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Truth of Formulas with Single Quantifier

Truth of Formulas with Single Quantifier (1)

Exercise
Let ∀x P (x) be a formula where P (x) is the statement “x2 < 10”. Determine
the truth value of ∀x P (x) if the domain is:

1 the set {0, 1, 2, 3}
2 the set {1, 2, 3, 4}

Solution:

1 If the domain is {0, 1, 2, 3}, then

∀x P (x) ≡ P (0) ∧ P (1) ∧ P (2) ∧ P (3)
≡

(
02 < 10

)
∧
(
12 < 10

)
∧
(
22 < 10

)
∧
(
32 < 10

)
≡ (0 < 10) ∧ (1 < 10) ∧ (4 < 10) ∧ (9 < 10) ≡ T.
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Truth of Formulas with Single Quantifier

2 If the domain is {1, 2, 3, 4}, then

∀x P (x) ≡

P (1) ∧ P (2) ∧ P (3) ∧ P (4)
≡

(
12 < 10

)
∧
(
22 < 10

)
∧
(
32 < 10

)
∧
(
42 < 10

)
≡ (1 < 10) ∧ (4 < 10) ∧ (9 < 10) ∧ (16 < 10) ≡ F.

In this case, 4 is the counterexample of the formula ∀x
(
x2 < 10

)
over the

domain {1, 2, 3, 4}.
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Truth of Formulas with Single Quantifier

Truth of Formulas with Single Quantifier (2)

Exercise
Let ∀x P (x) be a formula where P (x) is the statement “x2 ≥ x”. Determine the
truth value of ∀x P (x) if the domain is:

1 the set {0, 1, 2}
2 the set of real numbers R
3 the set {1, 2, 3, . . .}

Solution:

1 If the domain is {0, 1, 2}, then ∀x P (x) ≡ P (0) ∧ P (1) ∧ P (2) ≡(
02 ≥ 0

)
∧
(
12 ≥ 1

)
∧
(
22 ≥ 2

)
≡ (0 ≥ 0) ∧ (1 ≥ 1) ∧ (4 ≥ 2) ≡ T.

2 If the domain is the set of real numbers R, for x = 1
2 we have

x2 = 1
4 <

1
2 = x, or in other words

(
1
2

)2 ≥ 1
2 is false. Therefore

∀x P (x) ≡ ∀x
(
x2 ≥ x

)
≡ F. In this case x = 1

2 is the counterexample of
∀x

(
x2 ≥ x

)
over the domain R.

3 If x ≥ 1, multiplying both sides with x implies x2 ≥ x, so x2 ≥ x is true.
Therefore ∀x P (x) ≡ ∀x

(
x2 ≥ x

)
≡ T.
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Truth of Formulas with Single Quantifier

Truth of Formulas with Single Quantifier (3)

Exercise
Let ∃x P (x) be a formula where P (x) is the statement “x2 > 10”. Determine
the truth value of ∃x P (x) if the domain is:

1 the set {0, 1, 2, 3}
2 the set {1, 2, 3, 4}

Solution:

1 If the domain is {0, 1, 2, 3}, then
∃x P (x) ≡ P (0) ∨ P (1) ∨ P (2) ∨ P (3) ≡

(
02 > 10

)
∨
(
12 > 10

)
∨(

22 > 10
)
∨
(
32 > 10

)
≡ (0 > 10) ∨ (1 > 10) ∨ (4 > 10) ∨ (9 > 10) ≡ F.

2 If the domain is {1, 2, 3, 4}, then
∃x P (x) ≡ P (1) ∨ P (2) ∨ P (3) ∨ P (4) ≡

(
12 > 10

)
∨
(
22 > 10

)
∨(

32 > 10
)
∨
(
42 > 10

)
≡ (1 > 10) ∨ (4 > 10) ∨ (9 > 10) ∨ (16 > 10) ≡ T.
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Truth of Formulas with Single Quantifier

Truth of Formulas with Single Quantifier (4)

Exercise
Let ∃x P (x) be a formula where P (x) is the statement “1x ≥ x”. Determine the
truth value of ∃x P (x) if the domain is:

1 the set {2, 3, 4}
2 the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}
3 the set of real numbers R

Solution:

1 If the domain is D = {2, 3, 4}, then we have
∃x P (x) ≡ P (2) ∨ P (3) ∨ P (4) ≡

(
1
2 ≥ 2

)
∨
(
1
3 ≥ 3

)
∨
(
1
4 ≥ 4

)
≡ F.

2 If the domain is Z, then we have 1 ∈ Z and 1
1 ≥ 1. Therefore ∃x P (x) ≡ T

over the domain Z.
3 If the domain is R, then we have 1 ∈ R and 1

1 ≥ 1. Therefore ∃x P (x) ≡ T
over the domain R.
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Truth of Formulas with Two/ More Quantifiers

Truth of Formulas with Two/ More Quantifiers

true when. . . false when. . .
∀x∀y P (x, y) P (x, y) is true for P (x, y) is false for
∀y∀x P (x, y) every pair x, y at least one pair x, y
∀x∃y P (x, y) For every x, there is a y There is an x such that

for which P (x, y) is true P (x, y) is false for every y
∃x∀y P (x, y) There is an x such that For every x, there is y

P (x, y) is true for every y for which P (x, y) is false
∃x∃y P (x, y) P (x, y) is true for P (x, y) is false for
∃y∃x P (x, y) at least one pair x, y every pair x, y

Recall that ∀x∃y P (x, y) is not equivalent to ∃y∀x P (x, y).
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Truth of Formulas with Two/ More Quantifiers

The truth of ∀x∃y P (x, y) and ∃x∀y P (x, y)

Suppose P (x, y) is a binary predicate which is evaluated in a domain D = {a, b},
then

∀x∃y P (x, y) ≡

∀x (P (x, a) ∨ P (x, b)) ≡
(P (a, a) ∨ P (a, b)) ∧ (P (b, a) ∨ P (b, b))
∃x∀y P (x, y) ≡ ∃x (P (x, a) ∧ P (x, b)) ≡
(P (a, a) ∧ P (a, b)) ∨ (P (b, a) ∧ P (b, b))
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Truth of Formulas with Two/ More Quantifiers

In general, if the domain D is finite, e.g., suppose D = {a1, a2, . . . , an}, then

∀x∃y P (x, y) ≡

(P (a1, a1) ∨ P (a1, a2) ∨ · · · ∨ P (a1, an))
∧ (P (a2, a1) ∨ P (a2, a2) ∨ · · · ∨ P (a2, an))
∧ · · · ∧ (P (an, a1) ∨ P (an, a2) ∨ · · · ∨ P (an, an))

≡
n∧
i=1

n∨
j=1

P (ai, aj)

and

∃x∀y P (x, y) ≡ (P (a1, a1) ∧ P (a1, a2) ∧ · · · ∧ P (a1, an))
∨ (P (a2, a1) ∧ P (a2, a2) ∧ · · · ∧ P (a2, an))
∨ · · · ∨ (P (an, a1) ∧ P (an, a2) ∧ · · · ∧ P (an, an))

≡
n∨
i=1

n∧
j=1

P (ai, aj)
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Truth of Formulas with Two/ More Quantifiers

Illustrations of Formulas with Two Quantifiers

Suppose Likes (x, y) is a binary predicate over the domain
D1 ×D2 = {(x, y) | x ∈ D1, y ∈ D2}, where D1 = {x | x is a student} and
D2 = {y | y is a food}. Predicate Likes (x, y) means “(student) x likes (food)
y”. Observe that:

1 Likes (Alex, pizza) means:

“Alex likes pizza”
2 ∀x Likes (x, burger) means: “everyone likes burger”
3 ∃y Likes (Benny, y) means: “Benny likes some food”
4 ∀x∀y Likes (x, y) means: “everyone likes every food”
5 ∀x∃y Likes (x, y) means: “everyone likes some food”or “everyone has a
favorite food”

6 ∀y∃x Likes (x, y) means: “for every food, there is someone who likes it” or
“every food is liked by someone”

7 ∃x∀y Likes (x, y) means: “someone likes every food”
8 ∃y∀x Likes (x, y) means: “there is a food which is liked by everyone”or
“there is a common favorite food which is liked by everyone”

9 ∃x∃y Likes (x, y) means: “someone likes a food”.
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4 ∀x∀y Likes (x, y) means: “everyone likes every food”
5 ∀x∃y Likes (x, y) means: “everyone likes some food”or “everyone has a
favorite food”

6 ∀y∃x Likes (x, y) means: “for every food, there is someone who likes it” or
“every food is liked by someone”

7 ∃x∀y Likes (x, y) means: “someone likes every food”
8 ∃y∀x Likes (x, y) means:

“there is a food which is liked by everyone”or
“there is a common favorite food which is liked by everyone”

9 ∃x∃y Likes (x, y) means: “someone likes a food”.
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Truth of Formulas with Two/ More Quantifiers

Determining the truth of quantified formulas

Exercise
Determine the truth value of the following predicate formulas if the domain is the
set of all real numbers (the set R):

1 ∀x∀y P (x, y), where P (x, y) is the statement “x+ y = y + x”
2 ∀x∃y (x+ y = 0).
3 ∃y∀x (x+ y = 0).
4 ∀x∀y∃z (x+ y = z).
5 ∃z∀x∀y (x+ y = z).

Solution:

1 If P (x, y) is the statement “x+ y = y + x”, then ∀x∀y P (x, y) means
“x+ y = y + x for all real numbers x and y”. According to the commutative
law for real numbers addition, we have ∀x∀y P (x, y) ≡ T.
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Truth of Formulas with Two/ More Quantifiers

2 ∀x∃y (x+ y = 0) means

“for every real number x, there exists a real
number y such that x+ y = 0”. Observe that, by choosing y = −x for any
given value of x, we have x+ (−x) = 0. In other words the statement “for
every real number x, there exists a real number y (that is, y = −x) such that
x+ y = 0” is true. Therefore ∀x∃y (x+ y = 0) ≡ T.

3 ∃y∀x (x+ y = 0) means “there exists a real number y for which any value
of x satisfies x+ y = 0”. Suppose that there is a real number y which
satisfies this condition, then we have 1 + y = 0 and 2 + y = 0 (because x is
arbitrary, we may choose x = 1 and x = 2). Therefore

1 + y = 2 + y, so

1 = 2, which is a contradiction.

As a result there is no real number y such that x+ y = 0 for any value of x.
In other words ∃y∀x (x+ y = 0) ≡ F.
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Truth of Formulas with Two/ More Quantifiers

4 ∀x∀y∃z (x+ y = z) means

“for every pair of real numbers x and y, there is
a real number z such that x+ y = z”. According to the property of real
number addition, that is: if x and y are real numbers, then so is x+ y, then
we have “for every pair of real numbers x and y, there is a real number z
(that is, z = x+ y) such that x+ y = z”, is true. Therefore
∀x∀y∃z (x+ y = z) ≡ T.

5 ∃z∀x∀y (x+ y = z) means “there exists a real number z such that any pair
of real numbers x and y satisfies x+ y = z”. Suppose that there is a real
number z which satisfies this condition, then we have 1 + 2 = z and
2 + 3 = z (because x and y are arbitrary, we may choose (1, 2) as the first
pair and (2, 3) as the second pair). Therefore

z = 3 and z = 5, which is a contradiction.

As a result, there is no real number z such that x+ y = z for any pair of real
numbers x and y. In other words ∃z∀x∀y (x+ y = z) ≡ F.
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Interpretation and Semantics of Predicate Formulas (Supplementary)

Closed Formula

Closed Formula
A predicate formula is a closed formula if all variables occur in that formula are
bounded. For example, if P is a binary predicate, x and y are variables, and a and
b are concrete elements in the observed domain, then the formulas ∀x∃y P (x, y),
∀x P (x, b), and P (a, b) are closed formulas, while ∀x P (x, y), P (x, b), and
P (a, y) are not closed formulas.

Interpretation
An interpretation for a predicate formula is an assignment of truth for that
formula. Unlike propositional formulas, interpretation for predicate formulas
depends on the domain or universe of discourse. Interpretations or the truth
values of predicate formulas are only defined for closed formula.
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Variable Substitution

Variable Substitution
Let A be a predicate formula which is observed in the domain D and let d ∈ D be
a concrete element in D. The notation A [x← d] means a formula which is
obtained from replacing all occurrence of x by d in formula A.

Example
Suppose A is a formula “2x ≤ 5”and B is a formula “y2 ≥ 2”. If the domain is
{0, 1, 2}, then we have

A [x← 0] is the formula

“2 (0) ≤ 5”, and A [x← 2] is the formula
“2 (2) ≤ 5”
B [y ← 1] is the formula “(1)2 ≥ 2”, and B [y ← 2] is the formula “(2)2 ≥ 2”
A [y ← 1] is the formula “2x ≤ 5”, and A [y ← 2] is the formula “2x ≤ 5”
B [x← 0] is the formula “y2 ≥ 2”, and B [x← 1] is the formula “y2 ≥ 2”
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Interpretation and Semantics of Predicate Formulas (Supplementary)

Interpretation and Its Notation

Suppose D is a domain and A is a predicate formula, the notation ID (A) denotes
the interpretation of formula A over the domain D. The notation ID (A) = T
means formula A is interpreted to true by interpretation I over the domain D,
while ID (A) = F means formula A is interpreted to false by interpretation I over
the domain D.
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Interpretation and Semantics of Predicate Formulas (Supplementary)

Semantics Rules of Predicate Formulas

Semantics Rules of Predicate Formulas
Suppose A is a formula, D is the domain (universe of discourse), and I is an
interpretation which is well-defined for every atomic proposition occurring in A.
The interpretation of A is defined as follows:

If A = P (d1, d2, . . . , dn) for di (1 ≤ i ≤ n) in the domain, then
ID (A) = ID (P (d1, d2, . . . , dn)) = T if there is a relation among
d1, d2, . . . , dn which leads to true according to the definition of predicate P .

If A = T, then ID (A) = ID (T) = T. Analogously, if A = F, then
ID (A) = ID (F) = F.
If A = ∀x B for some formula B, then ID (A) = ID (∀x B) = T if
ID (B [x← d]) = T for all d in the domain D.
If A = ∃x B for some formula B, then ID (A) = ID (∃x B) = T if
ID (B [x← d]) = T for some d in the domain D.
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Interpretation and Semantics of Predicate Formulas (Supplementary)

If A = ¬B, for some formula B, then
I (A) = I (¬B) = ¬I (B) =

{
T, if I (B) = F
F, if I (B) = T .

If A = B ∧ C, for some formulas B and C, then

I (A) = I (B ∧ C) = I (B) ∧ I (C) =
{
T, if I (B) = I (C) = T
F, otherwise

.

If A = B ∨ C, for some formulas B and C, then

I (A) = I (B ∨ C) = I (B) ∨ I (C) =
{
F, if I (B) = I (C) = F
T, otherwise

.

If A = B ⊕ C, for some formulas B and C, then

I (A) = I (B ⊕ C) = I (B)⊕ I (C) =
{
T, if I (B) 6= I (C)
F, if I (C) = I (C) .

If A = B → C, for some formulas B and C, then I (A) = I (B → C) =

I (B)→ I (C) =
{
F, if I (B) = T but I (C) = F
T, otherwise

.

If A = B ↔ C, for some formulas B and C, then

I (A) = I (B ↔ C) = I (B)↔ I (C) =
{
T, if I (B) = I (C)
F, if I (B) 6= I (C) .
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T, otherwise

.

If A = B ⊕ C, for some formulas B and C, then

I (A) = I (B ⊕ C) = I (B)⊕ I (C) =
{
T, if I (B) 6= I (C)
F, if I (C) = I (C) .

If A = B → C, for some formulas B and C, then I (A) = I (B → C) =

I (B)→ I (C) =
{
F, if I (B) = T but I (C) = F
T, otherwise

.

If A = B ↔ C, for some formulas B and C, then

I (A) = I (B ↔ C) = I (B)↔ I (C) =
{
T, if I (B) = I (C)
F, if I (B) 6= I (C) .
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Intuitive Semantics of Predicate Formulas
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Intuitive Semantics of Predicate Formulas

Intuitive Semantics of Predicate Formulas

Exercise
Suppose P (x) “x is odd”and Q (x) : “x is even”are two predicate over integers
domain, Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Determine the truth value for each of
these formulas:

1 ∀x (P (x) ∨Q (x))
2 ∀xP (x) ∨ ∀xQ (x)
3 ∃x (P (x) ∧Q (x))
4 ∃xP (x) ∧ ∃xQ (x)
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Intuitive Semantics of Predicate Formulas

Number 1.
∀x (P (x) ∨Q (x)) means:

“for every x it is P (x) or Q (x)”.

Or “for every integer x, x is odd or x is even”.

Suppose c is an arbitrary integers in Z, then either P (c) ≡ T or Q (c) ≡ T
but not both.

Therefore ∀x (P (x) ∨Q (x)) ≡ T.

Number 2.
∀xP (x) ∨ ∀xQ (x) means:

“for every integer x it is P (x) or for every integer x it is Q (x)”.

Or “every integer x is odd or every integer x is even”.

We have ∀xP (x) ≡ F because P (2) ≡ F. We also have ∀xQ (x) ≡ F
because Q (1) ≡ F.
Therefore ∀xP (x) ∨ ∀xQ (x) ≡ F.
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Intuitive Semantics of Predicate Formulas

Number 3.
∃x (P (x) ∧Q (x)) means:

“there is an integer x such that P (x) and Q (x)”

Or “there is an integer x such that x is odd and x is even”.

Suppose c is an integer satisfying this criterion, then c is simultaneously an
odd and an even integer.

Therefore, there is no c ∈ Z such that P (c) ∧Q (c) ≡ T, and thus
∃x (P (x) ∧Q (x)) ≡ F.

Number 4.
∃xP (x) ∧ ∃xQ (x) means:

“there is an integer x such that P (x) and there is an integer x such that
Q (x)”

Or “there is an odd integer x and there is an even integer x”.
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Predicate Formulas Based on Their Semantics (Supplementary)

Validity, Satisfiability, and Contradiction

Definition
Let A be a predicate formula

1 A is valid iff A is true (T) for any interpretation defined over any domain.
In this case, A is also called a tautology.

2 A is satisfiable iff there exists at least an interpretation I and a domain
D which makes A is true (T).

3 A is contradictory/ unsatisfiable iff A is false (F) for any interpretation
defined over any domain. In this case, A is also called a contradiction.

4 A is a contingency iff A is neither valid nor contradictory.

Unlike the validity, the satisfiability, and the contradictory in propositional logic,
proving the validity, the satisfiability, and the contradictory in predicate logic
cannot always be performed using truth table method.
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Predicate Formulas Based on Their Semantics (Supplementary)

Proving Validity in Predicate Logic

Example
If P and Q are unary predicates, then ∀xP (x) ∧ ∀xQ (x)→ ∀x (P (x) ∧Q (x)) is
valid.

We will prove that the truth of ∀xP (x) ∧ ∀xQ (x) implies the truth of
∀x (P (x) ∧Q (x)).

1 Let I be any interpretation and D be any domain.
2 Assume that ID (∀xP (x) ∧ ∀xQ (x)) = T, then we have ID (∀xP (x)) = T
and ID (∀xQ (x)) = T.

3 Let d be any element in D. According to no. 2, we have ID (P (d)) = T and
ID (Q (d)) = T.

4 From no. 3 we have ID (P (d) ∧Q (d)) = ID (P (d)) ∧ ID (Q (d)) = T for
any element d ∈ D.

5 Therefore ID (∀x (P (x) ∧Q (x))) = T.
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Predicate Formulas Based on Their Semantics (Supplementary)

Exercise
Prove that ∀x (P (x) ∧Q (x))→ ∀xP (x) ∧ ∀xQ (x) is valid.
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Predicate Formulas Based on Their Semantics (Supplementary)

Proving Contradictory in Predicate Logic

Example
If P is a unary predicate, then ∀xP (x)→ ∃x¬P (x) is a contradiction.

We will
prove that the truth of ∀xP (x) never leads to the truth of ∃x¬P (x).

1 Let I be any interpretation and D be any domain.
2 Assume that ID (∀xP (x)) = T, then we have ID (P (d)) = T for all d ∈ D.
3 Suppose ID (∃x¬P (x)) = T, then there exists c ∈ D such that
ID (¬P (c)) = T, or ID (P (c)) = F.

4 From no. 2 we also have ID (P (c)) = T (because d in no. 2 is arbitrary, we
may choose d = c).

5 The results in no. 3 and 4 are inconsistent, therefore there is no
interpretation I and domain D such that ID (∀xP (x)→ ∃x¬P (x)) = T.

6 No. 5 means ∀xP (x)→ ∃x¬P (x) is a contradiction.
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interpretation I and domain D such that ID (∀xP (x)→ ∃x¬P (x)) = T.

6 No. 5 means ∀xP (x)→ ∃x¬P (x) is a contradiction.
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Exercise
Prove that ∃x¬P (x)→ ∀xP (x) is a contradiction
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Logical Consequence and Logical Equivalence (Supplementary)

Logical Consequence and Logical Equivalence

Definition
Suppose A and B are two predicate formulas.
Formula A and B are (logically) equivalent if the formula

A↔ B

is a tautology. In this condition, we write A ≡ B or A⇔ B.
Formula B is said to be the (logical) consequence of A if the formula

A→ B

is a tautology. In this condition, we write A⇒ B.

Unlike in propositional logic, we cannot use truth table for proving the logical
consequence or logical equivalence between two predicate formulas.

MZI (SoC Tel-U) Predicate Logic 2 October 2023 35 / 44



Logical Consequence and Logical Equivalence (Supplementary)

Examples of Logical Consequence and Logical Equivalence

Example
Let P and Q be two unary predicates. Earlier in this slide, we’ve proved that
∀xP (x) ∧ ∀xQ (x)→ ∀x (P (x) ∧Q (x)) is a tautology, therefore we have
∀xP (x) ∧ ∀xQ (x)⇒ ∀x (P (x) ∧Q (x))

In addition, we can also prove that ∀x (P (x) ∧Q (x))→ ∀xP (x) ∧ ∀xQ (x) is
also tautology (left as an exercise for the reader), then we have
∀x (P (x) ∧Q (x))⇒ ∀xP (x) ∧ ∀xQ (x).

From these results we obtain ∀xP (x) ∧ ∀xQ (x)⇔ ∀x (P (x) ∧Q (x)), or in
another notation ∀xP (x) ∧ ∀xQ (x) ≡ ∀x (P (x) ∧Q (x)).
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Logical Consequence and Logical Equivalence (Supplementary)

Exercise
Prove that if P and Q are unary predicates, then
∃xP (x) ∨ ∃xQ (x) ≡ ∃x (P (x) ∨Q (x)).

Solution:

We shall prove that ∃xP (x) ∨ ∃xQ (x)⇒ ∃x (P (x) ∨Q (x)) and
∃x (P (x) ∨Q (x))⇒ ∃xP (x) ∨ ∃xQ (x).

The prove of ∃xP (x) ∨ ∃xQ (x)⇒ ∃x (P (x) ∨Q (x)) is left as an exercise for
the reader.

We shall show that ∃x (P (x) ∨Q (x))⇒ ∃xP (x) ∨ ∃xQ (x), or in other words
∃x (P (x) ∨Q (x))→ ∃xP (x) ∨ ∃xQ (x) is valid, by proving that the truth of
∃x (P (x) ∨Q (x)) implies the truth of ∃xP (x) ∨ ∃xQ (x).
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Logical Consequence and Logical Equivalence (Supplementary)

1 Let I be an arbitrary interpretation and D be an arbitrary domain.

2 Suppose ID (∃x (P (x) ∨Q (x))) = T, then there exists d ∈ D such that
ID (P (d) ∨Q (d)) = T. This means ID (P (d)) = T or ID (Q (d)) = T.

3 If ID (P (d)) = T, then ID (∃xP (x)) = T, so regardless the truth value of
ID (∃xQ (x)), we have
ID (∃xP (x) ∨ ∃xQ (x)) = ID (∃xP (x)) ∨ ID (∃xQ (x)) = T.

4 Similarly, if ID (Q (d)) = T, then ID (∃xQ (x)) = T, so regardless the truth
value of ID (∃xP (x)), we have
ID (∃xP (x) ∨ ∃xQ (x)) = ID (∃xP (x)) ∨ ID (∃xQ (x)) = T.

5 Therefore, ID (∃x (P (x) ∨Q (x))) = T implies
ID (∃xP (x) ∨ ∃xQ (x)) = T, hence
∃x (P (x) ∨Q (x))→ ∃xP (x) ∨ ∃xQ (x) is valid, or in other words
∃x (P (x) ∨Q (x))⇒ ∃xP (x) ∨ ∃xQ (x).
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Equivalences for Predicate Formulas: Negation of Quantified Formulas

Logical Equivalences in Predicate Logic

Predicate logic can be considered as an “extension”of propositional logic, as a
result all logical equivalences in propositional logic are also applied for predicate
formulas.

For example, since in propositional logic we have ¬ (A ∧B) ≡ ¬A ∨ ¬B and
A→ B ≡ ¬A ∨B for any propositional formulas A and B, then in predicate logic
these logical equivalences are also correct. For instance, if P and Q are unary
predicates, then

∃x (¬ (P (x) ∧Q (x))) ≡

∃x (¬P (x) ∨ ¬Q (x))
∀x (P (x)→ Q (x)) ≡ ∀x (¬P (x) ∨Q (x))

In addition to all propositional equivalences, predicate logic has two additional
equivalences concerning the negation of quantified formulas.
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Equivalences for Predicate Formulas: Negation of Quantified Formulas

Negation of Universal Quantification

Suppose we want to determine the negation of following sentence: “every
informatics student takes Mathematical Logic class”.

The above sentence can be translated into predicate formula as ∀x P (x), with
the domain D for x is the set of all students in informatics major and P is a unary
predicate “takes Mathematical Logic class”.

The negation of ∀x P (x) is a formula which is true precisely when ∀x P (x)
is false. Recall that if ∀x P (x) is false, then there is at least one x ∈ D
such that P (x) is false.
Since ∀x P (x) is false precisely when ∃x ¬P (x) is true, then we have
¬∀x P (x) ≡ ∃x ¬P (x) .

Therefore, the negation of the above sentence is “there is an informatics student
who doesn’t take Mathematical Logic class”.
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Equivalences for Predicate Formulas: Negation of Quantified Formulas

Negation of Existential Quantification

Now, suppose we want to determine the negation of following sentence: “there is
an informatics student who takes Formal Methods class”.

The above sentence can be translated into predicate formula as ∃x P (x), with
the domain D for x is the set of all students in informatics major and P is a unary
predicate “takes Formal Methods class”.

The negation of ∃x P (x) is a formula which is true precisely when ∃x P (x)
is false. Recall that if ∃x P (x) is false, then all x ∈ D makes ¬P (x) is
satisfied.

Since ∃x P (x) is false precisely when ∀x ¬P (x) is true, then we have
¬∃x P (x) ≡ ∀x ¬P (x) .

Therefore, the negation of the above sentence is “every informatics student
doesn’t take Formal Methods class”.
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Equivalences for Predicate Formulas: Negation of Quantified Formulas

De Morgan’s Laws for Quantifier

Suppose P is a unary predicate defined over a finite domain D = {a1, a2, . . . , an}.
We have

∀x P (x) ≡

P (a1) ∧ P (a2) ∧ · · · ∧ P (an)
¬∀x P (x) ≡ ¬ (P (a1) ∧ P (a2) ∧ · · · ∧ P (an))

≡ ¬P (a1) ∨ ¬P (a2) ∨ · · · ∨ ¬P (an) [using De Morgan’s law]
≡ ∃x ¬P (x)

Analogously, we can obtain ¬∃x P (x) ≡ ∀x¬P (x). The equivalences
¬∀x P (x) ≡ ∃x ¬P (x) and ¬∃x P (x) ≡ ∀x ¬P (x) are called De Morgan’s laws
for quantifiers.
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Exercise: Negation of Quantified Formulas

Exercise
Express the negation of each of these predicate formulas so that no negation
precedes a quantifier.
1. ∀x

(
x2 > 0

)
4. ∃x∀y (x+ y 6= 1)

2. ∃y (y + 1 6= 2) 5. ∀x∀y
(
(xy)

2 ≤ 0
)

3. ∀x∃y (xy = 1)

Solution: by De Morgan’s law of quantifiers, we have

1 ¬∀x
(
x2 > 0

)
≡ ∃x ¬

(
x2 > 0

)
≡ ∃x

(
x2 ≤ 0

)
2 ¬∃y (y + 1 6= 2) ≡ ∀y ¬ (y + 1 6= 2) ≡ ∀y (y + 1 = 2)
3 ¬∀x∃y (xy = 1) ≡ ∃x¬∃y (xy = 1) ≡ ∃x∀y ¬ (xy = 1) ≡ ∃x∀y (xy 6= 1)
4 ¬∃x∀y (x+ y 6= 1) ≡ ∀x¬∀y (x+ y 6= 1) ≡ ∀x∃y ¬ (x+ y 6= 1) ≡
∀x∃y (x+ y = 1)

5 ¬∀x∀y
(
(xy)

2 ≤ 0
)
≡ ∃x¬∀y

(
(xy)

2 ≤ 0
)
≡ ∃x∃y ¬

(
(xy)

2 ≤ 0
)
≡

∃x∃y
(
(xy)

2
> 0
)
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