} \mathbf{E}$, then there are 9 different characters.

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P} E_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !.

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P} \mathbf{E}_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !. However, there are 2 ! ways to number the letter \mathbf{O} and 3 ! ways to number the letter \mathbf{E}. Thus, by the division rule, the number of different string arrangements is

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P} \mathbf{E}_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !. However, there are 2 ! ways to number the letter \mathbf{O} and 3 ! ways to number the letter \mathbf{E}. Thus, by the division rule, the number of different string arrangements is $\frac{9!}{2!3!}=30240$.
(2) Suppose all of the characters in MISSISSIPPI are distinguished, namely $\mathbf{M I}_{1} \mathbf{S}_{1} \mathbf{S}_{2} \mathbf{I}_{2} \mathbf{S}_{3} \mathbf{S}_{4} \mathbf{I}_{3} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{I}_{4}$, then there are 11 different characters.

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P} \mathbf{E}_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !. However, there are 2 ! ways to number the letter \mathbf{O} and 3 ! ways to number the letter \mathbf{E}. Thus, by the division rule, the number of different string arrangements is $\frac{9!}{2!3!}=30240$.
(2) Suppose all of the characters in MISSISSIPPI are distinguished, namely $\mathbf{M I}_{1} \mathbf{S}_{1} \mathbf{S}_{2} \mathbf{I}_{2} \mathbf{S}_{3} \mathbf{S}_{4} \mathbf{I}_{3} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{I}_{4}$, then there are 11 different characters. If all of the characters are numbered, then the number of string arrangements is 11 !.

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P} \mathbf{E}_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !. However, there are 2 ! ways to number the letter \mathbf{O} and 3 ! ways to number the letter \mathbf{E}. Thus, by the division rule, the number of different string arrangements is $\frac{9!}{2!3!}=30240$.
(2) Suppose all of the characters in MISSISSIPPI are distinguished, namely $\mathbf{M I}_{1} \mathbf{S}_{1} \mathbf{S}_{2} \mathbf{I}_{2} \mathbf{S}_{3} \mathbf{S}_{4} \mathbf{I}_{3} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{I}_{4}$, then there are 11 different characters. If all of the characters are numbered, then the number of string arrangements is 11 !. However, there are 4 ! ways to number the letter II, 4! ways to number the letter \mathbf{S}, and 2 ! ways to number the letter \mathbf{P}. Thus, by the division rule, the number of different string arrangements is

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P} \mathbf{E}_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !. However, there are 2 ! ways to number the letter \mathbf{O} and 3 ! ways to number the letter \mathbf{E}. Thus, by the division rule, the number of different string arrangements is $\frac{9!}{2!3!}=30240$.
(2) Suppose all of the characters in MISSISSIPPI are distinguished, namely $\mathbf{M I}_{1} \mathbf{S}_{1} \mathbf{S}_{2} \mathbf{I}_{2} \mathbf{S}_{3} \mathbf{S}_{4} \mathbf{I}_{3} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{I}_{4}$, then there are 11 different characters. If all of the characters are numbered, then the number of string arrangements is 11 !. However, there are 4 ! ways to number the letter II, 4! ways to number the letter \mathbf{S}, and 2 ! ways to number the letter \mathbf{P}. Thus, by the division rule, the number of different string arrangements is $\frac{11!}{4!42!}=34650$.
(0) Suppose the algorithm books are denoted with A, discrete math books are denoted with \mathbf{M}, and statistics books are denoted with \mathbf{S}.

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P} \mathbf{E}_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !. However, there are 2 ! ways to number the letter \mathbf{O} and 3 ! ways to number the letter \mathbf{E}. Thus, by the division rule, the number of different string arrangements is $\frac{9!}{2!3!}=30240$.
(2) Suppose all of the characters in MISSISSIPPI are distinguished, namely $\mathbf{M I}_{1} \mathbf{S}_{1} \mathbf{S}_{2} \mathbf{I}_{2} \mathbf{S}_{3} \mathbf{S}_{4} \mathbf{I}_{3} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{I}_{4}$, then there are 11 different characters. If all of the characters are numbered, then the number of string arrangements is 11 !. However, there are 4 ! ways to number the letter II, 4! ways to number the letter \mathbf{S}, and 2 ! ways to number the letter \mathbf{P}. Thus, by the division rule, the number of different string arrangements is $\frac{11!}{4!42!}=34650$.
(0) Suppose the algorithm books are denoted with A, discrete math books are denoted with \mathbf{M}, and statistics books are denoted with \mathbf{S}. If all books are distinguished, then the books arrangement on the shelf can be viewed as a permutation of the string $\mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3} \mathbf{A}_{4} \mathbf{M}_{1} \mathbf{M}_{2} \mathbf{S}_{1} \mathbf{S}_{2}$.

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P} \mathbf{E}_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !. However, there are 2 ! ways to number the letter \mathbf{O} and 3 ! ways to number the letter \mathbf{E}. Thus, by the division rule, the number of different string arrangements is $\frac{9!}{2!3!}=30240$.
(2) Suppose all of the characters in MISSISSIPPI are distinguished, namely $\mathbf{M I}_{1} \mathbf{S}_{1} \mathbf{S}_{2} \mathbf{I}_{2} \mathbf{S}_{3} \mathbf{S}_{4} \mathbf{I}_{3} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{I}_{4}$, then there are 11 different characters. If all of the characters are numbered, then the number of string arrangements is 11 !. However, there are 4 ! ways to number the letter II, 4! ways to number the letter \mathbf{S}, and 2 ! ways to number the letter \mathbf{P}. Thus, by the division rule, the number of different string arrangements is $\frac{11!}{4!4!2!}=34650$.
(0) Suppose the algorithm books are denoted with A, discrete math books are denoted with \mathbf{M}, and statistics books are denoted with \mathbf{S}. If all books are distinguished, then the books arrangement on the shelf can be viewed as a permutation of the string $\mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3} \mathbf{A}_{4} \mathbf{M}_{1} \mathbf{M}_{2} \mathbf{S}_{1} \mathbf{S}_{2}$. The number of book arrangements if all the books are distinguished is 8 !.

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P} \mathbf{E}_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !. However, there are 2 ! ways to number the letter \mathbf{O} and 3 ! ways to number the letter \mathbf{E}. Thus, by the division rule, the number of different string arrangements is $\frac{9!}{2!3!}=30240$.
(2) Suppose all of the characters in MISSISSIPPI are distinguished, namely $\mathbf{M I}_{1} \mathbf{S}_{1} \mathbf{S}_{2} \mathbf{I}_{2} \mathbf{S}_{3} \mathbf{S}_{4} \mathbf{I}_{3} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{I}_{4}$, then there are 11 different characters. If all of the characters are numbered, then the number of string arrangements is 11 !. However, there are 4 ! ways to number the letter II, 4! ways to number the letter \mathbf{S}, and 2 ! ways to number the letter \mathbf{P}. Thus, by the division rule, the number of different string arrangements is $\frac{11!}{4!4!2!}=34650$.

- Suppose the algorithm books are denoted with A, discrete math books are denoted with \mathbf{M}, and statistics books are denoted with \mathbf{S}. If all books are distinguished, then the books arrangement on the shelf can be viewed as a permutation of the string $\mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3} \mathbf{A}_{4} \mathbf{M}_{1} \mathbf{M}_{2} \mathbf{S}_{1} \mathbf{S}_{2}$. The number of book arrangements if all the books are distinguished is 8 !. Notice that there are 4 ! ways to number the books $\mathbf{A}, 2$! ways to number the books \mathbf{M}, and 2 ! ways to number the books \mathbf{S}. Thus, there are

Solution of Problem 1

(1) Suppose all of the characters in ZOOKEEPER are distinguished, namely $\mathbf{Z O}_{1} \mathbf{O}_{2} \mathbf{K E}_{1} \mathbf{E}_{2} \mathbf{P E}_{3} \mathbf{R}$, then there are 9 different characters. If all of the characters are numbered, then the number of string arrangements is 9 !. However, there are 2 ! ways to number the letter \mathbf{O} and 3 ! ways to number the letter \mathbf{E}. Thus, by the division rule, the number of different string arrangements is $\frac{9!}{2!3!}=30240$.
(2) Suppose all of the characters in MISSISSIPPI are distinguished, namely $\mathbf{M I}_{1} \mathbf{S}_{1} \mathbf{S}_{2} \mathbf{I}_{2} \mathbf{S}_{3} \mathbf{S}_{4} \mathbf{I}_{3} \mathbf{P}_{1} \mathbf{P}_{2} \mathbf{I}_{4}$, then there are 11 different characters. If all of the characters are numbered, then the number of string arrangements is 11 !. However, there are 4 ! ways to number the letter II, 4! ways to number the letter \mathbf{S}, and 2 ! ways to number the letter \mathbf{P}. Thus, by the division rule, the number of different string arrangements is $\frac{11!}{4!4!2!}=34650$.
(0) Suppose the algorithm books are denoted with A, discrete math books are denoted with \mathbf{M}, and statistics books are denoted with \mathbf{S}. If all books are distinguished, then the books arrangement on the shelf can be viewed as a permutation of the string $\mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{3} \mathbf{A}_{4} \mathbf{M}_{1} \mathbf{M}_{2} \mathbf{S}_{1} \mathbf{S}_{2}$. The number of book arrangements if all the books are distinguished is 8 !. Notice that there are 4 ! ways to number the books $\mathbf{A}, 2$! ways to number the books \mathbf{M}, and 2 ! ways to number the books \mathbf{S}. Thus, there are $\frac{8!}{4!2!2!}=420$ different books arrangements.

Contents

(1) Permutation with Repetition

(2) Permutation with Identical Object
(3) Combination with Repetition

4 Challenging Problems
(5) Summary of Formula

Motivation: Combination with Repetition

- We have already seen that for a set A of n elements there are $\binom{n}{k}$ different ways to construct the subsets of A containing exactly k elements.
- In the above case, the repetition is not allowed, which means that if an element x has been taken from A, then x cannot be taken again from A. Now, what if the repetition is allowed?

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version):

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type:

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: \{4 apples\}, \{4 oranges $\}$, or $\{4$ melons $\}$;

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\},\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit:

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, \{3 apples, 1 melon $\}$,

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, $\{3$ apples, 1 melon\}, $\{3$ oranges, 1 apple $\},\{3$ oranges, 1 melon $\}$,

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, $\{3$ apples, 1 melon \}, $\{3$ oranges, 1 apple $\}$, $\{3$ oranges, 1 melon \}, $\{3$ melons, 1 apple $\},\{3$ melons, 1 orange $\}$;

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, $\{3$ apples, 1 melon \}, $\{3$ oranges, 1 apple $\}$, $\{3$ oranges, 1 melon \}, $\{3$ melons, 1 apple $\},\{3$ melons, 1 orange $\}$;
- Two type of fruits, each type contains 2 fruits:

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, \{3 apples, 1 melon\}, $\{3$ oranges, 1 apple $\}$, $\{3$ oranges, 1 melon $\}$, $\{3$ melons, 1 apple $\}$, $\{3$ melons, 1 orange $\}$;
- Two type of fruits, each type contains 2 fruits: $\{2$ apples, 2 oranges $\}$,

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, \{3 apples, 1 melon\}, $\{3$ oranges, 1 apple \}, $\{3$ oranges, 1 melon $\}$, $\{3$ melons, 1 apple $\}$, $\{3$ melons, 1 orange $\}$;
- Two type of fruits, each type contains 2 fruits: $\{2$ apples, 2 oranges $\}$, \{2 apples, 2 melons $\}$,

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, \{3 apples, 1 melon\}, $\{3$ oranges, 1 apple $\}$, $\{3$ oranges, 1 melon $\}$, $\{3$ melons, 1 apple $\}$, $\{3$ melons, 1 orange $\}$;
- Two type of fruits, each type contains 2 fruits: $\{2$ apples, 2 oranges $\}$, \{2 apples, 2 melons $\}$, $\{2$ oranges, 2 melons $\}$;

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, $\{3$ apples, 1 melon\}, $\{3$ oranges, 1 apple $\},\{3$ oranges, 1 melon $\}$, $\{3$ melons, 1 apple $\}$, $\{3$ melons, 1 orange $\}$;
- Two type of fruits, each type contains 2 fruits: $\{2$ apples, 2 oranges $\}$, $\{2$ apples, 2 melons $\}$, $\{2$ oranges, 2 melons $\}$;
- Three type of fruits, at least one type contains 2 fruits:

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, $\{3$ apples, 1 melon\}, $\{3$ oranges, 1 apple $\},\{3$ oranges, 1 melon $\}$, $\{3$ melons, 1 apple $\}$, $\{3$ melons, 1 orange $\}$;
- Two type of fruits, each type contains 2 fruits: $\{2$ apples, 2 oranges $\}$, $\{2$ apples, 2 melons $\}$, $\{2$ oranges, 2 melons $\}$;
- Three type of fruits, at least one type contains 2 fruits:
$\{2$ apples, 1 orange, 1 melon $\}$,

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\},\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, \{3 apples, 1 melon\}, $\{3$ oranges, 1 apple \}, $\{3$ oranges, 1 melon $\}$, $\{3$ melons, 1 apple $\}$, $\{3$ melons, 1 orange $\}$;
- Two type of fruits, each type contains 2 fruits: $\{2$ apples, 2 oranges $\}$, $\{2$ apples, 2 melons $\}$, $\{2$ oranges, 2 melons $\}$;
- Three type of fruits, at least one type contains 2 fruits:
$\{2$ apples, 1 orange, 1 melon $\}$, $\{2$ oranges, 1 apple, 1 melon $\}$,

Example of Combination with Repetition Case

Example

You walk to a mart that sells three type of fruits, namely apple, orange, and melon. How many ways to choose four fruits that contain a combination of these three fruits (regardless of the order of taking and assume that each fruit of the same type is identical)?

Solution (brute force version): the possible combinations are

- All of them are of the same type: $\{4$ apples $\}$, $\{4$ oranges $\}$, or $\{4$ melons $\}$;
- 3 fruits of the same type, 1 different fruit: $\{3$ apples, 1 orange $\}$, $\{3$ apples, 1 melon \}, $\{3$ oranges, 1 apple \}, $\{3$ oranges, 1 melon $\}$, $\{3$ melons, 1 apple $\}$, $\{3$ melons, 1 orange $\}$;
- Two type of fruits, each type contains 2 fruits: $\{2$ apples, 2 oranges $\}$, $\{2$ apples, 2 melons $\}$, $\{2$ oranges, 2 melons $\}$;
- Three type of fruits, at least one type contains 2 fruits:
$\{2$ apples, 1 orange, 1 melon $\}$, $\{2$ oranges, 1 apple, 1 melon $\}$,
$\{2$ melons, 1 apple, 1 orange $\}$.
So there are $3+6+3+3=15$ ways to choose four fruits that contain a combination of the three fruits.

Solution (tricky version): Suppose each fruit is denoted by b.

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are 3 types of fruits: 1 apple, 1 orange, and 2 melons;
- $b b-b b-$

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are 3 types of fruits: 1 apple, 1 orange, and 2 melons;
- $b b-b b-$ denotes that there are

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are 3 types of fruits: 1 apple, 1 orange, and 2 melons;
- $b b-b b$ - denotes that there are 2 types of fruits: 2 apples and 2 oranges;
- $-b b b-b$

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are 3 types of fruits: 1 apple, 1 orange, and 2 melons;
- $b b-b b$ - denotes that there are 2 types of fruits: 2 apples and 2 oranges;
- $-b b b-b$ denotes that there are

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are 3 types of fruits: 1 apple, 1 orange, and 2 melons;
- $b b-b b$ - denotes that there are 2 types of fruits: 2 apples and 2 oranges;
- $-b b b-b$ denotes that there are 2 types of fruits: 3 oranges and 1 melon;
- bbbb - -

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are 3 types of fruits: 1 apple, 1 orange, and 2 melons;
- $b b-b b$ - denotes that there are 2 types of fruits: 2 apples and 2 oranges;
- $-b b b-b$ denotes that there are 2 types of fruits: 3 oranges and 1 melon;
- $b b b b$ - - denotes that there are

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are 3 types of fruits: 1 apple, 1 orange, and 2 melons;
- $b b-b b$ - denotes that there are 2 types of fruits: 2 apples and 2 oranges;
- $-b b b-b$ denotes that there are 2 types of fruits: 3 oranges and 1 melon;
- $b b b b$ - - denotes that there are 1 type of fruit: 4 apples.
- - - bbbb

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are 3 types of fruits: 1 apple, 1 orange, and 2 melons;
- $b b-b b$ - denotes that there are 2 types of fruits: 2 apples and 2 oranges;
- $-b b b-b$ denotes that there are 2 types of fruits: 3 oranges and 1 melon;
- $b b b b$ - - denotes that there are 1 type of fruit: 4 apples.
- - - bbbb denotes that there are

Solution (tricky version): Suppose each fruit is denoted by b. For each fruit with different type, we put the sign "-" as the separator, for example:

- $b-b b-b$ denotes that there are 3 types of fruits: 1 apple, 2 oranges, and 1 melon;
- $b-b-b b$ denotes that there are 3 types of fruits: 1 apple, 1 orange, and 2 melons;
- $b b-b b$ - denotes that there are 2 types of fruits: 2 apples and 2 oranges;
- $-b b b-b$ denotes that there are 2 types of fruits: 3 oranges and 1 melon;
- $b b b b$ - - denotes that there are 1 type of fruit: 4 apples.
- - - bbbb denotes that there are 1 type of fruit: 4 melons.

If we consider the order of each object (namely 4 letters of b and 2 signs of -) there are $\underbrace{4}+\underbrace{2}=6$ objects whose positions can be switched.
\# fruits \# sign -

If we consider the order of each object (namely 4 letters of b and 2 signs of -) there are $\underbrace{4}+\underbrace{2}=6$ objects whose positions can be switched. We obtain
\# fruits \# sign -
$6!$ ways of object placements if we distinguished the letter b and the sign -. Notice that:

If we consider the order of each object (namely 4 letters of b and 2 signs of -) there are $\underbrace{4}+\underbrace{2}=6$ objects whose positions can be switched. We obtain
\# fruits \# sign -
6 ! ways of object placements if we distinguished the letter b and the sign -. Notice that:

- there are 2 identical - signs (there are 2 ! similar ways of placement for -)

If we consider the order of each object (namely 4 letters of b and 2 signs of -) there are $\underbrace{4}+\underbrace{2}=6$ objects whose positions can be switched. We obtain
\# fruits \# sign -
6 ! ways of object placements if we distinguished the letter b and the sign -. Notice that:

- there are 2 identical - signs (there are 2 ! similar ways of placement for -)
- there are 4 identical b letters (there are 4 ! similar ways of placement for b). Based on the division rule, the number of ways to place the 6 objects without distinguishing the letter b and the sign - is

If we consider the order of each object (namely 4 letters of b and 2 signs of -) there are $\underbrace{4}+\underbrace{2}=6$ objects whose positions can be switched. We obtain
\# fruits \# sign -
6 ! ways of object placements if we distinguished the letter b and the sign -. Notice that:

- there are 2 identical - signs (there are 2 ! similar ways of placement for -)
- there are 4 identical b letters (there are 4 ! similar ways of placement for b). Based on the division rule, the number of ways to place the 6 objects without distinguishing the letter b and the sign - is $\frac{6!}{4!\cdot 2!}=15$ ways.

Combination with Repetition

Definition (Combination with Repetition)

An r-combination with repetition is the number of ways to take r objects from n types of different objects that allows each type of object is taken until r times.

Example

Determine the number of solution for the equation $x+y+z=11$ with the requirement $x, y, z \in \mathbb{N}_{0}$.

Example

For example, these are some values of x, y, and z that satisfies the equation:

- $x=0, y=0, z=11$,
- $x=0, y=1, z=10$,
- $x=1, y=0, z=10$,
-
- $x=4, y=4, z=3$, etc..

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$.

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1 and for each different variable, the number 1 is separated by -.

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1 and for each different variable, the number 1 is separated by - . For example:

- 1111 - $1111-111$ denotes the value of $x=$

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1 and for each different variable, the number 1 is separated by - . For example:

- 1111-1111-111 denotes the value of $x=4$, value of $y=$

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1 and for each different variable, the number 1 is separated by - . For example:

- 1111 - 1111 - 111 denotes the value of $x=4$, value of $y=4$, and value of $z=$

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1 and for each different variable, the number 1 is separated by - . For example:

- 1111 - 1111 - 111 denotes the value of $x=4$, value of $y=4$, and value of $z=3$.
- $11-111-111111$ denotes the value of $x=$

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1 and for each different variable, the number 1 is separated by - . For example:

- 1111 - 1111 - 111 denotes the value of $x=4$, value of $y=4$, and value of $z=3$.
- $11-111-111111$ denotes the value of $x=2$, value of $y=$

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1 and for each different variable, the number 1 is separated by - . For example:

- 1111 - 1111 - 111 denotes the value of $x=4$, value of $y=4$, and value of $z=3$.
- $11-111-111111$ denotes the value of $x=2$, value of $y=3$, and value of $z=$

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1 and for each different variable, the number 1 is separated by - . For example:

- 1111 - 1111 - 111 denotes the value of $x=4$, value of $y=4$, and value of $z=3$.
- $11-111-111111$ denotes the value of $x=2$, value of $y=3$, and value of $z=6$
The number of solutions is the number of different permutation of the string $\underbrace{111 \cdots 1}--$. Using the product rule and the division rule, the number of
11 number 1
different permutations is

Solution: Notice that the possible values of x, y, z is $0 \leq x, y, z \leq 11$ and $x, y, z \in \mathbb{N}_{0}$. Suppose the value of each x, y, z is represented by the number 1 and for each different variable, the number 1 is separated by - . For example:

- 1111 - 1111 - 111 denotes the value of $x=4$, value of $y=4$, and value of $z=3$.
- $11-111-111111$ denotes the value of $x=2$, value of $y=3$, and value of $z=6$
The number of solutions is the number of different permutation of the string $\underbrace{111 \cdots 1}--$. Using the product rule and the division rule, the number of 11 number 1
different permutations is

$$
\frac{(11+2)!}{11!\cdot 2!}=78
$$

So there are 78 different solutions for the equation $x+y+z=11$ with the requirement $x, y, z \in \mathbb{N}_{0}$.

Problem 2

Exercise

(1) Determine the number of solutions for the equation $x_{1}+x_{2}+\cdots+x_{n}=r$ if $x_{i} \in \mathbb{N}_{0}$ for all $1 \leq i \leq n$.
(2) Determine the number of ways to share a dozen of identical donuts into four different boxes if:
(1) it is possible to have an empty box,
(2) no empty box

Requirement: all the donuts must be put to a box (note: 1 dozen $=12$ donuts).

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$.

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1 and for each different variable the series of 1 is separated with - .

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1 and for each different variable the series of 1 is separated with - . We can see that there are r of number 1 and $(n-1)$ of - sign.

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1 and for each different variable the series of 1 is separated with - . We can see that there are r of number 1 and $(n-1)$ of - sign. Using the product rule and the division rule, the number of different permutation of string that contain r of number 1 and $(n-1)$ of - sign is

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1 and for each different variable the series of 1 is separated with - . We can see that there are r of number 1 and $(n-1)$ of - sign. Using the product rule and the division rule, the number of different permutation of string that contain r of number 1 and $(n-1)$ of - sign is

$$
\frac{(\# \text { number } 1+\#-\operatorname{sign})!}{(\# \text { number } 1)!(\#-\operatorname{sign})!}=
$$

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1 and for each different variable the series of 1 is separated with - . We can see that there are r of number 1 and $(n-1)$ of - sign. Using the product rule and the division rule, the number of different permutation of string that contain r of number 1 and $(n-1)$ of - sign is

$$
\frac{(\# \text { number } 1+\#-\operatorname{sign})!}{(\# \text { number } 1)!(\#-\operatorname{sign})!}=\frac{(r+n-1)!}{r!\cdot(n-1)!}
$$

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1 and for each different variable the series of 1 is separated with - . We can see that there are r of number 1 and $(n-1)$ of - sign. Using the product rule and the division rule, the number of different permutation of string that contain r of number 1 and $(n-1)$ of - sign is

$$
\begin{aligned}
\frac{(\# \text { number } 1+\#-\operatorname{sign})!}{(\# \text { number } 1)!(\#-\operatorname{sign})!} & =\frac{(r+n-1)!}{r!\cdot(n-1)!} \\
& =\binom{r+n-1}{r}=
\end{aligned}
$$

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1 and for each different variable the series of 1 is separated with - . We can see that there are r of number 1 and $(n-1)$ of - sign. Using the product rule and the division rule, the number of different permutation of string that contain r of number 1 and $(n-1)$ of - sign is

$$
\begin{aligned}
\frac{(\# \text { number } 1+\#-\operatorname{sign})!}{(\# \text { number } 1)!(\#-\operatorname{sign})!} & =\frac{(r+n-1)!}{r!\cdot(n-1)!} \\
& =\binom{r+n-1}{r}=\binom{r+n-1}{n-1}
\end{aligned}
$$

We can conclude that the number of solutions for the equation $x_{1}+x_{2} \cdots+x_{n}=r$ is

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1 and for each different variable the series of 1 is separated with - . We can see that there are r of number 1 and $(n-1)$ of - sign. Using the product rule and the division rule, the number of different permutation of string that contain r of number 1 and $(n-1)$ of - sign is

$$
\begin{aligned}
\frac{(\# \text { number } 1+\#-\operatorname{sign})!}{(\# \text { number } 1)!(\#-\operatorname{sign})!} & =\frac{(r+n-1)!}{r!\cdot(n-1)!} \\
& =\binom{r+n-1}{r}=\binom{r+n-1}{n-1} .
\end{aligned}
$$

We can conclude that the number of solutions for the equation $x_{1}+x_{2} \cdots+x_{n}=r$ is

$$
\binom{(\text { value of } r)+(\# \text { variable })-1}{(\text { value of } r)}
$$

Solution of Exercise 1 Problem 2

Notice that the possible value of x_{i} is $0 \leq x_{i} \leq r$ and $x_{i} \in \mathbb{N}_{0}$. Suppose the value for each x_{i} is represented by a series of number 1 and for each different variable the series of 1 is separated with - . We can see that there are r of number 1 and $(n-1)$ of - sign. Using the product rule and the division rule, the number of different permutation of string that contain r of number 1 and $(n-1)$ of - sign is

$$
\begin{aligned}
\frac{(\# \text { number } 1+\#-\operatorname{sign})!}{(\# \text { number } 1)!(\#-\operatorname{sign})!} & =\frac{(r+n-1)!}{r!\cdot(n-1)!} \\
& =\binom{r+n-1}{r}=\binom{r+n-1}{n-1}
\end{aligned}
$$

We can conclude that the number of solutions for the equation $x_{1}+x_{2} \cdots+x_{n}=r$ is

$$
\binom{(\text { value of } r)+(\# \text { variable })-1}{(\text { value of } r)}=\binom{(\text { value of } r)+(\# \text { variable })-1}{(\# \text { variable })-1} .
$$

Solution of Exercise 2 Problem 2

Suppose the number of donuts in each box is represented by a series of number 1 and for each different box the series of 1 is separated with the - sign.

Solution of Exercise 2 Problem 2

Suppose the number of donuts in each box is represented by a series of number 1 and for each different box the series of 1 is separated with the - sign. We can see that there are twelve numbers of 1 and three - signs.

Solution of Exercise 2 Problem 2

Suppose the number of donuts in each box is represented by a series of number 1 and for each different box the series of 1 is separated with the - sign. We can see that there are twelve numbers of 1 and three - signs. Based on the product rule and the division rule, the number of different permutation of strings that contain exactly 12 numbers of 1 and 3 of - signs is

Solution of Exercise 2 Problem 2

Suppose the number of donuts in each box is represented by a series of number 1 and for each different box the series of 1 is separated with the - sign. We can see that there are twelve numbers of 1 and three - signs. Based on the product rule and the division rule, the number of different permutation of strings that contain exactly 12 numbers of 1 and 3 of - signs is

$$
\frac{(12+3)!}{12!\cdot 3!}=455
$$

So there are 455 ways to distribute a dozen donuts to four boxes.

Solution of Exercise 2 Problem 2

Suppose the number of donuts in each box is represented by a series of number 1 and for each different box the series of 1 is separated with the - sign. We can see that there are twelve numbers of 1 and three - signs. Based on the product rule and the division rule, the number of different permutation of strings that contain exactly 12 numbers of 1 and 3 of - signs is

$$
\frac{(12+3)!}{12!\cdot 3!}=455
$$

So there are 455 ways to distribute a dozen donuts to four boxes.

Notes

The number of ways to distribute the donut can also be modeled as the number of solutions to the equation

Solution of Exercise 2 Problem 2

Suppose the number of donuts in each box is represented by a series of number 1 and for each different box the series of 1 is separated with the - sign. We can see that there are twelve numbers of 1 and three - signs. Based on the product rule and the division rule, the number of different permutation of strings that contain exactly 12 numbers of 1 and 3 of - signs is

$$
\frac{(12+3)!}{12!\cdot 3!}=455
$$

So there are 455 ways to distribute a dozen donuts to four boxes.

Notes

The number of ways to distribute the donut can also be modeled as the number of solutions to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=12, x_{i} \in \mathbb{N}_{0} \text { for every } 1 \leq i \leq 4
$$

Since no empty box is allowed, then each box contains at least 1 donut.

Since no empty box is allowed, then each box contains at least 1 donut. Since there are 4 boxes, then the rest of the donuts that can be shared are 8 pieces (12 donuts $-4 \cdot 1$ donuts).

Since no empty box is allowed, then each box contains at least 1 donut. Since there are 4 boxes, then the rest of the donuts that can be shared are 8 pieces (12 donuts $-4 \cdot 1$ donuts). Suppose the number of donuts in one box is represented by a series number of 1 and for each different box, the series of 1 is separated with a - sign.

Since no empty box is allowed, then each box contains at least 1 donut. Since there are 4 boxes, then the rest of the donuts that can be shared are 8 pieces (12 donuts $-4 \cdot 1$ donuts). Suppose the number of donuts in one box is represented by a series number of 1 and for each different box, the series of 1 is separated with a - sign. Notice that there are 8 numbers of 1 and 3 of - signs.

Since no empty box is allowed, then each box contains at least 1 donut. Since there are 4 boxes, then the rest of the donuts that can be shared are 8 pieces (12 donuts $-4 \cdot 1$ donuts). Suppose the number of donuts in one box is represented by a series number of 1 and for each different box, the series of 1 is separated with a - sign. Notice that there are 8 numbers of 1 and 3 of - signs. Based on the product rule and the division rule, the number of different permutation of strings that contain exactly 8 numbers of 1 and 3 - signs is

Since no empty box is allowed, then each box contains at least 1 donut. Since there are 4 boxes, then the rest of the donuts that can be shared are 8 pieces (12 donuts $-4 \cdot 1$ donuts). Suppose the number of donuts in one box is represented by a series number of 1 and for each different box, the series of 1 is separated with a - sign. Notice that there are 8 numbers of 1 and 3 of - signs. Based on the product rule and the division rule, the number of different permutation of strings that contain exactly 8 numbers of 1 and $3-$ signs is

$$
\frac{(8+3)!}{8!\cdot 3!}=165
$$

so there are 165 ways to distribute a dozen donuts.

Since no empty box is allowed, then each box contains at least 1 donut. Since there are 4 boxes, then the rest of the donuts that can be shared are 8 pieces (12 donuts $-4 \cdot 1$ donuts). Suppose the number of donuts in one box is represented by a series number of 1 and for each different box, the series of 1 is separated with a - sign. Notice that there are 8 numbers of 1 and 3 of - signs. Based on the product rule and the division rule, the number of different permutation of strings that contain exactly 8 numbers of 1 and 3 - signs is

$$
\frac{(8+3)!}{8!\cdot 3!}=165
$$

so there are 165 ways to distribute a dozen donuts.

Notes

The number of ways to distribute the donut can also be modeled as the number of solutions to the equation

Since no empty box is allowed, then each box contains at least 1 donut. Since there are 4 boxes, then the rest of the donuts that can be shared are 8 pieces (12 donuts $-4 \cdot 1$ donuts). Suppose the number of donuts in one box is represented by a series number of 1 and for each different box, the series of 1 is separated with a - sign. Notice that there are 8 numbers of 1 and 3 of - signs. Based on the product rule and the division rule, the number of different permutation of strings that contain exactly 8 numbers of 1 and 3 - signs is

$$
\frac{(8+3)!}{8!\cdot 3!}=165
$$

so there are 165 ways to distribute a dozen donuts.

Notes

The number of ways to distribute the donut can also be modeled as the number of solutions to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}=12, x_{i} \geq 1 \text { for every } 1 \leq i \leq 4 .
$$

Formula of r-Combination with Repetition

Theorem

The number of r-combination with repetition is the number of ways to take r objects from n types of objects that allows every type of object is taken more than once is

$$
\binom{r+n-1}{r}=\binom{r+n-1}{n-1}
$$

Proof

Left to the reader as an exercise.
You can remember the above theorem as follows: the value of r-combination with repetition from n types of different objects is

$$
\binom{(\# \text { taken })+(\# \text { type })-1}{\# \text { taken }}=\binom{(\# \text { taken })+(\# \text { type })-1}{(\# \text { type })-1}
$$

Contents

(1) Permutation with Repetition

(2) Permutation with Identical Object

(3) Combination with Repetition

4 Challenging Problems
(5) Summary of Formula

Challenging Problems

Challenging Problems

(1) A farmer has five identical goats that can be placed in three different cages. If each cage cannot be empty, how many different ways to place the goats are there?
(2) We know that the number of different solutions to the equation $\sum_{i=1}^{n} x_{i}=r$ with the constraint $\forall i\left(x_{i} \in \mathbb{N}_{0}\right)$ is $\binom{r+n-1}{r}$. Determine the number of non-negative integers solutions from the following equations
(1) $x_{1}+x_{2}+x_{3}=11$ with $x_{1} \geq 1, x_{2} \geq 2$, and $x_{3} \geq 3$.
(2) $x_{1}+x_{2}+x_{3}=11$ with $0 \leq x_{1} \leq 2$ and $x_{2}>1$.

Contents

(1) Permutation with Repetition

(2) Permutation with Identical Object

(3) Combination with Repetition

4 Challenging Problems
(5) Summary of Formula

Summary: Formula of Permutation and Combination with Repetition

	r-permutation	r-combination
with repetition	n^{r}	$\binom{r+n-1}{r}$
without repetition	$P(n, r)$	$\binom{n}{r}$

Other Generalized Permutation and Combination

There are other types of permutation and combination. Basically, all of the formula of generalized permutation and combination can be obtained using solely four basic counting techniques, namely

Other Generalized Permutation and Combination

There are other types of permutation and combination. Basically, all of the formula of generalized permutation and combination can be obtained using solely four basic counting techniques, namely the sum rule, the product rule, inclusion-exclusion principle (the subtraction rule), and the division rule.

Other Generalized Permutation and Combination

There are other types of permutation and combination. Basically, all of the formula of generalized permutation and combination can be obtained using solely four basic counting techniques, namely the sum rule, the product rule, inclusion-exclusion principle (the subtraction rule), and the division rule. Please read the textbook for details.

