
FOURIER ANALYSIS
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Reference
2

 http://www.gaussianwaves.com/2015/11/interpreting-fft-
results-complex-dft-frequency-bins-and-fftshift/



Fourier analysis
3

 Any complex, 1-dimensional function can be expressed as 
an additive series of sinusoidal functions varying in (1) 
frequency, (2) amplitude and (3) phase.

 (Continuous) Fourier transform
Euler’s formula
eix = cosx + isinx
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Fourier analysis
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 The top part shows a somewhat irregular waveform with both 
slow and fast oscillations. 

 The bottom part shows the three sinusoidal waveforms which, 
when added together, produce the top trace. 

 The lowest frequency (thick trace) contains exactly 8 periods in 
the recording interval (=analysis interval) of 1 s length. Thus the 
corresponding spectral line (right) is located at 8 Hz. 

 The spectrum further reveals the second frequency of 16 Hz and 
a third 50 Hz component. 



Four types of Fourier Transforms
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 In signal processing , a time domain signal can be 
continuous or discrete and it can be aperiodic or periodic.

 This gives rise to four types of Fourier transforms.

Four types of Fourier Transforms
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Transform Nature of time 
domain signal

Nature of frequency 
spectrum

Fourier Transform (FT),
(a.k.a Continuous Time Fourier 
Transform (CTFT))

continuous, 
non-periodic

continuous,
non-periodic 

Discrete-time Fourier Transform 
(DTFT)

discrete, 
non-periodic

continuous,
periodic 

Fourier Series (FS) continuous, 
periodic

discrete,
non-periodic 

Discrete Fourier Transform (DFT) discrete, periodic discrete, periodic



Four types of Fourier Transforms
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 We will limit our discussion to DFT, that is widely available 
as part of software packages like Matlab, Scipy(python) 
etc.., however we can approximate other transforms using 
DFT. 

 The DFT can be computed efficiently in practice using a fast 
Fourier transform (FFT) algorithm.

Real version and Complex version
 For each of the listed transforms above, there exist a real version and 

complex version. 
 The real version of the transform, takes in a real numbers and gives 

two sets of real frequency domain points
 one set representing coefficients over cosine basis function 
 and the other set representing the coefficients over sine basis function. 

 The complex version of the transforms represent positive and negative 
frequencies in a single array. 
 The complex versions are flexible that it can process both complex 

valued signals and real valued signals. 
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Real DFT
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The real DFT is computed by 
projecting the signal on cosine 
and sine basis functions. 

Complex DFT
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Euler’s formula
eix = cosx + isinx

The complex DFT projects the 
input signal on exponential 
basis functions.



Complex DFT
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 The arrays values are interpreted as follows
 X[0] represents DC frequency component
 Next N/2 terms are positive frequency components with X[N/2] 

being the Nyquist frequency (which is equal to half of 
sampling frequency)

 Next N/2 −1 terms are negative frequency components
 note: negative frequency components are the phasors rotating in 

opposite direction, they can be optionally omitted depending on 
the application

Complex DFT
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 FFT is widely available in 
software packages like 
Matlab, Scipy etc…

 FFT in Matlab/Scipy
implements the complex 
version of DFT.



Generate a cosine signal
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 Lets assume that the y[n] is the time domain cosine signal 
of frequency fc=10Hz that is sampled at a frequency 
fs=32 fc for representing it in the computer memory.

Generate a cosine signal
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import matplotlib.pyplot as plt
import numpy as np
# %matplotlib inline
# frequency of the carrier
fc = 10 
# sampling frequency factor=32
fs = 32 * fc 
duration = 2  # 2 seconds duration
t = np.linspace(0, duration, duration*fs) 
# time domain signal (real number)
y = np.cos(2*np.pi*fc*t)
plt.title(r'y[n]=cos(2$\pi$10t)')
plt.plot(t, y)



Interpreting the FFT results
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 Compute the one-dimensional discrete Fourier Transform.

 Parameters:
 a : array_like, Input array, can be complex.
 n : int, optional, Length of the transformed axis of the output. 

 If n is smaller than the length of the input, the input is truncated . 
 If it is larger, the input is padded with zeros. 
 If n is not given, the length of the input along the axis specified by axis is 

used.

 Returns a complex ndarray

numpy.fft.fft(a, n=None, axis=-1, norm=None)

Interpreting the FFT results
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 Let’s consider taking a N=256 point FFT, which is the 8th power of 2.
 FFT length is generally considered as power of 2 – this is called radix−2.

 Note: 
 In our case, the cosine wave is of 2 seconds duration and it will have 640 

points 
 A 10Hz frequency wave sampled at 32 times oversampling factor will have 

2×32×10= 640 samples in 2 seconds of the record. 

 Since our input signal is periodic, we can safely use N=256 point FFT, 
anyways the FFT will extend the signal when computing the FFT .



Interpreting the FFT results
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freqY = np.fft.fft(y) 
spectrum = np.sqrt(freqY.real**2+freqY.imag**2)
plt.plot(spectrum)

Interpreting the FFT results
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 Note that the index for the raw 
FFT are integers from 0→N-1 

 We need to convert the integer 
indices to frequencies. 

N=256 #FFT size
freqY = np.fft.fft(y, N) 
spectrum = np.sqrt(freqY.real**2+freqY.imag**2)
plt.plot(spectrum)



Frequency axis transform
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 numpy.fft.fftfreq(n, d=1.0)
 The returned float array f contains the frequency bin centers in 

cycles per unit of the sample spacing (with zero at the start). 
 For instance, if the sample spacing is in seconds, then the frequency 

unit is cycles/second.
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
>>> fourier = np.fft.fft(signal)
>>> n = signal.size
>>> timestep = 0.1
>>> freq = np.fft.fftfreq(n, d=timestep)
>>> freq
array([ 0.  ,  1.25,  2.5 ,  3.75, -5.  , -3.75, -2.5 , -1.25])

Frequency axis transform
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 frequency signal fc=10Hz,  sampling frequency fs=32 fc
 One second has 10*32=320 samples
 sample spacing in second = 1/320

In [86]: freq = np.fft.fftfreq(N, d=1/320)
In [87]: freq[8]
Out[87]: 10.0
In [89]: freq
Out[89]: array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])



Frequency axis transform
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 The cosine signal has a peak at 10Hz. In addition to that, it 
has also a peak at 256−8=248th sample that belongs to 
negative frequency portion.

spectrum[8]
Out[62]: 128.06700088210565
spectrum[248]
Out[65]: 128.06700088210559

In [91]: freq[8]
Out[91]: 10.0
In [92]: freq[248]
Out[92]: -10.0

The 10Hz cosine signal will leave a 
peak at the 8th sample (10/1.25=8)

Frequency axis transform
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 The sample at the Nyquist frequency (fs/2) mark the 
boundary between the positive and negative frequencies.

In [89]: freq
Out[89]: array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
In [100]: nyquistIndex=int(N/2)
In [101]: freq[nyquistIndex]
Out[101]: -160.0
In [102]: freq[nyquistIndex-1]
Out[102]: 158.75



FFTShift
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plt.plot(freq, spectrum)
Plot x, y pair
The sequence order is not changed.

In [118]: freq
Out[118]: 
[ 0.    1.25  2.5  ..., -3.75 -2.5 -1.25]
In [119]: spectrum[:10]
Out[119]: 
array([ 0.39984513, 0.40617256, 0.42641611, 
0.46504507, 0.53258955, 0.65487813, 0.91034296, 
1.6889461, 128.06700088, 1.52828374])

FFTShift
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 From the plot we see that the frequency axis starts with DC, 
followed by positive frequency terms which is in turn 
followed by the negative frequency terms. 

 To introduce proper order in the x-axis, one can use 
FFTshift function, which arranges the frequencies in order: 
 negative frequencies → DC → positive frequencies. 
 The fftshift function need to be carefully used when N is odd.



FFTShift
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FFTShift
28

 numpy.fft.fftshift(x, axes=None)

 Shift the zero-frequency component to the center of the spectrum.

 Note that y[0] is the Nyquist component only if len(x) is even.

 numpy.fft.ifftshift(x, axes=None)

 The inverse of fftshift.

 Although identical for even-length x, the functions differ by one sample for 
odd-length x.

>>> freqs = np.fft.fftfreq(10, 0.1)
>>> freqs
array([ 0.,  1.,  2.,  3.,  4., -5., -4., -3., -2., -1.])
>>> np.fft.fftshift(freqs)
array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.])



FFTShift
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shift_freq = np.fft.fftshift(freq)
shift_spec = np.fft.fftshift(spectrum)
plt.figure()
plt.plot(shift_freq, shift_spec)

shift_freq
Out[118]: array([-160.  , -158.75, -
157.5 , ...,  156.25,  157.5 ,  158.75])
In [120]: shift_spec[:10]
Out[120]: 
array([ 0.00232974, 0.00233041, 
0.00233242, 0.00233576, 0.00234045,
0.00234648, 0.00235386, 0.0023626 , 
0.0023727 , 0.00238418])

Frequency filtering
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 filtering by setting cut-off frequency
lowPassMask = abs(freq) <=2 # cut-off frequency=2
print('non_zero= ', np.count_nonzero(lowPassMask))
lowPassFy = freqY.copy()
lowPassFy[~lowPassMask] = 0 # ~, equivalent to logical_not
lowPassY = np.fft.ifft(lowPassFy)
plt.figure()
plt.plot(lowPassY.real)

ifft() output is complex values. We only get the real part. 



Low-pass filter
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cut-off frequency =2

cut-off frequency =5

cut-off frequency =10

Example: Different frequency components in a 
signal

32

fs = 320 # sampling frequency 
duration = 2  # 2 seconds duration
t = np.linspace(0, duration, duration*fs) 
y10 = np.cos(2*np.pi*10*t) 

y2 = np.cos(2*np.pi*2*t) 
y = y10 + y2 

 
plt.figure() 
f, (ax1, ax2) = plt.subplots(2, 1) 
plt.subplots_adjust(hspace = 0.4) 

ax1.plot(t, y10) 
ax1.plot(t, y2, 'g') 
ax2.set_title(r'y[n]=cos(2$\pi$10t)+cos(2$\pi$2t)') 
ax2.plot(t, y, 'r')

Signal: y(t)=cos(2*10*t)+ cos(2*2*t)



Many frequency components
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 Fourier spectrum (N=640  #FFT size)

After fftshiftBefore fftshift

Many frequency components
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 plt.plot(shift_freq[290:350], shift_spec[290:350])

It has frequencies 
of 10 and 2 Hz



Low-pass
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 cut-off frequency =5
n = len(y)
freqY = np.fft.fft(y) 
freq = np.fft.fftfreq(n, d=1/fs)
lowPassMask = abs(freq) <=5
lowPassFy = freqY.copy()
lowPassFy[~lowPassMask] = 0
lowPassY = np.fft.ifft(lowPassFy)
plt.figure()
fig, ax = plt.subplots()
ax.plot(y, label='origin')
ax.plot(lowPassY.real, label='cut-off=5')
legend = ax.legend()

High-pass
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 cut-off frequency =5

highPassMask = abs(freq) >=5
highPassFy = freqY.copy()
highPassFy[~highPassMask] = 0
highPassY = np.fft.ifft(highPassFy)
plt.figure()
fig, ax = plt.subplots()
ax.plot(y, label='origin')
ax.plot(highPassY.real, label='cut-off=5')
legend = ax.legend()
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ALTERNATIVE METHOD FOR 
CREATING LOWPASS FILTER IN 
SCIPY

Reference
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 http://stackoverflow.com/questions/25191620/creating-
lowpass-filter-in-scipy-understanding-methods-and-units

 Scipy Signal processing (scipy.signal)
 https://docs.scipy.org/doc/scipy/reference/signal.html



Butterworth filter 
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 scipy.signal.butter(N, Wn, btype='low', analog=False, output='ba')
 Butterworth digital and analog filter design.
 Parameters

 N : int, The order of the filter.
 Wn : array_like, A scalar or length-2 sequence giving the critical 

frequencies. 
 btype : {‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’}, optional

 Default is ‘lowpass’.

Butterworth filter 
40

 Parameter Wn
 For a Butterworth filter, this is the point at which the gain drops to 1/sqrt(2) 

that of the passband (the “-3 dB point”). 
 For digital filters, Wn is normalized from 0 to 1, where 1 is the Nyquist 

frequency, pi radians/sample. (Wn is thus in half-cycles / sample.) 
 For analog filters, Wn is an angular frequency (e.g. rad/s).

 Returns
 b, a : ndarray, ndarray

 Numerator (b) and denominator (a) polynomials of the IIR filter. Only returned if 
output='ba'.



Butterworth filter 
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 Plot of the gain of Butterworth low-pass filters of orders 1 through 5, 
with cutoff frequency w0=1. 

scipy.signal.lfilter
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 scipy.signal.lfilter(b, a, x, axis=-1, zi=None)
 Filter a data sequence, x, using a digital filter.
 Parameters

 b, a : ndarray, ndarray
 Numerator (b) and denominator (a) coefficient vectors in a 1-D sequence.

 x : array_like,  An N-dimensional input array.

 Return
 y : array, The output of the digital filter.

 Use scipy.signal.filtfilt(b,a, x, ...) instead of lfilter() 
 This function applies a linear filter twice, once forward and once backwards. 

This has 
phase shift 
problem. 



Creating lowpass filter
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import scipy.signal as sg
def butter_lowpass(cutoff, fs, order=5):

nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = sg.butter(order, normal_cutoff, btype='low', analog=False)
return b, a

def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = sg.filtfilt(b, a, data)
return y

Creating lowpass filter
44

# Filter the data, and plot both the original 
# and filtered signals.
order = 6
cutoff = 5

out = butter_lowpass_filter(y, cutoff, fs, order)
plt.figure()
plt.plot(t, y, 'b-', label='data')
plt.plot(t, out, 'g-', label='filtered data')
plt.xlabel('Time [sec]')
plt.grid()
plt.legend()

FFT low-pass

Butterworth low-pass



Creating highpass filter
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def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = sg.butter(order, normal_cutoff, btype=‘high', analog=False)
return b, a

FFT high-pass Butterworth high-pass

Computation time
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 Butterworth filter is faster than FFT
 Measure the computation time
from time import time
t1 = time()
ax_low_buf = butter_lowpass_filter(ax, cutoff, fs)
ax_high_buf = butter_highpass_filter(ax, cutoff, fs)
t2 = time()
print('Butterworth low high pass takes %f seconds for 
ax, ay, az' % (t2-t1))


