
FOURIER ANALYSIS

1

Reference
2

 http://www.gaussianwaves.com/2015/11/interpreting-fft-
results-complex-dft-frequency-bins-and-fftshift/

Fourier analysis
3

 Any complex, 1-dimensional function can be expressed as
an additive series of sinusoidal functions varying in (1)
frequency, (2) amplitude and (3) phase.

 (Continuous) Fourier transform
Euler’s formula
eix = cosx + isinx

frequency-domainfrequency-domain
function

time-domaintime-domain
function

4Time
domain

Frequency
domain

5

8 Hz

16 Hz

50 Hz

Fourier analysis
6

 The top part shows a somewhat irregular waveform with both
slow and fast oscillations.

 The bottom part shows the three sinusoidal waveforms which,
when added together, produce the top trace.

 The lowest frequency (thick trace) contains exactly 8 periods in
the recording interval (=analysis interval) of 1 s length. Thus the
corresponding spectral line (right) is located at 8 Hz.

 The spectrum further reveals the second frequency of 16 Hz and
a third 50 Hz component.

Four types of Fourier Transforms
7

 In signal processing , a time domain signal can be
continuous or discrete and it can be aperiodic or periodic.

 This gives rise to four types of Fourier transforms.

Four types of Fourier Transforms
8

Transform Nature of time
domain signal

Nature of frequency
spectrum

Fourier Transform (FT),
(a.k.a Continuous Time Fourier
Transform (CTFT))

continuous,
non-periodic

continuous,
non-periodic

Discrete-time Fourier Transform
(DTFT)

discrete,
non-periodic

continuous,
periodic

Fourier Series (FS) continuous,
periodic

discrete,
non-periodic

Discrete Fourier Transform (DFT) discrete, periodic discrete, periodic

Four types of Fourier Transforms
9

 We will limit our discussion to DFT, that is widely available
as part of software packages like Matlab, Scipy(python)
etc.., however we can approximate other transforms using
DFT.

 The DFT can be computed efficiently in practice using a fast
Fourier transform (FFT) algorithm.

Real version and Complex version
 For each of the listed transforms above, there exist a real version and

complex version.
 The real version of the transform, takes in a real numbers and gives

two sets of real frequency domain points
 one set representing coefficients over cosine basis function
 and the other set representing the coefficients over sine basis function.

 The complex version of the transforms represent positive and negative
frequencies in a single array.
 The complex versions are flexible that it can process both complex

valued signals and real valued signals.

10

Real DFT
11

The real DFT is computed by
projecting the signal on cosine
and sine basis functions.

Complex DFT
12

Euler’s formula
eix = cosx + isinx

The complex DFT projects the
input signal on exponential
basis functions.

Complex DFT
13

 The arrays values are interpreted as follows
 X[0] represents DC frequency component
 Next N/2 terms are positive frequency components with X[N/2]

being the Nyquist frequency (which is equal to half of
sampling frequency)

 Next N/2 −1 terms are negative frequency components
 note: negative frequency components are the phasors rotating in

opposite direction, they can be optionally omitted depending on
the application

Complex DFT
14

 FFT is widely available in
software packages like
Matlab, Scipy etc…

 FFT in Matlab/Scipy
implements the complex
version of DFT.

Generate a cosine signal
15

 Lets assume that the y[n] is the time domain cosine signal
of frequency fc=10Hz that is sampled at a frequency
fs=32 fc for representing it in the computer memory.

Generate a cosine signal
16

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
frequency of the carrier
fc = 10
sampling frequency factor=32
fs = 32 * fc
duration = 2 # 2 seconds duration
t = np.linspace(0, duration, duration*fs)
time domain signal (real number)
y = np.cos(2*np.pi*fc*t)
plt.title(r'y[n]=cos(2π10t)')
plt.plot(t, y)

Interpreting the FFT results
17

 Compute the one-dimensional discrete Fourier Transform.

 Parameters:
 a : array_like, Input array, can be complex.
 n : int, optional, Length of the transformed axis of the output.

 If n is smaller than the length of the input, the input is truncated .
 If it is larger, the input is padded with zeros.
 If n is not given, the length of the input along the axis specified by axis is

used.

 Returns a complex ndarray

numpy.fft.fft(a, n=None, axis=-1, norm=None)

Interpreting the FFT results
18

 Let’s consider taking a N=256 point FFT, which is the 8th power of 2.
 FFT length is generally considered as power of 2 – this is called radix−2.

 Note:
 In our case, the cosine wave is of 2 seconds duration and it will have 640

points
 A 10Hz frequency wave sampled at 32 times oversampling factor will have

2×32×10= 640 samples in 2 seconds of the record.

 Since our input signal is periodic, we can safely use N=256 point FFT,
anyways the FFT will extend the signal when computing the FFT .

Interpreting the FFT results
19

freqY = np.fft.fft(y)
spectrum = np.sqrt(freqY.real**2+freqY.imag**2)
plt.plot(spectrum)

Interpreting the FFT results
20

 Note that the index for the raw
FFT are integers from 0→N-1

 We need to convert the integer
indices to frequencies.

N=256 #FFT size
freqY = np.fft.fft(y, N)
spectrum = np.sqrt(freqY.real**2+freqY.imag**2)
plt.plot(spectrum)

Frequency axis transform
21

 numpy.fft.fftfreq(n, d=1.0)
 The returned float array f contains the frequency bin centers in

cycles per unit of the sample spacing (with zero at the start).
 For instance, if the sample spacing is in seconds, then the frequency

unit is cycles/second.
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])

Frequency axis transform
22

 frequency signal fc=10Hz, sampling frequency fs=32 fc
 One second has 10*32=320 samples
 sample spacing in second = 1/320

In [86]: freq = np.fft.fftfreq(N, d=1/320)
In [87]: freq[8]
Out[87]: 10.0
In [89]: freq
Out[89]: array([0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])

Frequency axis transform
23

 The cosine signal has a peak at 10Hz. In addition to that, it
has also a peak at 256−8=248th sample that belongs to
negative frequency portion.

spectrum[8]
Out[62]: 128.06700088210565
spectrum[248]
Out[65]: 128.06700088210559

In [91]: freq[8]
Out[91]: 10.0
In [92]: freq[248]
Out[92]: -10.0

The 10Hz cosine signal will leave a
peak at the 8th sample (10/1.25=8)

Frequency axis transform
24

 The sample at the Nyquist frequency (fs/2) mark the
boundary between the positive and negative frequencies.

In [89]: freq
Out[89]: array([0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
In [100]: nyquistIndex=int(N/2)
In [101]: freq[nyquistIndex]
Out[101]: -160.0
In [102]: freq[nyquistIndex-1]
Out[102]: 158.75

FFTShift
25

plt.plot(freq, spectrum)
Plot x, y pair
The sequence order is not changed.

In [118]: freq
Out[118]:
[0. 1.25 2.5 ..., -3.75 -2.5 -1.25]
In [119]: spectrum[:10]
Out[119]:
array([0.39984513, 0.40617256, 0.42641611,
0.46504507, 0.53258955, 0.65487813, 0.91034296,
1.6889461, 128.06700088, 1.52828374])

FFTShift
26

 From the plot we see that the frequency axis starts with DC,
followed by positive frequency terms which is in turn
followed by the negative frequency terms.

 To introduce proper order in the x-axis, one can use
FFTshift function, which arranges the frequencies in order:
 negative frequencies → DC → positive frequencies.
 The fftshift function need to be carefully used when N is odd.

FFTShift
27

FFTShift
28

 numpy.fft.fftshift(x, axes=None)

 Shift the zero-frequency component to the center of the spectrum.

 Note that y[0] is the Nyquist component only if len(x) is even.

 numpy.fft.ifftshift(x, axes=None)

 The inverse of fftshift.

 Although identical for even-length x, the functions differ by one sample for
odd-length x.

>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])

FFTShift
29

shift_freq = np.fft.fftshift(freq)
shift_spec = np.fft.fftshift(spectrum)
plt.figure()
plt.plot(shift_freq, shift_spec)

shift_freq
Out[118]: array([-160. , -158.75, -
157.5 , ..., 156.25, 157.5 , 158.75])
In [120]: shift_spec[:10]
Out[120]:
array([0.00232974, 0.00233041,
0.00233242, 0.00233576, 0.00234045,
0.00234648, 0.00235386, 0.0023626 ,
0.0023727 , 0.00238418])

Frequency filtering
30

 filtering by setting cut-off frequency
lowPassMask = abs(freq) <=2 # cut-off frequency=2
print('non_zero= ', np.count_nonzero(lowPassMask))
lowPassFy = freqY.copy()
lowPassFy[~lowPassMask] = 0 # ~, equivalent to logical_not
lowPassY = np.fft.ifft(lowPassFy)
plt.figure()
plt.plot(lowPassY.real)

ifft() output is complex values. We only get the real part.

Low-pass filter
31

cut-off frequency =2

cut-off frequency =5

cut-off frequency =10

Example: Different frequency components in a
signal

32

fs = 320 # sampling frequency
duration = 2 # 2 seconds duration
t = np.linspace(0, duration, duration*fs)
y10 = np.cos(2*np.pi*10*t)

y2 = np.cos(2*np.pi*2*t)
y = y10 + y2

plt.figure()
f, (ax1, ax2) = plt.subplots(2, 1)
plt.subplots_adjust(hspace = 0.4)

ax1.plot(t, y10)
ax1.plot(t, y2, 'g')
ax2.set_title(r'y[n]=cos(2π10t)+cos(2π2t)')
ax2.plot(t, y, 'r')

Signal: y(t)=cos(2*10*t)+ cos(2*2*t)

Many frequency components
33

 Fourier spectrum (N=640 #FFT size)

After fftshiftBefore fftshift

Many frequency components
34

 plt.plot(shift_freq[290:350], shift_spec[290:350])

It has frequencies
of 10 and 2 Hz

Low-pass
35

 cut-off frequency =5
n = len(y)
freqY = np.fft.fft(y)
freq = np.fft.fftfreq(n, d=1/fs)
lowPassMask = abs(freq) <=5
lowPassFy = freqY.copy()
lowPassFy[~lowPassMask] = 0
lowPassY = np.fft.ifft(lowPassFy)
plt.figure()
fig, ax = plt.subplots()
ax.plot(y, label='origin')
ax.plot(lowPassY.real, label='cut-off=5')
legend = ax.legend()

High-pass
36

 cut-off frequency =5

highPassMask = abs(freq) >=5
highPassFy = freqY.copy()
highPassFy[~highPassMask] = 0
highPassY = np.fft.ifft(highPassFy)
plt.figure()
fig, ax = plt.subplots()
ax.plot(y, label='origin')
ax.plot(highPassY.real, label='cut-off=5')
legend = ax.legend()

37

ALTERNATIVE METHOD FOR
CREATING LOWPASS FILTER IN
SCIPY

Reference
38

 http://stackoverflow.com/questions/25191620/creating-
lowpass-filter-in-scipy-understanding-methods-and-units

 Scipy Signal processing (scipy.signal)
 https://docs.scipy.org/doc/scipy/reference/signal.html

Butterworth filter
39

 scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba')
 Butterworth digital and analog filter design.
 Parameters

 N : int, The order of the filter.
 Wn : array_like, A scalar or length-2 sequence giving the critical

frequencies.
 btype : {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional

 Default is ‘lowpass’.

Butterworth filter
40

 Parameter Wn
 For a Butterworth filter, this is the point at which the gain drops to 1/sqrt(2)

that of the passband (the “-3 dB point”).
 For digital filters, Wn is normalized from 0 to 1, where 1 is the Nyquist

frequency, pi radians/sample. (Wn is thus in half-cycles / sample.)
 For analog filters, Wn is an angular frequency (e.g. rad/s).

 Returns
 b, a : ndarray, ndarray

 Numerator (b) and denominator (a) polynomials of the IIR filter. Only returned if
output='ba'.

Butterworth filter
41

 Plot of the gain of Butterworth low-pass filters of orders 1 through 5,
with cutoff frequency w0=1.

scipy.signal.lfilter
42

 scipy.signal.lfilter(b, a, x, axis=-1, zi=None)
 Filter a data sequence, x, using a digital filter.
 Parameters

 b, a : ndarray, ndarray
 Numerator (b) and denominator (a) coefficient vectors in a 1-D sequence.

 x : array_like, An N-dimensional input array.

 Return
 y : array, The output of the digital filter.

 Use scipy.signal.filtfilt(b,a, x, ...) instead of lfilter()
 This function applies a linear filter twice, once forward and once backwards.

This has
phase shift
problem.

Creating lowpass filter
43

import scipy.signal as sg
def butter_lowpass(cutoff, fs, order=5):

nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = sg.butter(order, normal_cutoff, btype='low', analog=False)
return b, a

def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = sg.filtfilt(b, a, data)
return y

Creating lowpass filter
44

Filter the data, and plot both the original
and filtered signals.
order = 6
cutoff = 5

out = butter_lowpass_filter(y, cutoff, fs, order)
plt.figure()
plt.plot(t, y, 'b-', label='data')
plt.plot(t, out, 'g-', label='filtered data')
plt.xlabel('Time [sec]')
plt.grid()
plt.legend()

FFT low-pass

Butterworth low-pass

Creating highpass filter
45

def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = sg.butter(order, normal_cutoff, btype=‘high', analog=False)
return b, a

FFT high-pass Butterworth high-pass

Computation time
46

 Butterworth filter is faster than FFT
 Measure the computation time
from time import time
t1 = time()
ax_low_buf = butter_lowpass_filter(ax, cutoff, fs)
ax_high_buf = butter_highpass_filter(ax, cutoff, fs)
t2 = time()
print('Butterworth low high pass takes %f seconds for
ax, ay, az' % (t2-t1))

