Simple Recurrence Relation and Its Solution Discrete Mathematics - Second Term 2022-2023

MZI

School of Computing
Telkom University

SoC Tel-U
March 2023

Acknowledgements

This slide is composed based on the following materials:
(1) Discrete Mathematics and Its Applications, 8th Edition, 2019, by K. H. Rosen (main).
(3) Discrete Mathematics with Applications, 5th Edition, 2018, by S. S. Epp.

- Mathematics for Computer Science. MIT, 2010, by E. Lehman, F. T. Leighton, A. R. Meyer.
- Slide for Matematika Diskret 2 (2012). Fasilkom UI, by B. H. Widjaja.
- Slide for Matematika Diskret. Telkom University, by B. Purnama.

Some of the pictures are taken from the above resources. This slide is intended for academic purpose at FIF Telkom University. If you have any suggestions/comments/questions related with the material on this slide, send an email to <pleasedontspam>@telkomuniversity.ac.id.

Contents

(1) Motivation
(2) Recurrence Relation Definition
(3) Modeling with Recurrence Relation

4 Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(5) Exercise: Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(6) Challenging Problem
(7) Supplement: Solution to Nonhomogeneous Linear Recurrence Relation with Constant Coefficients

Contents

(1) Motivation
(2) Recurrence Relation Definition
(3) Modeling with Recurrence Relation
(a) Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(5) Exercise: Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(6) Challenging Problem
(7) Supplement: Solution to Nonhomogeneous Linear Recurrence Relation with Constant Coefficients

A recursive structure is a natural structure in computer science. GNU: GNU's not Unix

```
GNU 0.3 (hurdle) (tty1)
```

This is the superunprivileged.org Hurd LiveCD. We lсоме.

Use 'login USER' to login, or 'help' for more information about logging in. Try logging in as the "guest', or the 'tutorial' user. The passwords are the same as the usernames.
After logging in, use 'info guide' to learn more about how to use the Hurd. login> _

Image taken from Wikipedia.

Why Do We Need Recurrence Relation?

In computer science or daily life, many calculation problems can be modelled recursively. A mathematical expression is defined recursively if its definition refers to itself. A recursive problem can be modelled as a recurrence relation.

Example

Determine the number of binary strings (contain 0 or 1 only) of length n that has no two consecutive 0 .

Illustration:

- Binary strings of length 1 that satisfy the condition:

Why Do We Need Recurrence Relation?

In computer science or daily life, many calculation problems can be modelled recursively. A mathematical expression is defined recursively if its definition refers to itself. A recursive problem can be modelled as a recurrence relation.

Example

Determine the number of binary strings (contain 0 or 1 only) of length n that has no two consecutive 0 .

Illustration:

- Binary strings of length 1 that satisfy the condition: 0 and 1
- Binary strings of length 2 that satisfy the condition:

Why Do We Need Recurrence Relation?

In computer science or daily life, many calculation problems can be modelled recursively. A mathematical expression is defined recursively if its definition refers to itself. A recursive problem can be modelled as a recurrence relation.

Example

Determine the number of binary strings (contain 0 or 1 only) of length n that has no two consecutive 0 .

Illustration:

- Binary strings of length 1 that satisfy the condition: 0 and 1
- Binary strings of length 2 that satisfy the condition: 01,10 , and 11.
- Binary strings of length 3 that satisfy the condition:

Why Do We Need Recurrence Relation?

In computer science or daily life, many calculation problems can be modelled recursively. A mathematical expression is defined recursively if its definition refers to itself. A recursive problem can be modelled as a recurrence relation.

Example

Determine the number of binary strings (contain 0 or 1 only) of length n that has no two consecutive 0 .

Illustration:

- Binary strings of length 1 that satisfy the condition: 0 and 1
- Binary strings of length 2 that satisfy the condition: 01,10 , and 11.
- Binary strings of length 3 that satisfy the condition: 010, 011, 101, 110, and 111.

How many binary string of length n that satisfy the condition?

Example

In a system, a message always has a size of $n \mathrm{kB}$ with n is a nonnegative integer. The message is sent using an array with predetermined length defined as follows:

- If the size is 0 kB , then the array has length 1 ,
- If the size is 1 kB , then the array has length 2 ,
- If the size is $n \mathrm{kB}$ with $n>1$, then the array has length of the length of array for $n-1 \mathrm{kB}$ message plus the length of array for $n-2 \mathrm{kB}$ message.

Determine the mathematical formula to determine the length of array that we need to send a message with the size of $n \mathrm{kB}$. Furthermore, based on the formula, determine the length of array that we need to send a message of size 6 kB .

Example

Someone deposited his money with an interest rate of 7% per year. If this interest rate never change for 20 years and the money never been withdrawn, find the ratio of asset increment from the deposit (the final amount of money divided by the initial amount of money).

Contents

(1) Motivation
(2) Recurrence Relation Definition

3 Modeling with Recurrence Relation
(1) Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(5) Exercise: Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(6) Challenging Problem
(4) Supplement: Solution to Nonhomogeneous Linear Recurrence Relation with Constant Coefficients

Some Important Definition

Definition (Recurrence relation)

A recurrence relation for a sequence $\left(x_{n}\right)$ is an equation (formula) that defines the relation between x_{n} and one or more of its predecessor (namely $x_{0}, x_{1}, \ldots, x_{n-1}$) in the sequence for every $n \geq n_{0}$ where $n_{0} \geq 1$.

Definition (Recurrence relation solution)

A sequence $\left(x_{n}\right)$ is a solution to a recurrence relation if every term on that sequence satisfies the recurrence relation.

Definition (Recurrence Relation Initial Condition)

The preceding term(s) of x_{n} in a recurrence relation, namely $x_{0}, x_{1}, \ldots, x_{n-1}$, is called as initial condition of the corresponding recurrence relation.

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.
(3) $x_{0}=3$ and $x_{1}=5$ is the initial condition of the recurrence relation.

- From Equation (1), we have $x_{2}=$

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.
(3) $x_{0}=3$ and $x_{1}=5$ is the initial condition of the recurrence relation.
(0) From Equation (1), we have $x_{2}=x_{1}-x_{0}=$

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.
(3) $x_{0}=3$ and $x_{1}=5$ is the initial condition of the recurrence relation.
(0) From Equation (1), we have $x_{2}=x_{1}-x_{0}=5-3=2$.

- x_{5} can be found by using x_{0} and x_{1} alone, that is:

$$
x_{5}=
$$

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.
(3) $x_{0}=3$ and $x_{1}=5$ is the initial condition of the recurrence relation.
(0) From Equation (1), we have $x_{2}=x_{1}-x_{0}=5-3=2$.

- x_{5} can be found by using x_{0} and x_{1} alone, that is:

$$
x_{5}=x_{4}-x_{3}=
$$

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.
(3) $x_{0}=3$ and $x_{1}=5$ is the initial condition of the recurrence relation.
(0) From Equation (1), we have $x_{2}=x_{1}-x_{0}=5-3=2$.

- x_{5} can be found by using x_{0} and x_{1} alone, that is:

$$
\begin{aligned}
x_{5} & =x_{4}-x_{3}=\left(x_{3}-x_{2}\right)-\left(x_{2}-x_{1}\right) \\
& =
\end{aligned}
$$

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.
(c) $x_{0}=3$ and $x_{1}=5$ is the initial condition of the recurrence relation.
(0) From Equation (1), we have $x_{2}=x_{1}-x_{0}=5-3=2$.
(x_{5} can be found by using x_{0} and x_{1} alone, that is:

$$
\begin{aligned}
x_{5} & =x_{4}-x_{3}=\left(x_{3}-x_{2}\right)-\left(x_{2}-x_{1}\right) \\
& =x_{3}-2 x_{2}+x_{1}=
\end{aligned}
$$

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.
(c) $x_{0}=3$ and $x_{1}=5$ is the initial condition of the recurrence relation.
(0) From Equation (1), we have $x_{2}=x_{1}-x_{0}=5-3=2$.

- x_{5} can be found by using x_{0} and x_{1} alone, that is:

$$
\begin{aligned}
x_{5} & =x_{4}-x_{3}=\left(x_{3}-x_{2}\right)-\left(x_{2}-x_{1}\right) \\
& =x_{3}-2 x_{2}+x_{1}=\left(x_{2}-x_{1}\right)-2 x_{2}+x_{1} \\
& =
\end{aligned}
$$

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2 \text {, } \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.
(c) $x_{0}=3$ and $x_{1}=5$ is the initial condition of the recurrence relation.
(0) From Equation (1), we have $x_{2}=x_{1}-x_{0}=5-3=2$.
(x_{5} can be found by using x_{0} and x_{1} alone, that is:

$$
\begin{aligned}
x_{5} & =x_{4}-x_{3}=\left(x_{3}-x_{2}\right)-\left(x_{2}-x_{1}\right) \\
& =x_{3}-2 x_{2}+x_{1}=\left(x_{2}-x_{1}\right)-2 x_{2}+x_{1} \\
& =-x_{2}=
\end{aligned}
$$

Example

Let $\left(x_{n}\right)$ be a sequence that satisfies the recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}-x_{n-2}, \text { for } n \geq 2, \tag{1}
\end{equation*}
$$

with $x_{0}=3$ and $x_{1}=5$. Find x_{2} and x_{5}.
Note that:
(1) Equation (1) is a recurrence relation of sequence $\left(x_{n}\right)$.
(c) $x_{0}=3$ and $x_{1}=5$ is the initial condition of the recurrence relation.
(0) From Equation (1), we have $x_{2}=x_{1}-x_{0}=5-3=2$.

- x_{5} can be found by using x_{0} and x_{1} alone, that is:

$$
\begin{aligned}
x_{5} & =x_{4}-x_{3}=\left(x_{3}-x_{2}\right)-\left(x_{2}-x_{1}\right) \\
& =x_{3}-2 x_{2}+x_{1}=\left(x_{2}-x_{1}\right)-2 x_{2}+x_{1} \\
& =-x_{2}=-\left(x_{1}-x_{0}\right)=-2
\end{aligned}
$$

Checking the Solution of Recurrence Relation

Example

Check whether the sequence $\left(x_{n}\right)$ is a solution to recurrence relation

$$
\begin{equation*}
x_{n}=2 x_{n-1}-x_{n-2}, \text { for } n \geq 2 \tag{2}
\end{equation*}
$$

if
(1) $x_{n}=3 n$
(2) $x_{n}=2^{n}$
($x_{n}=5$.
Solution:
(1) If $x_{n}=3 n$, then $x_{n-1}=$

Checking the Solution of Recurrence Relation

Example

Check whether the sequence $\left(x_{n}\right)$ is a solution to recurrence relation

$$
\begin{equation*}
x_{n}=2 x_{n-1}-x_{n-2}, \text { for } n \geq 2 \tag{2}
\end{equation*}
$$

if
(1) $x_{n}=3 n$
(2) $x_{n}=2^{n}$
($x_{n}=5$.
Solution:
(1) If $x_{n}=3 n$, then $x_{n-1}=3(n-1)$ and $x_{n-2}=$

Checking the Solution of Recurrence Relation

Example

Check whether the sequence $\left(x_{n}\right)$ is a solution to recurrence relation

$$
\begin{equation*}
x_{n}=2 x_{n-1}-x_{n-2}, \text { for } n \geq 2 \tag{2}
\end{equation*}
$$

if
(1) $x_{n}=3 n$
(2) $x_{n}=2^{n}$
(3) $x_{n}=5$.

Solution:
(1) If $x_{n}=3 n$, then $x_{n-1}=3(n-1)$ and $x_{n-2}=3(n-2)$. Notice that

$$
2 x_{n-1}-x_{n-2}=
$$

Checking the Solution of Recurrence Relation

Example

Check whether the sequence $\left(x_{n}\right)$ is a solution to recurrence relation

$$
\begin{equation*}
x_{n}=2 x_{n-1}-x_{n-2}, \text { for } n \geq 2 \tag{2}
\end{equation*}
$$

if
(1) $x_{n}=3 n$
(c) $x_{n}=2^{n}$
($x_{n}=5$.
Solution:
(1) If $x_{n}=3 n$, then $x_{n-1}=3(n-1)$ and $x_{n-2}=3(n-2)$. Notice that

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2 \cdot 3(n-1)-3(n-2) \\
& =
\end{aligned}
$$

Checking the Solution of Recurrence Relation

Example

Check whether the sequence $\left(x_{n}\right)$ is a solution to recurrence relation

$$
\begin{equation*}
x_{n}=2 x_{n-1}-x_{n-2}, \text { for } n \geq 2 \tag{2}
\end{equation*}
$$

if
(1) $x_{n}=3 n$
(2) $x_{n}=2^{n}$
(3) $x_{n}=5$.

Solution:
(1) If $x_{n}=3 n$, then $x_{n-1}=3(n-1)$ and $x_{n-2}=3(n-2)$. Notice that

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2 \cdot 3(n-1)-3(n-2) \\
& =3 n=x_{n}
\end{aligned}
$$

in other words equation (2) is satisfied.

Checking the Solution of Recurrence Relation

Example

Check whether the sequence $\left(x_{n}\right)$ is a solution to recurrence relation

$$
\begin{equation*}
x_{n}=2 x_{n-1}-x_{n-2}, \text { for } n \geq 2 \tag{2}
\end{equation*}
$$

if
(1) $x_{n}=3 n$
(2) $x_{n}=2^{n}$
(3) $x_{n}=5$.

Solution:
(1) If $x_{n}=3 n$, then $x_{n-1}=3(n-1)$ and $x_{n-2}=3(n-2)$. Notice that

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2 \cdot 3(n-1)-3(n-2) \\
& =3 n=x_{n}
\end{aligned}
$$

in other words equation (2) is satisfied. Thus, the sequence $\left(x_{n}\right)=(3 n)$ is a solution to recurrence relation (2).
(3) If $x_{n}=2^{n}$ then $x_{n-1}=$
(2) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=$
(2) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=2^{n-2}$. We have

$$
2 x_{n-1}-x_{n-2}=
$$

(2) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=2^{n-2}$. We have

$$
2 x_{n-1}-x_{n-2}=2\left(2^{n-1}\right)-2^{n-2}=
$$

(2) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=2^{n-2}$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2\left(2^{n-1}\right)-2^{n-2}=2^{n}-2^{n-2} \\
& \neq x_{n}
\end{aligned}
$$

in other words (2) is not satisfied.
(2) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=2^{n-2}$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2\left(2^{n-1}\right)-2^{n-2}=2^{n}-2^{n-2} \\
& \neq x_{n}
\end{aligned}
$$

in other words (2) is not satisfied. Hence, the sequence $\left(x_{n}\right)=\left(2^{n}\right)$ is not a solution to recurrence relation (2).
(3) If $x_{n}=5$, then $x_{n-1}=$
(2) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=2^{n-2}$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2\left(2^{n-1}\right)-2^{n-2}=2^{n}-2^{n-2} \\
& \neq x_{n}
\end{aligned}
$$

in other words (2) is not satisfied. Hence, the sequence $\left(x_{n}\right)=\left(2^{n}\right)$ is not a solution to recurrence relation (2).
(3) If $x_{n}=5$, then $x_{n-1}=5$ and $x_{n-2}=$
(2) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=2^{n-2}$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2\left(2^{n-1}\right)-2^{n-2}=2^{n}-2^{n-2} \\
& \neq x_{n}
\end{aligned}
$$

in other words (2) is not satisfied. Hence, the sequence $\left(x_{n}\right)=\left(2^{n}\right)$ is not a solution to recurrence relation (2).
(3) If $x_{n}=5$, then $x_{n-1}=5$ and $x_{n-2}=5$. We have

$$
2 x_{n-1}-x_{n-2}=
$$

(2) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=2^{n-2}$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2\left(2^{n-1}\right)-2^{n-2}=2^{n}-2^{n-2} \\
& \neq x_{n}
\end{aligned}
$$

in other words (2) is not satisfied. Hence, the sequence $\left(x_{n}\right)=\left(2^{n}\right)$ is not a solution to recurrence relation (2).
(3) If $x_{n}=5$, then $x_{n-1}=5$ and $x_{n-2}=5$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2 \cdot 5-5 \\
& =
\end{aligned}
$$

(2) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=2^{n-2}$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2\left(2^{n-1}\right)-2^{n-2}=2^{n}-2^{n-2} \\
& \neq x_{n}
\end{aligned}
$$

in other words (2) is not satisfied. Hence, the sequence $\left(x_{n}\right)=\left(2^{n}\right)$ is not a solution to recurrence relation (2).
(0) If $x_{n}=5$, then $x_{n-1}=5$ and $x_{n-2}=5$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2 \cdot 5-5 \\
& =5=x_{n}
\end{aligned}
$$

in other words (2) is satisfied.
(3) If $x_{n}=2^{n}$ then $x_{n-1}=2^{n-1}$ and $x_{n-2}=2^{n-2}$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2\left(2^{n-1}\right)-2^{n-2}=2^{n}-2^{n-2} \\
& \neq x_{n}
\end{aligned}
$$

in other words (2) is not satisfied. Hence, the sequence $\left(x_{n}\right)=\left(2^{n}\right)$ is not a solution to recurrence relation (2).
(0) If $x_{n}=5$, then $x_{n-1}=5$ and $x_{n-2}=5$. We have

$$
\begin{aligned}
2 x_{n-1}-x_{n-2} & =2 \cdot 5-5 \\
& =5=x_{n},
\end{aligned}
$$

in other words (2) is satisfied. Hence, the sequence $\left(x_{n}\right)=(5)$ is a solution to recurrence relation (2).

Problem

Why do we have more than one solution for the recurrence relation (2)?

Contents

(1) Motivation
(2) Recurrence Relation Definition
(3) Modeling with Recurrence Relation

4 Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(3) Exercise: Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients

6 Challenging Problem
(1) Supplement: Solution to Nonhomogeneous Linear Recurrence Relation with Constant Coefficients

Investment Problem

Problem

Someone deposited his money with an interest rate of 7% per year. If this interest rate never change for 20 years and the money never been withdrawn, find the ratio of asset increment from the deposit (the final amount of money divided by the initial amount of money).

Solution: suppose the initial amount of money is x_{0} and the amount of money after n years is x_{n}. Therefore, there is a sequence x_{n} that satisfies the following recurrence relation:

$$
x_{n}=
$$

Investment Problem

Problem

Someone deposited his money with an interest rate of 7% per year. If this interest rate never change for 20 years and the money never been withdrawn, find the ratio of asset increment from the deposit (the final amount of money divided by the initial amount of money).

Solution: suppose the initial amount of money is x_{0} and the amount of money after n years is x_{n}. Therefore, there is a sequence x_{n} that satisfies the following recurrence relation:

$$
\begin{aligned}
& x_{n}=x_{n-1}+0.07 x_{n-1}, \text { for } n \geq 1, \text { which equivalent to } \\
& x_{n}=
\end{aligned}
$$

Investment Problem

Problem

Someone deposited his money with an interest rate of 7% per year. If this interest rate never change for 20 years and the money never been withdrawn, find the ratio of asset increment from the deposit (the final amount of money divided by the initial amount of money).

Solution: suppose the initial amount of money is x_{0} and the amount of money after n years is x_{n}. Therefore, there is a sequence x_{n} that satisfies the following recurrence relation:

$$
\begin{align*}
& x_{n}=x_{n-1}+0.07 x_{n-1}, \text { for } n \geq 1, \text { which equivalent to } \\
& x_{n}=1.07 x_{n-1} \tag{3}
\end{align*}
$$

Thus,

$$
x_{1}=
$$

Thus,

$$
\begin{aligned}
& x_{1}=1.07 x_{0} \\
& x_{2}=
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& x_{1}=1.07 x_{0} \\
& x_{2}=1.07 x_{1}=(1.07)^{2} x_{0} \\
& x_{3}=
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& x_{1}= 1.07 x_{0} \\
& x_{2}= 1.07 x_{1}=(1.07)^{2} x_{0} \\
& x_{3}= 1.07 x_{2}=(1.07)^{3} x_{0} \\
& \vdots \\
& x_{n}=
\end{aligned}
$$

Thus,

$$
\begin{aligned}
x_{1}= & 1.07 x_{0} \\
x_{2}= & 1.07 x_{1}=(1.07)^{2} x_{0} \\
x_{3}= & 1.07 x_{2}=(1.07)^{3} x_{0} \\
& \vdots \\
x_{n}= & 1.07 x_{n-1}=(1.07)^{n} x_{0},
\end{aligned}
$$

for $n=20$, we have $x_{20}=$

Thus,

$$
\begin{aligned}
x_{1}= & 1.07 x_{0} \\
x_{2}= & 1.07 x_{1}=(1.07)^{2} x_{0} \\
x_{3}= & 1.07 x_{2}=(1.07)^{3} x_{0} \\
& \vdots \\
x_{n}= & 1.07 x_{n-1}=(1.07)^{n} x_{0},
\end{aligned}
$$

for $n=20$, we have $x_{20}=(1.07)^{20} x_{0}$. Then the ratio of asset increment of the deposit is

Thus,

$$
\begin{aligned}
x_{1}= & 1.07 x_{0} \\
x_{2}= & 1.07 x_{1}=(1.07)^{2} x_{0} \\
x_{3}= & 1.07 x_{2}=(1.07)^{3} x_{0} \\
& \vdots \\
x_{n}= & 1.07 x_{n-1}=(1.07)^{n} x_{0},
\end{aligned}
$$

for $n=20$, we have $x_{20}=(1.07)^{20} x_{0}$. Then the ratio of asset increment of the deposit is $\frac{x_{20}}{x_{0}}=(1.07)^{20}$.

Array Length Problem

Example

In a system, a message always has a size of $n \mathrm{kB}$ with n is a nonnegative integer. The message is sent using an array with predetermined length defined as follows:

- If the size is 0 kB , then the array has length 1 ,
- If the size is 1 kB , then the array has length 2 ,
- If the size is $n \mathrm{kB}$ with $n>1$, then the array has length of the length of array for $n-1 \mathrm{kB}$ message plus the length of array for $n-2 \mathrm{kB}$ message.

Determine the mathematical formula to determine the length of array that we need for sending a message with the size of $n \mathrm{kB}$. Furthermore, based on the formula, determine the length of array that we need for sending a message of size 6 kB .

Solution: Suppose L_{n} is the length of array required to send a message with the size of $n \mathrm{kB}$, then we have:

$$
L_{0}=
$$

Solution: Suppose L_{n} is the length of array required to send a message with the size of $n \mathrm{kB}$, then we have:

$$
L_{0}=1, L_{1}=
$$

Solution: Suppose L_{n} is the length of array required to send a message with the size of $n \mathrm{kB}$, then we have:

$$
L_{0}=1, L_{1}=2, \text { and } L_{n}=
$$

Solution: Suppose L_{n} is the length of array required to send a message with the size of $n \mathrm{kB}$, then we have:

$$
L_{0}=1, L_{1}=2, \text { and } L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2 .
$$

Hence,

$$
L_{2}=
$$

Solution: Suppose L_{n} is the length of array required to send a message with the size of $n \mathrm{kB}$, then we have:

$$
L_{0}=1, L_{1}=2 \text {, and } L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2 .
$$

Hence,

$$
\begin{aligned}
& L_{2}=L_{1}+L_{0}=2+1=3 \\
& L_{3}=
\end{aligned}
$$

Solution: Suppose L_{n} is the length of array required to send a message with the size of $n \mathrm{kB}$, then we have:

$$
L_{0}=1, L_{1}=2, \text { and } L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2 .
$$

Hence,

$$
\begin{aligned}
& L_{2}=L_{1}+L_{0}=2+1=3 \\
& L_{3}=L_{2}+L_{1}=3+2=5 \\
& L_{4}=
\end{aligned}
$$

Solution: Suppose L_{n} is the length of array required to send a message with the size of $n \mathrm{kB}$, then we have:

$$
L_{0}=1, L_{1}=2 \text {, and } L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2 .
$$

Hence,

$$
\begin{aligned}
& L_{2}=L_{1}+L_{0}=2+1=3 \\
& L_{3}=L_{2}+L_{1}=3+2=5 \\
& L_{4}=L_{3}+L_{2}=5+3=8 \\
& L_{5}=
\end{aligned}
$$

Solution: Suppose L_{n} is the length of array required to send a message with the size of $n \mathrm{kB}$, then we have:

$$
L_{0}=1, L_{1}=2, \text { and } L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2 .
$$

Hence,

$$
\begin{aligned}
& L_{2}=L_{1}+L_{0}=2+1=3 \\
& L_{3}=L_{2}+L_{1}=3+2=5 \\
& L_{4}=L_{3}+L_{2}=5+3=8 \\
& L_{5}=L_{4}+L_{3}=8+5=13 \\
& L_{6}=
\end{aligned}
$$

Solution: Suppose L_{n} is the length of array required to send a message with the size of $n \mathrm{kB}$, then we have:

$$
L_{0}=1, L_{1}=2, \text { and } L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2 .
$$

Hence,

$$
\begin{aligned}
& L_{2}=L_{1}+L_{0}=2+1=3 \\
& L_{3}=L_{2}+L_{1}=3+2=5 \\
& L_{4}=L_{3}+L_{2}=5+3=8 \\
& L_{5}=L_{4}+L_{3}=8+5=13 \\
& L_{6}=L_{5}+L_{4}=13+8=21 .
\end{aligned}
$$

We need array of length 21 to send a message with size 6 kB .

Problem

Is there an explicit formula for L_{n} ?

Binary String Problem

Example

Define a recursive formula to determine the number of binary strings (that contain 0 or 1 only) of length n that has no two consecutive 0 . Then based on the formula, find how many binary strings of length 5 that satisfies the requirement.

Illustration:

- Binary strings of length 1 that satisfy the condition:

Binary String Problem

Example

Define a recursive formula to determine the number of binary strings (that contain 0 or 1 only) of length n that has no two consecutive 0 . Then based on the formula, find how many binary strings of length 5 that satisfies the requirement.

Illustration:

- Binary strings of length 1 that satisfy the condition: 0 and 1
- Binary strings of length 2 that satisfy the condition:

Binary String Problem

Example

Define a recursive formula to determine the number of binary strings (that contain 0 or 1 only) of length n that has no two consecutive 0 . Then based on the formula, find how many binary strings of length 5 that satisfies the requirement.

Illustration:

- Binary strings of length 1 that satisfy the condition: 0 and 1
- Binary strings of length 2 that satisfy the condition: 01,10 , and 11.
- Binary strings of length 3 that satisfy the condition:

Binary String Problem

Example

Define a recursive formula to determine the number of binary strings (that contain 0 or 1 only) of length n that has no two consecutive 0 . Then based on the formula, find how many binary strings of length 5 that satisfies the requirement.

Illustration:

- Binary strings of length 1 that satisfy the condition: 0 and 1
- Binary strings of length 2 that satisfy the condition: 01,10 , and 11.
- Binary strings of length 3 that satisfy the condition: $010,011,101,110$, and 111.

Solution to Binary String Problem

- Let a_{n} be the number of binary string of length n which does not contain two consecutive 0s.
- We can classified the binary strings into two independent groups:

Solution to Binary String Problem

- Let a_{n} be the number of binary string of length n which does not contain two consecutive 0s.
- We can classified the binary strings into two independent groups:
© Binary strings which end in 1 (in a form of $X X \ldots X X 1$).

Solution to Binary String Problem

- Let a_{n} be the number of binary string of length n which does not contain two consecutive 0 s.
- We can classified the binary strings into two independent groups:
© Binary strings which end in 1 (in a form of $X X \ldots X X 1$).
(2) Binary strings which end in 0 (in a form of $X X \ldots X X 0$).
- For case 1: the number of binary string of length n which does not contain two consecutive 0 s and ends with 1

Solution to Binary String Problem

- Let a_{n} be the number of binary string of length n which does not contain two consecutive 0 s.
- We can classified the binary strings into two independent groups:
© Binary strings which end in 1 (in a form of $X X \ldots X X 1$).
(2) Binary strings which end in 0 (in a form of $X X \ldots X X 0$).
- For case 1: the number of binary string of length n which does not contain two consecutive 0 s and ends with 1 equals to

Solution to Binary String Problem

- Let a_{n} be the number of binary string of length n which does not contain two consecutive 0 s.
- We can classified the binary strings into two independent groups:
© Binary strings which end in 1 (in a form of $X X \ldots X X 1$).
(2) Binary strings which end in 0 (in a form of $X X \ldots X X 0$).
- For case 1 : the number of binary string of length n which does not contain two consecutive 0 s and ends with 1 equals to the number of binary string of length $n-1$ which does not contain two consecutive 0s.

Solution to Binary String Problem

- Let a_{n} be the number of binary string of length n which does not contain two consecutive 0 s.
- We can classified the binary strings into two independent groups:
© Binary strings which end in 1 (in a form of $X X \ldots X X 1$).
(2) Binary strings which end in 0 (in a form of $X X \ldots X X 0$).
- For case 1 : the number of binary string of length n which does not contain two consecutive 0 s and ends with 1 equals to the number of binary string of length $n-1$ which does not contain two consecutive 0s.
Why?

Solution to Binary String Problem

- Let a_{n} be the number of binary string of length n which does not contain two consecutive 0 s.
- We can classified the binary strings into two independent groups:
© Binary strings which end in 1 (in a form of $X X \ldots X X 1$).
O Binary strings which end in 0 (in a form of $X X \ldots X X 0$).
- For case 1 : the number of binary string of length n which does not contain two consecutive 0 s and ends with 1
equals to
the number of binary string of length $n-1$ which does not contain two consecutive 0s.
Why?
$\underbrace{X X X \ldots X X X}_{\alpha} 1$

Solution to Binary String Problem

- Let a_{n} be the number of binary string of length n which does not contain two consecutive 0 s.
- We can classified the binary strings into two independent groups:
© Binary strings which end in 1 (in a form of $X X \ldots X X 1$).
(2) Binary strings which end in 0 (in a form of $X X \ldots X X 0$).
- For case 1: the number of binary string of length n which does not contain two consecutive 0 s and ends with 1 equals to the number of binary string of length $n-1$ which does not contain two consecutive 0s.
Why?
$\underbrace{X X X \ldots X X X}_{\alpha} 1$
α : any binary string of length $n-1$ which does not contain two consecutive 0 s .
- For case 2: the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 must have 1 at its $(n-1)$-th digit (counted from the left).
- For case 2: the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 must have 1 at its $(n-1)$-th digit (counted from the left). Why? (find the answer)
- For case 2: the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 must have 1 at its $(n-1)$-th digit (counted from the left). Why? (find the answer)
Therefore,
- For case 2: the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 must have 1 at its $(n-1)$-th digit (counted from the left). Why? (find the answer)
Therefore, the number of binary string of length n which does not contain two consecutive 0 s and ends with 0
- For case 2: the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 must have 1 at its $(n-1)$-th digit (counted from the left). Why? (find the answer)
Therefore, the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 equals to
- For case 2: the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 must have 1 at its $(n-1)$-th digit (counted from the left).
Why? (find the answer)
Therefore, the number of binary string of length n which does not contain two consecutive 0 s and ends with 0
equals to
the number of binary string of length $n-2$ which does not contain two consecutive 0s.
- For case 2: the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 must have 1 at its $(n-1)$-th digit (counted from the left).
Why? (find the answer)
Therefore, the number of binary string of length n which does not contain two consecutive 0 s and ends with 0
equals to
the number of binary string of length $n-2$ which does not contain two consecutive 0s.
Why?
- For case 2: the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 must have 1 at its $(n-1)$-th digit (counted from the left).
Why? (find the answer)
Therefore,
the number of binary string of length n which does not contain two consecutive 0 s and ends with 0
equals to
the number of binary string of length $n-2$ which does not contain two consecutive 0s.
Why?
$\underbrace{X X X \ldots X X X}_{\beta} 10$
- For case 2: the number of binary string of length n which does not contain two consecutive 0 s and ends with 0 must have 1 at its $(n-1)$-th digit (counted from the left).
Why? (find the answer)
Therefore,
the number of binary string of length n which does not contain two consecutive 0 s and ends with 0
equals to
the number of binary string of length $n-2$ which does not contain two consecutive 0 s .
Why?
$\underbrace{X X X \ldots X X X}_{\beta} 10$
β : binary string of length $n-2$ which does not contain two consecutive 0 s.

From case 1 and case 2, we have a recurrence relation $a_{n}=$

From case 1 and case 2, we have a recurrence relation $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$ with initial condition $a_{1}=2$ and $a_{2}=3$. Hence, the number of binary strings of length 5 that satisfies the requirement (does not have two consecutive 0 s) is.

$$
a_{5}=
$$

From case 1 and case 2, we have a recurrence relation $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$ with initial condition $a_{1}=2$ and $a_{2}=3$. Hence, the number of binary strings of length 5 that satisfies the requirement (does not have two consecutive 0 s) is.

$$
a_{5}=a_{4}+a_{3}=
$$

From case 1 and case 2, we have a recurrence relation $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$ with initial condition $a_{1}=2$ and $a_{2}=3$. Hence, the number of binary strings of length 5 that satisfies the requirement (does not have two consecutive 0 s) is.

$$
a_{5}=a_{4}+a_{3}=\left(a_{3}+a_{2}\right)+a_{3}=2 a_{3}+a_{2}
$$

From case 1 and case 2, we have a recurrence relation $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$ with initial condition $a_{1}=2$ and $a_{2}=3$. Hence, the number of binary strings of length 5 that satisfies the requirement (does not have two consecutive 0 s) is.

$$
\begin{aligned}
a_{5} & =a_{4}+a_{3}=\left(a_{3}+a_{2}\right)+a_{3}=2 a_{3}+a_{2} \\
& =2\left(a_{2}+a_{1}\right)+a_{2}=3 a_{2}+2 a_{1}=3(3)+2(2)=13
\end{aligned}
$$

We can also get the same number from the following steps:

From case 1 and case 2, we have a recurrence relation $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$ with initial condition $a_{1}=2$ and $a_{2}=3$. Hence, the number of binary strings of length 5 that satisfies the requirement (does not have two consecutive 0 s) is.

$$
\begin{aligned}
a_{5} & =a_{4}+a_{3}=\left(a_{3}+a_{2}\right)+a_{3}=2 a_{3}+a_{2} \\
& =2\left(a_{2}+a_{1}\right)+a_{2}=3 a_{2}+2 a_{1}=3(3)+2(2)=13
\end{aligned}
$$

We can also get the same number from the following steps:

$$
\begin{aligned}
& a_{3}=a_{2}+a_{1}=3+2=5 \\
& a_{4}=a_{3}+a_{2}=5+3=8 \\
& a_{5}=a_{4}+a_{2}=8+5=13
\end{aligned}
$$

Problem

Is there an explicit formula for a_{n} ?

Contents

(1) Motivation

(2) Recurrence Relation Definition
(3) Modeling with Recurrence Relation

44 Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(6) Exercise: Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(0) Challenging Problem
(7) Supplement: Solution to Nonhomogeneous Linear Recurrence Relation with Constant Coefficients

Linear Recurrence Relation

Definition

A linear recurrence relation with constant coefficients of degree $k(k \in \mathbb{N})$ for real number sequence $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ is

$$
\begin{equation*}
a_{0} x_{n}+a_{1} x_{n-1}+\cdots+a_{k} x_{n-k}=f(n), \text { for } k \leq n, \tag{4}
\end{equation*}
$$

where $f(n)$ is a function, $a_{0}, a_{1}, \ldots, a_{k}$ are $k+1$ real numbers, $a_{k} \neq 0$. If $f(n)=0$, then the recurrence relation

$$
\begin{equation*}
a_{0} x_{n}+a_{1} x_{n-1}+\cdots+a_{k} x_{n-k}=0, \text { for } k \leq n, \tag{5}
\end{equation*}
$$

is called homogeneous linear recurrence relation with constant coefficient. If $f(n) \neq 0$, then (4) is called nonhomogeneous linear recurrence relation with constant coefficient. Moreover, $x_{n}=c_{n}$ for $0 \leq n<k$ is the initial condition for (4) or (5).

Notice that homogeneous linear recurrence relation with constant coefficients of degree k can also be written as

$$
x_{n}=a_{1} x_{n-1}+a_{2} x_{n-2}+\cdots+a_{k} x_{n-k}
$$

and nonhomogeneous linear recurrence relation with constant coefficients of degree k can also be written as

$$
x_{n}=a_{1} x_{n-1}+a_{2} x_{n-2}+\cdots+a_{k} x_{n-k}+f(n)
$$

for some nonzero function f.

Example

Recurrence relation:
(1) $x_{n}=x_{n-1}+x_{n-2}$ is a homogeneous linear recurrence relation with constant coefficients of degree 2 .
(2) $2 x_{n}+5 x_{n-1}=2^{n}$ is a

Example

Recurrence relation:
(1) $x_{n}=x_{n-1}+x_{n-2}$ is a homogeneous linear recurrence relation with constant coefficients of degree 2 .
(3) $2 x_{n}+5 x_{n-1}=2^{n}$ is a nonhomogeneous linear recurrence relation with constant coefficients of degree 1 .

- $x_{n}=\left(x_{n-1}\right)^{2}+x_{n-2}$ is a

Example

Recurrence relation:
(1) $x_{n}=x_{n-1}+x_{n-2}$ is a homogeneous linear recurrence relation with constant coefficients of degree 2 .
(3) $2 x_{n}+5 x_{n-1}=2^{n}$ is a nonhomogeneous linear recurrence relation with constant coefficients of degree 1 .

- $x_{n}=\left(x_{n-1}\right)^{2}+x_{n-2}$ is a homogeneous nonlinear recurrence relation with constant coefficients of degree 2 .
(- $x_{n}=n x_{n-1}+x_{n-2}$ is a

Example

Recurrence relation:
(1) $x_{n}=x_{n-1}+x_{n-2}$ is a homogeneous linear recurrence relation with constant coefficients of degree 2 .
(3) $2 x_{n}+5 x_{n-1}=2^{n}$ is a nonhomogeneous linear recurrence relation with constant coefficients of degree 1 .
(0) $x_{n}=\left(x_{n-1}\right)^{2}+x_{n-2}$ is a homogeneous nonlinear recurrence relation with constant coefficients of degree 2 .

- $x_{n}=n x_{n-1}+x_{n-2}$ is a homogeneous linear recurrence relation with non-constant coefficients of degree 2 .
(0) $3 x_{n}=\frac{1}{n} x_{n-1}+x_{n-2}^{n}+x_{n-3}+n$! is a

Example

Recurrence relation:
(1) $x_{n}=x_{n-1}+x_{n-2}$ is a homogeneous linear recurrence relation with constant coefficients of degree 2 .
(3) $2 x_{n}+5 x_{n-1}=2^{n}$ is a nonhomogeneous linear recurrence relation with constant coefficients of degree 1 .

- $x_{n}=\left(x_{n-1}\right)^{2}+x_{n-2}$ is a homogeneous nonlinear recurrence relation with constant coefficients of degree 2 .
- $x_{n}=n x_{n-1}+x_{n-2}$ is a homogeneous linear recurrence relation with non-constant coefficients of degree 2 .
- $3 x_{n}=\frac{1}{n} x_{n-1}+x_{n-2}^{n}+x_{n-3}+n$! is a nonhomogeneous nonlinear recurrence relation with non-constant coefficients of degree 3 .

Remark

The linearity of recurrence relation is similar to the linearity of linear equations in Matrices and Vector Spaces course.

Characteristic Polynomial

Definition

Let

$$
\begin{equation*}
a_{0} x_{n}+a_{1} x_{n-1}+\cdots+a_{k} x_{n-k}=f(n) \tag{6}
\end{equation*}
$$

be a linear recurrence relation as defined in the previous section, the polynomial

$$
p(\lambda)=a_{0} \lambda^{k}+a_{1} \lambda^{k-1}+\cdots+a_{k}
$$

is a characteristic polynomial of recurrence relation (6). The equation $p(\lambda)=0$ is called characteristic equation. The number r satisfies $p(r)=0$ is called characteristic root. The number of occurrence of r as a root is called the multiplicity of the root.

Example

Determine the characteristic equation of the following recurrence relation:
(1) $x_{n}=x_{n-1}+2 x_{n-2}$
(3) $x_{n}=6 x_{n-1}-9 x_{n-2}$

- $x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}$
- $x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}$

Solution:

Example

Determine the characteristic equation of the following recurrence relation:
(1) $x_{n}=x_{n-1}+2 x_{n-2}$
(3) $x_{n}=6 x_{n-1}-9 x_{n-2}$
($x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}$
(1) $x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}$

Solution:
(1) The recurrence relation can be rewritten as $x_{n}-x_{n-1}-2 x_{n-2}=0$, so the corresponding characteristic equation is

Example

Determine the characteristic equation of the following recurrence relation:
(1) $x_{n}=x_{n-1}+2 x_{n-2}$
(3) $x_{n}=6 x_{n-1}-9 x_{n-2}$
($x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}$
(1) $x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}$

Solution:
(1) The recurrence relation can be rewritten as $x_{n}-x_{n-1}-2 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-\lambda-2=0$.

Example

Determine the characteristic equation of the following recurrence relation:
(1) $x_{n}=x_{n-1}+2 x_{n-2}$
(3) $x_{n}=6 x_{n-1}-9 x_{n-2}$

- $x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}$
(1) $x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}$

Solution:
(1) The recurrence relation can be rewritten as $x_{n}-x_{n-1}-2 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-\lambda-2=0$.
(3) The recurrence relation can be rewritten as $x_{n}-6 x_{n-1}+9 x_{n-2}=0$, so the corresponding characteristic equation is

Example

Determine the characteristic equation of the following recurrence relation:
(1) $x_{n}=x_{n-1}+2 x_{n-2}$
(3) $x_{n}=6 x_{n-1}-9 x_{n-2}$
(0) $x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}$
(1) $x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}$

Solution:
(1) The recurrence relation can be rewritten as $x_{n}-x_{n-1}-2 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-\lambda-2=0$.
(3) The recurrence relation can be rewritten as $x_{n}-6 x_{n-1}+9 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-6 \lambda+9=0$.

Example

Determine the characteristic equation of the following recurrence relation:
(1) $x_{n}=x_{n-1}+2 x_{n-2}$
(3) $x_{n}=6 x_{n-1}-9 x_{n-2}$
(0) $x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}$
(1) $x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}$

Solution:
(1) The recurrence relation can be rewritten as $x_{n}-x_{n-1}-2 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-\lambda-2=0$.
(2) The recurrence relation can be rewritten as $x_{n}-6 x_{n-1}+9 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-6 \lambda+9=0$.

- The recurrence relation can be rewritten as
$x_{n}-6 x_{n-1}+11 x_{n-2}-6 x_{n-3}=0$, so the corresponding characteristic equation is

Example

Determine the characteristic equation of the following recurrence relation:
(1) $x_{n}=x_{n-1}+2 x_{n-2}$
(3) $x_{n}=6 x_{n-1}-9 x_{n-2}$
(0) $x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}$

- $x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}$

Solution:
(1) The recurrence relation can be rewritten as $x_{n}-x_{n-1}-2 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-\lambda-2=0$.
(2) The recurrence relation can be rewritten as $x_{n}-6 x_{n-1}+9 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-6 \lambda+9=0$.
(0) The recurrence relation can be rewritten as
$x_{n}-6 x_{n-1}+11 x_{n-2}-6 x_{n-3}=0$, so the corresponding characteristic equation is $\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0$.

Example

Determine the characteristic equation of the following recurrence relation:
(1) $x_{n}=x_{n-1}+2 x_{n-2}$
(2) $x_{n}=6 x_{n-1}-9 x_{n-2}$
(3) $x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}$
(($x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}$
Solution:
(1) The recurrence relation can be rewritten as $x_{n}-x_{n-1}-2 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-\lambda-2=0$.
(2) The recurrence relation can be rewritten as $x_{n}-6 x_{n-1}+9 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-6 \lambda+9=0$.

- The recurrence relation can be rewritten as
$x_{n}-6 x_{n-1}+11 x_{n-2}-6 x_{n-3}=0$, so the corresponding characteristic equation is $\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0$.
- The recurrence relation can be rewritten as $x_{n}+3 x_{n-1}+3 x_{n-2}+x_{n-3}=0$, so the corresponding characteristic equation is

Example

Determine the characteristic equation of the following recurrence relation:
(1) $x_{n}=x_{n-1}+2 x_{n-2}$
(2) $x_{n}=6 x_{n-1}-9 x_{n-2}$
(3) $x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}$
(($x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}$
Solution:
(1) The recurrence relation can be rewritten as $x_{n}-x_{n-1}-2 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-\lambda-2=0$.
(2) The recurrence relation can be rewritten as $x_{n}-6 x_{n-1}+9 x_{n-2}=0$, so the corresponding characteristic equation is $\lambda^{2}-6 \lambda+9=0$.

- The recurrence relation can be rewritten as
$x_{n}-6 x_{n-1}+11 x_{n-2}-6 x_{n-3}=0$, so the corresponding characteristic equation is $\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0$.
- The recurrence relation can be rewritten as $x_{n}+3 x_{n-1}+3 x_{n-2}+x_{n-3}=0$, so the corresponding characteristic equation is $\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0$.

Solution to Recurrence Relation of Degree 2 (Different roots)

Theorem (Solution to recurrence relation of degree 2 (different roots))
Let $c_{1}, c_{2} \in \mathbb{R}$ and equation $\lambda^{2}-c_{1} \lambda-c_{2}=0$ has two different roots r_{1} and r_{2}, then all solutions of the recurrence relation

$$
x_{n}=c_{1} x_{n-1}+c_{2} x_{n-2}
$$

has a form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}, n \in \mathbb{N}_{0},
$$

for some constants A and B.

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2} \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2} \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

$$
\lambda^{2}-\lambda-2=0 \text { or }
$$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2} \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

$$
\lambda^{2}-\lambda-2=0 \text { or }(\lambda+1)(\lambda-2)=0
$$

so the roots are

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2} \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

$$
\lambda^{2}-\lambda-2=0 \text { or }(\lambda+1)(\lambda-2)=0
$$

so the roots are $r_{1}=-1$ and $r_{2}=2$. According to the previous theorem, the solution to recurrence relation (7) is

$$
x_{n}=
$$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2} \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

$$
\lambda^{2}-\lambda-2=0 \text { or }(\lambda+1)(\lambda-2)=0
$$

so the roots are $r_{1}=-1$ and $r_{2}=2$. According to the previous theorem, the solution to recurrence relation (7) is

$$
x_{n}=A \cdot 2^{n}+B \cdot(-1)^{n}
$$

observe that $x_{0}=$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2} \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

$$
\lambda^{2}-\lambda-2=0 \text { or }(\lambda+1)(\lambda-2)=0
$$

so the roots are $r_{1}=-1$ and $r_{2}=2$. According to the previous theorem, the solution to recurrence relation (7) is

$$
x_{n}=A \cdot 2^{n}+B \cdot(-1)^{n}
$$

observe that $x_{0}=A+B=2$, and $x_{1}=$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2} \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

$$
\lambda^{2}-\lambda-2=0 \text { or }(\lambda+1)(\lambda-2)=0
$$

so the roots are $r_{1}=-1$ and $r_{2}=2$. According to the previous theorem, the solution to recurrence relation (7) is

$$
x_{n}=A \cdot 2^{n}+B \cdot(-1)^{n}
$$

observe that $x_{0}=A+B=2$, and $x_{1}=2 A-B=7$. Thus, we get $A=$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2} \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

$$
\lambda^{2}-\lambda-2=0 \text { or }(\lambda+1)(\lambda-2)=0
$$

so the roots are $r_{1}=-1$ and $r_{2}=2$. According to the previous theorem, the solution to recurrence relation (7) is

$$
x_{n}=A \cdot 2^{n}+B \cdot(-1)^{n}
$$

observe that $x_{0}=A+B=2$, and $x_{1}=2 A-B=7$. Thus, we get $A=3$ and $B=$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2} \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

$$
\lambda^{2}-\lambda-2=0 \text { or }(\lambda+1)(\lambda-2)=0
$$

so the roots are $r_{1}=-1$ and $r_{2}=2$. According to the previous theorem, the solution to recurrence relation (7) is

$$
x_{n}=A \cdot 2^{n}+B \cdot(-1)^{n}
$$

observe that $x_{0}=A+B=2$, and $x_{1}=2 A-B=7$. Thus, we get $A=3$ and $B=-1$, so the general solution to the recurrence relation is

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=x_{n-1}+2 x_{n-2}, \tag{7}
\end{equation*}
$$

with initial condition $x_{0}=2$ and $x_{1}=7$.
Solution: Characteristic equation for the recurrence relation (7) is

$$
\lambda^{2}-\lambda-2=0 \text { or }(\lambda+1)(\lambda-2)=0
$$

so the roots are $r_{1}=-1$ and $r_{2}=2$. According to the previous theorem, the solution to recurrence relation (7) is

$$
x_{n}=A \cdot 2^{n}+B \cdot(-1)^{n}
$$

observe that $x_{0}=A+B=2$, and $x_{1}=2 A-B=7$. Thus, we get $A=3$ and $B=-1$, so the general solution to the recurrence relation is

$$
x_{n}=3 \cdot 2^{n}-1(-1)^{n}
$$

Solution to Recurrence Relation of Degree 2 (Twin Roots)

Theorem (Solution to recurrence relation of degree 2 (twin roots))

Let $c_{1}, c_{2} \in \mathbb{R}$ with $c_{2} \neq 0$ and equation $\lambda^{2}-c_{1} \lambda-c_{2}=0$ has twin roots r_{0}, then all solutions of recurrence relation

$$
x_{n}=c_{1} x_{n-1}+c_{2} x_{n-2}
$$

has the form of

$$
x_{n}=A r_{0}^{n}+B n r_{0}^{n}=(A+B n) r_{0}^{n}, n \in \mathbb{N}_{0}
$$

for some constants A and B.

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{8}
\end{equation*}
$$

with initial condition $x_{0}=1$ and $x_{1}=6$.
Solution: Characteristic equation for the recurrence relation (8) is

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{8}
\end{equation*}
$$

with initial condition $x_{0}=1$ and $x_{1}=6$.
Solution: Characteristic equation for the recurrence relation (8) is

$$
\lambda^{2}-6 \lambda+9=0 \text { or }(\lambda-3)^{2}=0
$$

so we have the twin roots $r_{0}=$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{8}
\end{equation*}
$$

with initial condition $x_{0}=1$ and $x_{1}=6$.
Solution: Characteristic equation for the recurrence relation (8) is

$$
\lambda^{2}-6 \lambda+9=0 \text { or }(\lambda-3)^{2}=0
$$

so we have the twin roots $r_{0}=3$. According to the previous theorem, the solution to recurrence relation (8) is

$$
x_{n}=
$$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{8}
\end{equation*}
$$

with initial condition $x_{0}=1$ and $x_{1}=6$.
Solution: Characteristic equation for the recurrence relation (8) is

$$
\lambda^{2}-6 \lambda+9=0 \text { or }(\lambda-3)^{2}=0
$$

so we have the twin roots $r_{0}=3$. According to the previous theorem, the solution to recurrence relation (8) is

$$
x_{n}=A 3^{n}+B n 3^{n}=(A+B n) 3^{n}
$$

observe that $x_{0}=$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{8}
\end{equation*}
$$

with initial condition $x_{0}=1$ and $x_{1}=6$.
Solution: Characteristic equation for the recurrence relation (8) is

$$
\lambda^{2}-6 \lambda+9=0 \text { or }(\lambda-3)^{2}=0
$$

so we have the twin roots $r_{0}=3$. According to the previous theorem, the solution to recurrence relation (8) is

$$
x_{n}=A 3^{n}+B n 3^{n}=(A+B n) 3^{n}
$$

observe that $x_{0}=A=1$, and $x_{1}=$

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{8}
\end{equation*}
$$

with initial condition $x_{0}=1$ and $x_{1}=6$.
Solution: Characteristic equation for the recurrence relation (8) is

$$
\lambda^{2}-6 \lambda+9=0 \text { or }(\lambda-3)^{2}=0
$$

so we have the twin roots $r_{0}=3$. According to the previous theorem, the solution to recurrence relation (8) is

$$
x_{n}=A 3^{n}+B n 3^{n}=(A+B n) 3^{n}
$$

observe that $x_{0}=A=1$, and $x_{1}=3 A+3 B=6$. Thus, we have A

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{8}
\end{equation*}
$$

with initial condition $x_{0}=1$ and $x_{1}=6$.
Solution: Characteristic equation for the recurrence relation (8) is

$$
\lambda^{2}-6 \lambda+9=0 \text { or }(\lambda-3)^{2}=0
$$

so we have the twin roots $r_{0}=3$. According to the previous theorem, the solution to recurrence relation (8) is

$$
x_{n}=A 3^{n}+B n 3^{n}=(A+B n) 3^{n}
$$

observe that $x_{0}=A=1$, and $x_{1}=3 A+3 B=6$. Thus, we have $A=B=1$, so the general solution is

Example

Example

Determine the solution of recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{8}
\end{equation*}
$$

with initial condition $x_{0}=1$ and $x_{1}=6$.
Solution: Characteristic equation for the recurrence relation (8) is

$$
\lambda^{2}-6 \lambda+9=0 \text { or }(\lambda-3)^{2}=0
$$

so we have the twin roots $r_{0}=3$. According to the previous theorem, the solution to recurrence relation (8) is

$$
x_{n}=A 3^{n}+B n 3^{n}=(A+B n) 3^{n}
$$

observe that $x_{0}=A=1$, and $x_{1}=3 A+3 B=6$. Thus, we have $A=B=1$, so the general solution is

$$
x_{n}=(1+n) 3^{n}
$$

Supplement: Solution to Recurrence Relation of Degree k (Different Roots)

Theorem (Solution to recurrence relation of degree k (different roots))

Let $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$ and equation

$$
\lambda^{k}-c_{1} \lambda^{k-1}-c_{2} \lambda^{k-2}-\cdots-c_{k}=0
$$

has k different roots $r_{1}, r_{2}, \ldots, r_{k}$, then the solution to recurrence relation

$$
x_{n}=c_{1} x_{n-1}+c_{2} x_{n-2}+\cdots+c_{k} x_{n-k}
$$

is

$$
x_{n}=A_{1} r_{1}^{n}+A_{2} r_{2}^{n}+\cdots+A_{k} r_{k}^{n}, n \in \mathbb{N}_{0}
$$

for some constants $A_{1}, A_{2}, \ldots, A_{k}$.

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}, \tag{9}
\end{equation*}
$$

with initial condition $x_{0}=2, x_{1}=5$, and $x_{2}=15$.
Solution: Characteristic equation for the recurrence relation (9) is

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}, \tag{9}
\end{equation*}
$$

with initial condition $x_{0}=2, x_{1}=5$, and $x_{2}=15$.
Solution: Characteristic equation for the recurrence relation (9) is

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0 \text { or }
$$

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}, \tag{9}
\end{equation*}
$$

with initial condition $x_{0}=2, x_{1}=5$, and $x_{2}=15$.
Solution: Characteristic equation for the recurrence relation (9) is

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0 \text { or }(\lambda-1)(\lambda-2)(\lambda-3)=0,
$$

so the roots are

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}, \tag{9}
\end{equation*}
$$

with initial condition $x_{0}=2, x_{1}=5$, and $x_{2}=15$.
Solution: Characteristic equation for the recurrence relation (9) is

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0 \text { or }(\lambda-1)(\lambda-2)(\lambda-3)=0,
$$

so the roots are $r_{1}=1, r_{2}=2$, and $r_{3}=3$. According to the previous theorem, the solution to recurrence relation (9) is

$$
x_{n}=
$$

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-11 x_{n-2}+6 x_{n-3}, \tag{9}
\end{equation*}
$$

with initial condition $x_{0}=2, x_{1}=5$, and $x_{2}=15$.
Solution: Characteristic equation for the recurrence relation (9) is

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0 \text { or }(\lambda-1)(\lambda-2)(\lambda-3)=0,
$$

so the roots are $r_{1}=1, r_{2}=2$, and $r_{3}=3$. According to the previous theorem, the solution to recurrence relation (9) is

$$
x_{n}=A_{1} 1^{n}+A_{2} 2^{n}+A_{3} 3^{n},
$$

observe that:

$$
\begin{aligned}
& x_{0}=A_{1}+A_{2}+A_{3}=2 \\
& \text { (2) } x_{1}=A_{1}+2 A_{2}+3 A_{3}=5 \\
& \text { (3) } x_{2}=A_{1}+4 A_{2}+9 A_{3}=15
\end{aligned}
$$

so $A_{1}=$
observe that:

$$
\begin{aligned}
& x_{0}=A_{1}+A_{2}+A_{3}=2 \\
& \text { (2) } x_{1}=A_{1}+2 A_{2}+3 A_{3}=5 \\
& \text { (3) } x_{2}=A_{1}+4 A_{2}+9 A_{3}=15
\end{aligned}
$$

$$
\text { so } A_{1}=1, A_{2}=
$$

observe that:
(1) $x_{0}=A_{1}+A_{2}+A_{3}=2$,
(2) $x_{1}=A_{1}+2 A_{2}+3 A_{3}=5$,
(3) $x_{2}=A_{1}+4 A_{2}+9 A_{3}=15$,
so $A_{1}=1, A_{2}=-1$, and $A_{3}=$
observe that:
(1) $x_{0}=A_{1}+A_{2}+A_{3}=2$,
(2) $x_{1}=A_{1}+2 A_{2}+3 A_{3}=5$,
(3) $x_{2}=A_{1}+4 A_{2}+9 A_{3}=15$,
so $A_{1}=1, A_{2}=-1$, and $A_{3}=2$, then the general solution is
observe that:
(1) $x_{0}=A_{1}+A_{2}+A_{3}=2$,
(2) $x_{1}=A_{1}+2 A_{2}+3 A_{3}=5$,
(3) $x_{2}=A_{1}+4 A_{2}+9 A_{3}=15$,
so $A_{1}=1, A_{2}=-1$, and $A_{3}=2$, then the general solution is

$$
x_{n}=1^{n}-2^{n}+2 \cdot 3^{n} .
$$

Supplement: Solution to Recurrence Relation of Degree k (Duplicate Roots)

Theorem (Solution to recurrence relation of degree k (duplicate roots))

Let $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$ and equation

$$
\lambda^{k}-c_{1} \lambda^{k-1}-c_{2} \lambda^{k-2}-\cdots-c_{k}=0
$$

has t different roots $(t<n), r_{1}, r_{2}, \ldots, r_{t}$, each with multiplicity $m_{1}, m_{2}, \ldots, m_{t}$ ($m_{1}+m_{2}+\cdots+m_{t}=k$), then the solution to recurrence relation

$$
x_{n}=c_{1} x_{n-1}+c_{2} x_{n-2}+\cdots+c_{k} x_{n-k}
$$

is of the form

$$
\begin{aligned}
x_{n}= & \left(A_{1,0}+A_{1,1} n+A_{1,2} n^{2}+\cdots+A_{1, m_{1}-1} n^{m_{1}-1}\right) r_{1}^{n} \\
& +\left(A_{2,0}+A_{2,1} n+A_{2,2} n^{2}+\cdots+A_{2, m_{2}-1} n^{m_{2}-1}\right) r_{2}^{n} \\
& +\cdots \\
& +\left(A_{t, 0}+A_{t, 1} n+A_{t, 2} n^{2}+\cdots+A_{t, m_{t}-1} n^{m_{t}-1}\right) r_{t}^{n}
\end{aligned}
$$

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}, \tag{10}
\end{equation*}
$$

with initial condition $x_{0}=1, x_{1}=-2$, and $x_{2}=-1$.
Solution: Characteristic equation for the recurrence relation (10) is

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}, \tag{10}
\end{equation*}
$$

with initial condition $x_{0}=1, x_{1}=-2$, and $x_{2}=-1$.
Solution: Characteristic equation for the recurrence relation (10) is

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0 \text { or }(\lambda+1)^{3}=0,
$$

so the root is $r_{1}=$

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}, \tag{10}
\end{equation*}
$$

with initial condition $x_{0}=1, x_{1}=-2$, and $x_{2}=-1$.
Solution: Characteristic equation for the recurrence relation (10) is

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0 \text { or }(\lambda+1)^{3}=0,
$$

so the root is $r_{1}=-1$ with multiplicity $m_{1}=$

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}, \tag{10}
\end{equation*}
$$

with initial condition $x_{0}=1, x_{1}=-2$, and $x_{2}=-1$.
Solution: Characteristic equation for the recurrence relation (10) is

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0 \text { or }(\lambda+1)^{3}=0,
$$

so the root is $r_{1}=-1$ with multiplicity $m_{1}=3$. According to the previous theorem, the solution to recurrence relation (10) is

$$
x_{n}=
$$

Example

Example

Find the solution to recurrence relation

$$
\begin{equation*}
x_{n}=-3 x_{n-1}-3 x_{n-2}-x_{n-3}, \tag{10}
\end{equation*}
$$

with initial condition $x_{0}=1, x_{1}=-2$, and $x_{2}=-1$.
Solution: Characteristic equation for the recurrence relation (10) is

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0 \text { or }(\lambda+1)^{3}=0,
$$

so the root is $r_{1}=-1$ with multiplicity $m_{1}=3$. According to the previous theorem, the solution to recurrence relation (10) is

$$
\begin{aligned}
x_{n} & =\left(A_{1,0}+A_{1,1} n+A_{1,2} n^{2}\right) r_{1}^{n} \\
& =\left(A_{1,0}+A_{1,1} n+A_{1,2} n^{2}\right)(-1)^{n}
\end{aligned}
$$

observe that:
(1) $x_{0}=A_{1,0}=1$,
(2) $x_{1}=-\left(A_{1,0}+A_{1,1}+A_{1,2}\right)=-2$,
(3) $x_{2}=A_{1,0}+2 A_{1,1}+4 A_{1,2}=-1$,
so $A_{1,0}=$
observe that:
(1) $x_{0}=A_{1,0}=1$,
(2) $x_{1}=-\left(A_{1,0}+A_{1,1}+A_{1,2}\right)=-2$,
(3) $x_{2}=A_{1,0}+2 A_{1,1}+4 A_{1,2}=-1$,
so $A_{1,0}=1, A_{1,1}=$
observe that:
(1) $x_{0}=A_{1,0}=1$,
(2) $x_{1}=-\left(A_{1,0}+A_{1,1}+A_{1,2}\right)=-2$,
(3) $x_{2}=A_{1,0}+2 A_{1,1}+4 A_{1,2}=-1$,
so $A_{1,0}=1, A_{1,1}=3$, and $A_{1,2}=$
observe that:
(1) $x_{0}=A_{1,0}=1$,
(2) $x_{1}=-\left(A_{1,0}+A_{1,1}+A_{1,2}\right)=-2$,
(3) $x_{2}=A_{1,0}+2 A_{1,1}+4 A_{1,2}=-1$,
so $A_{1,0}=1, A_{1,1}=3$, and $A_{1,2}=-2$, then the general solution is
observe that:
(1) $x_{0}=A_{1,0}=1$,
(2) $x_{1}=-\left(A_{1,0}+A_{1,1}+A_{1,2}\right)=-2$,
(3) $x_{2}=A_{1,0}+2 A_{1,1}+4 A_{1,2}=-1$,
so $A_{1,0}=1, A_{1,1}=3$, and $A_{1,2}=-2$, then the general solution is

$$
x_{n}=\left(1+3 n-2 n^{2}\right)(-1)^{n}
$$

Contents

(1) Motivation

(2) Recurrence Relation Definition

3 Modeling with Recurrence Relation
(1) Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(5) Exercise: Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(3) Challenging Problem
(7) Supplement: Solution to Nonhomogeneous Linear Recurrence Relation with Constant Coefficients

Exercise: Solution to Homogeneous Linear Recurrence Relation

Exercise

Find the general solution to recurrence relation:
(1) $w_{n}=2 w_{n-1}$ for every $n \geq 1$ with $w_{0}=3$. Write the value of w_{2023}.
(2) $x_{n}=4 x_{n-2}$ for every $n \geq 2$ with $x_{0}=1$ and $x_{1}=-1$. Write the value of x_{2023}.

- $y_{n}=-2 y_{n-1}-y_{n-2}$ for every $n \geq 2$ with $y_{0}=1$ and $y_{1}=4$. Write the value of y_{2023}.
- $z_{n}=3 z_{n-1}-2 z_{n-2}$ for every $n \geq 2$ with $z_{0}=0$ and $z_{1}=1$. Write the value of z_{2023}.

Solution to Problem 1

Characteristic equation for $w_{n}=2 w_{n-1}$ is

Solution to Problem 1

Characteristic equation for $w_{n}=2 w_{n-1}$ is $\lambda-2=0$, so the root is $r=$

Solution to Problem 1

Characteristic equation for $w_{n}=2 w_{n-1}$ is $\lambda-2=0$, so the root is $r=2$. According to the theorem, the solution is in the form of

$$
w_{n}=
$$

Solution to Problem 1

Characteristic equation for $w_{n}=2 w_{n-1}$ is $\lambda-2=0$, so the root is $r=2$. According to the theorem, the solution is in the form of

$$
w_{n}=A r^{n}=A \cdot 2^{n} .
$$

Because $w_{0}=$

Solution to Problem 1

Characteristic equation for $w_{n}=2 w_{n-1}$ is $\lambda-2=0$, so the root is $r=2$. According to the theorem, the solution is in the form of

$$
w_{n}=A r^{n}=A \cdot 2^{n} .
$$

Because $w_{0}=A \cdot 2^{0}=A=3$, then the solution is

$$
w_{n}=
$$

Solution to Problem 1

Characteristic equation for $w_{n}=2 w_{n-1}$ is $\lambda-2=0$, so the root is $r=2$. According to the theorem, the solution is in the form of

$$
w_{n}=A r^{n}=A \cdot 2^{n}
$$

Because $w_{0}=A \cdot 2^{0}=A=3$, then the solution is

$$
w_{n}=3 \cdot 2^{n}
$$

and w_{2023} is

$$
w_{2023}=
$$

Solution to Problem 1

Characteristic equation for $w_{n}=2 w_{n-1}$ is $\lambda-2=0$, so the root is $r=2$. According to the theorem, the solution is in the form of

$$
w_{n}=A r^{n}=A \cdot 2^{n} .
$$

Because $w_{0}=A \cdot 2^{0}=A=3$, then the solution is

$$
w_{n}=3 \cdot 2^{n}
$$

and w_{2023} is

$$
w_{2023}=3 \cdot 2^{2023} .
$$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=
$$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}=A \cdot(-2)^{n}+B \cdot 2^{n} .
$$

Because $x_{0}=$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}=A \cdot(-2)^{n}+B \cdot 2^{n} .
$$

Because $x_{0}=A+B=1$ and $x_{1}=$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}=A \cdot(-2)^{n}+B \cdot 2^{n}
$$

Because $x_{0}=A+B=1$ and $x_{1}=-2 A+2 B=-1$, so $A=$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}=A \cdot(-2)^{n}+B \cdot 2^{n} .
$$

Because $x_{0}=A+B=1$ and $x_{1}=-2 A+2 B=-1$, so $A=\frac{3}{4}$ and $B=$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}=A \cdot(-2)^{n}+B \cdot 2^{n} .
$$

Because $x_{0}=A+B=1$ and $x_{1}=-2 A+2 B=-1$, so $A=\frac{3}{4}$ and $B=\frac{1}{4}$. Thus, the solution is

$$
x_{n}=
$$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}=A \cdot(-2)^{n}+B \cdot 2^{n} .
$$

Because $x_{0}=A+B=1$ and $x_{1}=-2 A+2 B=-1$, so $A=\frac{3}{4}$ and $B=\frac{1}{4}$. Thus, the solution is

$$
x_{n}=\frac{3}{4} \cdot(-2)^{n}+\frac{1}{4} \cdot 2^{n}
$$

and x_{2023} is

$$
x_{2023}=
$$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}=A \cdot(-2)^{n}+B \cdot 2^{n} .
$$

Because $x_{0}=A+B=1$ and $x_{1}=-2 A+2 B=-1$, so $A=\frac{3}{4}$ and $B=\frac{1}{4}$. Thus, the solution is

$$
x_{n}=\frac{3}{4} \cdot(-2)^{n}+\frac{1}{4} \cdot 2^{n}
$$

and x_{2023} is

$$
\begin{aligned}
x_{2023} & =\frac{3}{4}(-2)^{2023}+\frac{1}{4}(2)^{2023} \\
& =
\end{aligned}
$$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}=A \cdot(-2)^{n}+B \cdot 2^{n} .
$$

Because $x_{0}=A+B=1$ and $x_{1}=-2 A+2 B=-1$, so $A=\frac{3}{4}$ and $B=\frac{1}{4}$. Thus, the solution is

$$
x_{n}=\frac{3}{4} \cdot(-2)^{n}+\frac{1}{4} \cdot 2^{n}
$$

and x_{2023} is

$$
\begin{aligned}
x_{2023} & =\frac{3}{4}(-2)^{2023}+\frac{1}{4}(2)^{2023} \\
& =-\frac{3}{4}\left(2^{2023}\right)+\frac{1}{4}\left(2^{2023}\right) \\
& =
\end{aligned}
$$

Solution to Problem 2

Characteristic equation for $x_{n}=4 x_{n-2}$ is $\lambda^{2}-4=0 \Leftrightarrow(\lambda-2)(\lambda+2)=0$, the roots are $r_{1}=-2$ and $r_{2}=2$. According to the theorem, the solution is in the form of

$$
x_{n}=A r_{1}^{n}+B r_{2}^{n}=A \cdot(-2)^{n}+B \cdot 2^{n} .
$$

Because $x_{0}=A+B=1$ and $x_{1}=-2 A+2 B=-1$, so $A=\frac{3}{4}$ and $B=\frac{1}{4}$. Thus, the solution is

$$
x_{n}=\frac{3}{4} \cdot(-2)^{n}+\frac{1}{4} \cdot 2^{n}
$$

and x_{2023} is

$$
\begin{aligned}
x_{2023} & =\frac{3}{4}(-2)^{2023}+\frac{1}{4}(2)^{2023} \\
& =-\frac{3}{4}\left(2^{2023}\right)+\frac{1}{4}\left(2^{2023}\right) \\
& =\left(-\frac{3}{4}+\frac{1}{4}\right)\left(2^{2023}\right)=-2^{2022} .
\end{aligned}
$$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=-1$. According to the theorem, solution is in the form of

$$
y_{n}=
$$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=-1$. According to the theorem, solution is in the form of

$$
y_{n}=A r_{0}^{n}+B n r_{0}^{n}=(A+B n) r_{0}^{n}=(A+B n)(-1)^{n} .
$$

Because $y_{0}=$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=-1$. According to the theorem, solution is in the form of

$$
y_{n}=A r_{0}^{n}+B n r_{0}^{n}=(A+B n) r_{0}^{n}=(A+B n)(-1)^{n} .
$$

Because $y_{0}=A(-1)^{0}=1$ and $y_{1}=$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=-1$. According to the theorem, solution is in the form of

$$
y_{n}=A r_{0}^{n}+B n r_{0}^{n}=(A+B n) r_{0}^{n}=(A+B n)(-1)^{n} .
$$

Because $y_{0}=A(-1)^{0}=1$ and $y_{1}=(A+B)(-1)=4$, then $A=$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=-1$. According to the theorem, solution is in the form of

$$
y_{n}=A r_{0}^{n}+B n r_{0}^{n}=(A+B n) r_{0}^{n}=(A+B n)(-1)^{n} .
$$

Because $y_{0}=A(-1)^{0}=1$ and $y_{1}=(A+B)(-1)=4$, then $A=1$ and $B=$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=-1$. According to the theorem, solution is in the form of

$$
y_{n}=A r_{0}^{n}+B n r_{0}^{n}=(A+B n) r_{0}^{n}=(A+B n)(-1)^{n} .
$$

Because $y_{0}=A(-1)^{0}=1$ and $y_{1}=(A+B)(-1)=4$, then $A=1$ and $B=-5$. Hence, the solution is

$$
y_{n}=
$$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=-1$. According to the theorem, solution is in the form of

$$
y_{n}=A r_{0}^{n}+B n r_{0}^{n}=(A+B n) r_{0}^{n}=(A+B n)(-1)^{n} .
$$

Because $y_{0}=A(-1)^{0}=1$ and $y_{1}=(A+B)(-1)=4$, then $A=1$ and $B=-5$. Hence, the solution is

$$
y_{n}=(1-5 n)(-1)^{n}
$$

and y_{2023} is

$$
y_{2023}=
$$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=-1$. According to the theorem, solution is in the form of

$$
y_{n}=A r_{0}^{n}+B n r_{0}^{n}=(A+B n) r_{0}^{n}=(A+B n)(-1)^{n} .
$$

Because $y_{0}=A(-1)^{0}=1$ and $y_{1}=(A+B)(-1)=4$, then $A=1$ and $B=-5$. Hence, the solution is

$$
y_{n}=(1-5 n)(-1)^{n}
$$

and y_{2023} is

$$
\begin{aligned}
y_{2023} & =(1-5(2023))(-1)^{2023} \\
& =
\end{aligned}
$$

Solution to Problem 3

Characteristic equation for $y_{n}=-2 y_{n-1}-y_{n-2}$ is $\lambda^{2}+2 \lambda+1=0 \Leftrightarrow(\lambda+1)^{2}=0$, the roots are $r_{0}=-1$. According to the theorem, solution is in the form of

$$
y_{n}=A r_{0}^{n}+B n r_{0}^{n}=(A+B n) r_{0}^{n}=(A+B n)(-1)^{n} .
$$

Because $y_{0}=A(-1)^{0}=1$ and $y_{1}=(A+B)(-1)=4$, then $A=1$ and $B=-5$. Hence, the solution is

$$
y_{n}=(1-5 n)(-1)^{n}
$$

and y_{2023} is

$$
\begin{aligned}
y_{2023} & =(1-5(2023))(-1)^{2023} \\
& =5(2023)-1 \\
& =10114
\end{aligned}
$$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=1$ and $r_{2}=$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=1$ and $r_{2}=2$. According to the theorem, the solution is in form of

$$
z_{n}=
$$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=1$ and $r_{2}=2$. According to the theorem, the solution is in form of

$$
z_{n}=A r_{1}^{n}+B r_{2}^{n}=A(1)^{n}+B(2)^{n}=A+B(2)^{n} .
$$

Because $z_{0}=$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=1$ and $r_{2}=2$. According to the theorem, the solution is in form of

$$
z_{n}=A r_{1}^{n}+B r_{2}^{n}=A(1)^{n}+B(2)^{n}=A+B(2)^{n} .
$$

Because $z_{0}=A+B(2)^{0}=A+B=0$ and $z_{1}=$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=1$ and $r_{2}=2$. According to the theorem, the solution is in form of

$$
z_{n}=A r_{1}^{n}+B r_{2}^{n}=A(1)^{n}+B(2)^{n}=A+B(2)^{n} .
$$

Because $z_{0}=A+B(2)^{0}=A+B=0$ and $z_{1}=A+B(2)^{1}=A+2 B=1$, then $A=$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=1$ and $r_{2}=2$. According to the theorem, the solution is in form of

$$
z_{n}=A r_{1}^{n}+B r_{2}^{n}=A(1)^{n}+B(2)^{n}=A+B(2)^{n} .
$$

Because $z_{0}=A+B(2)^{0}=A+B=0$ and $z_{1}=A+B(2)^{1}=A+2 B=1$, then $A=-1$ and $B=$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=1$ and $r_{2}=2$. According to the theorem, the solution is in form of

$$
z_{n}=A r_{1}^{n}+B r_{2}^{n}=A(1)^{n}+B(2)^{n}=A+B(2)^{n} .
$$

Because $z_{0}=A+B(2)^{0}=A+B=0$ and $z_{1}=A+B(2)^{1}=A+2 B=1$, then $A=-1$ and $B=1$. Thus, the solution is

$$
z_{n}=
$$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=1$ and $r_{2}=2$. According to the theorem, the solution is in form of

$$
z_{n}=A r_{1}^{n}+B r_{2}^{n}=A(1)^{n}+B(2)^{n}=A+B(2)^{n} .
$$

Because $z_{0}=A+B(2)^{0}=A+B=0$ and $z_{1}=A+B(2)^{1}=A+2 B=1$, then $A=-1$ and $B=1$. Thus, the solution is

$$
z_{n}=-1+2^{n}
$$

and z_{2023} is

$$
z_{2023}=
$$

Solution to Problem 4

Characteristic equation for $z_{n}=3 z_{n-1}-2 z_{n-2}$ is $\lambda^{2}-3 \lambda+2=0 \Leftrightarrow(\lambda-1)(\lambda-2)=0$, the roots are $r_{1}=1$ and $r_{2}=2$. According to the theorem, the solution is in form of

$$
z_{n}=A r_{1}^{n}+B r_{2}^{n}=A(1)^{n}+B(2)^{n}=A+B(2)^{n} .
$$

Because $z_{0}=A+B(2)^{0}=A+B=0$ and $z_{1}=A+B(2)^{1}=A+2 B=1$, then $A=-1$ and $B=1$. Thus, the solution is

$$
z_{n}=-1+2^{n}
$$

and z_{2023} is

$$
z_{2023}=-1+2^{2023}=2^{2023}-1
$$

Contents

(1) Motivation
(2) Recurrence Relation Definition
(3) Modeling with Recurrence Relation
(1) Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(5) Exercise: Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients

6 Challenging Problem
(7) Supplement: Solution to Nonhomogeneous Linear Recurrence Relation with Constant Coefficients

Challenging Problem

Exercise

Determine the explicit solution of the following recurrence relations:
(1) $a_{n}=a_{n-1}+a_{n-2}$ for $n \geq 3$ with $a_{1}=2$ and $a_{2}=3$,
(c) $a_{n}=7 a_{n-2}-6 a_{n-3}$ for $n \geq 3$ with $a_{0}=0, a_{1}=1$, and $a_{2}=2$

Contents

(1) Motivation

(2) Recurrence Relation Definition

3 Modeling with Recurrence Relation
(1) Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(5) Exercise: Solution to Homogeneous Linear Recurrence Relation with Constant Coefficients
(6) Challenging Problem
(7) Supplement: Solution to Nonhomogeneous Linear Recurrence Relation with Constant Coefficients

Homogeneous Recurrence Relation Corresponded to Nonhomogeneous Recurrence Relation

The course material related with solution of recurrence relation linear non homogeneous with constant coefficient will be studied further in Analysis of Algorithm Course.

Definition (Homogeneous Recurrence Relation Corresponded to Nonhomogeneous Recurrence Relation)

Let

$$
\begin{equation*}
x_{n}=c_{1} x_{n-1}+c_{2} x_{n-2}+\cdots+c_{k} x_{n-k}+f(n), \tag{11}
\end{equation*}
$$

with constants c_{i} for every $i \in\{1, \ldots, n-k\}$ and f is a nonzero function, then

$$
\begin{equation*}
x_{n}=c_{1} x_{n-1}+c_{2} x_{n-2}+\cdots+c_{k} x_{n-k} \tag{12}
\end{equation*}
$$

is homogeneous recurrence relation that corresponds to nonhomogeneous recurrence relation(11).

Homogeneous Solution and Particular Solution

Theorem

Suppose a sequence $\left(x_{n}^{(h)}\right)$ is a general solution to homogeneous linear recurrence relation with constant coefficient

$$
\begin{equation*}
x_{n}=c_{1} x_{n-1}+c_{2} x_{n-2}+\cdots+c_{k} x_{n-k} \tag{13}
\end{equation*}
$$

and $\left(x_{n}^{(p)}\right)$ is a sequence that satisfies nonhomogeneous linear recurrence relation with constant coefficient

$$
\begin{equation*}
x_{n}=c_{1} x_{n-1}+c_{2} x_{n-2}+\cdots+c_{k} x_{n-k}+f(n), \tag{14}
\end{equation*}
$$

then every solution of nonhomogeneous linear recurrence relation (14) is the sequence

$$
\left(x_{n}^{(h)}+x_{n}^{(p)}\right) .
$$

The sequence $\left(x_{n}^{(p)}\right)$ is called as a particular solution for recurrence relation (14) and $\left(x_{n}^{(h)}\right)$ is called a homogeneous solution for recurrence relation (13).

Theorem

If the sequence $\left(u_{n}\right)$ is a particular solution to nonhomogeneous linear recurrence relation

$$
\begin{equation*}
c_{0} x_{n}+c_{1} x_{n-1}+\cdots+c_{k} x_{n-k}=f(n), \tag{15}
\end{equation*}
$$

for some $k \leq n$, and the sequence $\left(v_{n}\right)$ is a particular solution to nonhomogeneous linear recurrence relation

$$
\begin{equation*}
c_{0} x_{n}+c_{1} x_{n-1}+\cdots+c_{k} x_{n-k}=g(n) \tag{16}
\end{equation*}
$$

for some $k \leq n$, then

$$
\begin{equation*}
\left(w_{n}\right)=\left(u_{n}+v_{n}\right) \tag{17}
\end{equation*}
$$

is a particular solution to nonhomogeneous linear recurrence relation

$$
\begin{equation*}
c_{0} x_{n}+c_{1} x_{n-1}+\cdots+c_{k} x_{n-k}=f(n)+g(n) . \tag{18}
\end{equation*}
$$

How to Find Particular Solution?

The method to find the particular solution $\left(x_{n}^{(p)}\right)$ depends on $f(n)$ as follows.
(1) If $f(n)$ in linear recurrence relation (14) is polynomial

$$
f(n)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{k} x^{k}=\sum_{i=0}^{k} \alpha_{i} x^{i}
$$

then the corresponding particular solution $\left(x_{n}^{(p)}\right)$ has a similar form, which is

$$
\begin{equation*}
\left(x_{n}^{(p)}\right)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{k} x^{k}=\sum_{i=0}^{k} \beta_{i} x^{i} . \tag{19}
\end{equation*}
$$

Coefficients β_{i} for $i \in\{0, \ldots, k\}$ can be found by substituting (19) to (14).
(2) If $f(n)$ in linear recurrence relation (14) is

$$
f(n)=d^{n} \sum_{i=0}^{k} \alpha_{i} x^{i}
$$

for some constants d, then the corresponding particular solution $\left(x_{n}^{(p)}\right)$ also has a similar form, which is

$$
\begin{equation*}
f(n)=d^{n} \sum_{i=0}^{k} \beta_{i} x \tag{20}
\end{equation*}
$$

Coefficients β_{i} for $i \in\{0, \ldots, k\}$ can be found by substituting (20) to (14).

Example

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=3 x_{n-1}+2 n . \tag{21}
\end{equation*}
$$

Recurrence relation (21) is a nonhomogeneous linear recurrence relation with $f(n)=$

Example

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=3 x_{n-1}+2 n . \tag{21}
\end{equation*}
$$

Recurrence relation (21) is a nonhomogeneous linear recurrence relation with $f(n)=2 n$. Because $f(n)$ is polynomial of degree 1 , then we take

$$
p_{n}=
$$

Example

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=3 x_{n-1}+2 n . \tag{21}
\end{equation*}
$$

Recurrence relation (21) is a nonhomogeneous linear recurrence relation with $f(n)=2 n$. Because $f(n)$ is polynomial of degree 1 , then we take

$$
p_{n}=A n+B, \text { with } A \text { and } B \text { some constants }
$$

to get the particular solution of (21). By substituting p_{n} to (21) we have

$$
p_{n}=
$$

Example

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=3 x_{n-1}+2 n . \tag{21}
\end{equation*}
$$

Recurrence relation (21) is a nonhomogeneous linear recurrence relation with $f(n)=2 n$. Because $f(n)$ is polynomial of degree 1 , then we take

$$
p_{n}=A n+B \text {, with } A \text { and } B \text { some constants }
$$

to get the particular solution of (21). By substituting p_{n} to (21) we have

$$
p_{n}=3 p_{n-1}+2 n
$$

Example

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=3 x_{n-1}+2 n . \tag{21}
\end{equation*}
$$

Recurrence relation (21) is a nonhomogeneous linear recurrence relation with $f(n)=2 n$. Because $f(n)$ is polynomial of degree 1 , then we take

$$
p_{n}=A n+B \text {, with } A \text { and } B \text { some constants }
$$

to get the particular solution of (21). By substituting p_{n} to (21) we have

$$
\begin{aligned}
p_{n} & =3 p_{n-1}+2 n \\
A n+B & =3(A(n-1)+B)+2 n
\end{aligned}
$$

Example

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=3 x_{n-1}+2 n . \tag{21}
\end{equation*}
$$

Recurrence relation (21) is a nonhomogeneous linear recurrence relation with $f(n)=2 n$. Because $f(n)$ is polynomial of degree 1 , then we take

$$
p_{n}=A n+B, \text { with } A \text { and } B \text { some constants }
$$

to get the particular solution of (21). By substituting p_{n} to (21) we have

$$
\begin{aligned}
p_{n} & =3 p_{n-1}+2 n \\
A n+B & =3(A(n-1)+B)+2 n \\
(-2 A-2) n+(3 A-2 B) & =0
\end{aligned}
$$

so $A=$

Example

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=3 x_{n-1}+2 n . \tag{21}
\end{equation*}
$$

Recurrence relation (21) is a nonhomogeneous linear recurrence relation with $f(n)=2 n$. Because $f(n)$ is polynomial of degree 1 , then we take

$$
p_{n}=A n+B \text {, with } A \text { and } B \text { some constants }
$$

to get the particular solution of (21). By substituting p_{n} to (21) we have

$$
\begin{aligned}
p_{n} & =3 p_{n-1}+2 n \\
A n+B & =3(A(n-1)+B)+2 n \\
(-2 A-2) n+(3 A-2 B) & =0
\end{aligned}
$$

so $A=-1$ and $B=$

Example

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=3 x_{n-1}+2 n . \tag{21}
\end{equation*}
$$

Recurrence relation (21) is a nonhomogeneous linear recurrence relation with $f(n)=2 n$. Because $f(n)$ is polynomial of degree 1 , then we take

$$
p_{n}=A n+B \text {, with } A \text { and } B \text { some constants }
$$

to get the particular solution of (21). By substituting p_{n} to (21) we have

$$
\begin{aligned}
p_{n} & =3 p_{n-1}+2 n \\
A n+B & =3(A(n-1)+B)+2 n \\
(-2 A-2) n+(3 A-2 B) & =0
\end{aligned}
$$

so $A=-1$ and $B=-\frac{3}{2}$. Thus, the particular solution is $x_{n}^{(p)}=$

Example

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=3 x_{n-1}+2 n . \tag{21}
\end{equation*}
$$

Recurrence relation (21) is a nonhomogeneous linear recurrence relation with $f(n)=2 n$. Because $f(n)$ is polynomial of degree 1 , then we take

$$
p_{n}=A n+B \text {, with } A \text { and } B \text { some constants }
$$

to get the particular solution of (21). By substituting p_{n} to (21) we have

$$
\begin{aligned}
p_{n} & =3 p_{n-1}+2 n \\
A n+B & =3(A(n-1)+B)+2 n \\
(-2 A-2) n+(3 A-2 B) & =0
\end{aligned}
$$

so $A=-1$ and $B=-\frac{3}{2}$. Thus, the particular solution is $x_{n}^{(p)}=-n-\frac{3}{2}$.

Homogeneous solution to homogeneous recurrence relation that corresponds to (21)

Homogeneous solution to homogeneous recurrence relation that corresponds to (21)

$$
x_{n}=3 x_{n-1}
$$

is $x_{n}^{(h)}=$

Homogeneous solution to homogeneous recurrence relation that corresponds to (21)

$$
x_{n}=3 x_{n-1} \text {, }
$$

is $x_{n}^{(h)}=C \cdot 3^{n}$, for some constant C. So, by the theorem in previous section, the general solution to (21) is

$$
x_{n}=
$$

Homogeneous solution to homogeneous recurrence relation that corresponds to (21)

$$
x_{n}=3 x_{n-1} \text {, }
$$

is $x_{n}^{(h)}=C \cdot 3^{n}$, for some constant C. So, by the theorem in previous section, the general solution to (21) is

$$
x_{n}=x_{n}^{(h)}+x_{n}^{(p)}
$$

$$
=
$$

Homogeneous solution to homogeneous recurrence relation that corresponds to (21)

$$
x_{n}=3 x_{n-1} \text {, }
$$

is $x_{n}^{(h)}=C \cdot 3^{n}$, for some constant C. So, by the theorem in previous section, the general solution to (21) is

$$
\begin{aligned}
x_{n} & =x_{n}^{(h)}+x_{n}^{(p)} \\
& =C \cdot 3^{n}-n-\frac{3}{2} .
\end{aligned}
$$

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=5 x_{n-1}-6 x_{n-2}+7^{n} . \tag{22}
\end{equation*}
$$

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=5 x_{n-1}-6 x_{n-2}+7^{n} . \tag{22}
\end{equation*}
$$

Homogeneous solution of recurrence relation (22) is

$$
x_{n}^{(h)}=
$$

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=5 x_{n-1}-6 x_{n-2}+7^{n} . \tag{22}
\end{equation*}
$$

Homogeneous solution of recurrence relation (22) is

$$
x_{n}^{(h)}=A \cdot 3^{n}+B \cdot 2^{n},
$$

for some constants A and B. Because (22) is nonhomogeneous linear recurrence relation with $f(n)=$

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=5 x_{n-1}-6 x_{n-2}+7^{n} . \tag{22}
\end{equation*}
$$

Homogeneous solution of recurrence relation (22) is

$$
x_{n}^{(h)}=A \cdot 3^{n}+B \cdot 2^{n},
$$

for some constants A and B. Because (22) is nonhomogeneous linear recurrence relation with $f(n)=7^{n}$, a particular solution we can try is

$$
x_{n}^{(p)}=
$$

Example

Find all solutions to recurrence relation

$$
\begin{equation*}
x_{n}=5 x_{n-1}-6 x_{n-2}+7^{n} \tag{22}
\end{equation*}
$$

Homogeneous solution of recurrence relation (22) is

$$
x_{n}^{(h)}=A \cdot 3^{n}+B \cdot 2^{n}
$$

for some constants A and B. Because (22) is nonhomogeneous linear recurrence relation with $f(n)=7^{n}$, a particular solution we can try is

$$
x_{n}^{(p)}=\alpha \cdot 7^{n}, \text { for some constant } \alpha
$$

By substituting $x_{n}^{(p)}$ to (22), we have that

$$
\begin{aligned}
\alpha \cdot 7^{n}= & 5 \alpha \cdot 7^{n-1}-6 \alpha \cdot 7^{n-2}+7^{n}, \\
& \text { multiply both sides by } 7^{2} \text { to get }
\end{aligned}
$$

By substituting $x_{n}^{(p)}$ to (22), we have that

$$
\begin{aligned}
\alpha \cdot 7^{n}= & 5 \alpha \cdot 7^{n-1}-6 \alpha \cdot 7^{n-2}+7^{n}, \\
& \text { multiply both sides by } 7^{2} \text { to get } \\
49 \alpha \cdot 7^{n}= & 35 \alpha \cdot 7^{n}-6 \alpha \cdot 7^{n}+49 \cdot 7^{n}
\end{aligned}
$$

By substituting $x_{n}^{(p)}$ to (22), we have that

$$
\begin{aligned}
\alpha \cdot 7^{n}= & 5 \alpha \cdot 7^{n-1}-6 \alpha \cdot 7^{n-2}+7^{n}, \\
& \text { multiply both sides by } 7^{2} \text { to get } \\
49 \alpha \cdot 7^{n}= & 35 \alpha \cdot 7^{n}-6 \alpha \cdot 7^{n}+49 \cdot 7^{n} \\
20 \alpha \cdot 7^{n}= & 49 \cdot 7^{n}
\end{aligned}
$$

By substituting $x_{n}^{(p)}$ to (22), we have that

$$
\begin{aligned}
\alpha \cdot 7^{n}= & 5 \alpha \cdot 7^{n-1}-6 \alpha \cdot 7^{n-2}+7^{n}, \\
& \text { multiply both sides by } 7^{2} \text { to get } \\
49 \alpha \cdot 7^{n}= & 35 \alpha \cdot 7^{n}-6 \alpha \cdot 7^{n}+49 \cdot 7^{n} \\
20 \alpha \cdot 7^{n}= & 49 \cdot 7^{n} \\
\alpha= & \frac{49}{20} .
\end{aligned}
$$

Thus, $x_{n}^{(p)}=$

By substituting $x_{n}^{(p)}$ to (22), we have that

$$
\begin{aligned}
\alpha \cdot 7^{n}= & 5 \alpha \cdot 7^{n-1}-6 \alpha \cdot 7^{n-2}+7^{n}, \\
& \text { multiply both sides by } 7^{2} \text { to get } \\
49 \alpha \cdot 7^{n}= & 35 \alpha \cdot 7^{n}-6 \alpha \cdot 7^{n}+49 \cdot 7^{n} \\
20 \alpha \cdot 7^{n}= & 49 \cdot 7^{n} \\
\alpha= & \frac{49}{20} .
\end{aligned}
$$

Thus, $x_{n}^{(p)}=\frac{49}{20} \cdot 7^{n}$. We have the general solution to (22) is

$$
x_{n}=
$$

By substituting $x_{n}^{(p)}$ to (22), we have that

$$
\begin{aligned}
\alpha \cdot 7^{n}= & 5 \alpha \cdot 7^{n-1}-6 \alpha \cdot 7^{n-2}+7^{n}, \\
& \text { multiply both sides by } 7^{2} \text { to get } \\
49 \alpha \cdot 7^{n}= & 35 \alpha \cdot 7^{n}-6 \alpha \cdot 7^{n}+49 \cdot 7^{n} \\
20 \alpha \cdot 7^{n}= & 49 \cdot 7^{n} \\
\alpha= & \frac{49}{20} .
\end{aligned}
$$

Thus, $x_{n}^{(p)}=\frac{49}{20} \cdot 7^{n}$. We have the general solution to (22) is

$$
\begin{aligned}
x_{n} & =x_{n}^{(h)}+x_{n}^{(p)} \\
& =
\end{aligned}
$$

By substituting $x_{n}^{(p)}$ to (22), we have that

$$
\begin{aligned}
\alpha \cdot 7^{n}= & 5 \alpha \cdot 7^{n-1}-6 \alpha \cdot 7^{n-2}+7^{n}, \\
& \text { multiply both sides by } 7^{2} \text { to get } \\
49 \alpha \cdot 7^{n}= & 35 \alpha \cdot 7^{n}-6 \alpha \cdot 7^{n}+49 \cdot 7^{n} \\
20 \alpha \cdot 7^{n}= & 49 \cdot 7^{n} \\
\alpha= & \frac{49}{20} .
\end{aligned}
$$

Thus, $x_{n}^{(p)}=\frac{49}{20} \cdot 7^{n}$. We have the general solution to (22) is

$$
\begin{aligned}
x_{n} & =x_{n}^{(h)}+x_{n}^{(p)} \\
& =A \cdot 3^{n}+B \cdot 2^{n}+\frac{49}{20} \cdot 7^{n} .
\end{aligned}
$$

Theorem Related to Particular Solution

Theorem

Suppose the sequence (x_{n}) satisfies nonhomogeneous linear recurrence relation

$$
\begin{equation*}
x_{n}=c_{1} x_{n-1}+c_{2} x_{n-2}+\cdots+c_{k} x_{n-k}+f(n), \tag{23}
\end{equation*}
$$

with $c_{i}(i=1,2, \ldots, k)$ is a real number and

$$
f(n)=\left(d_{0}+d_{1} n+d_{2} n^{2}+\cdots+d_{t} n^{t}\right) s^{n},
$$

with $d_{i}(i=1,2, \ldots, k)$ and s are real numbers, then
(1) if s is not a root of characteristic equation of homogeneous recurrence relation that corresponds to (23) then there is a particular solution in the form of

$$
\left(A_{0}+A_{1} n+A_{2} n^{2}+\cdots+A_{t-1} n^{t-1}+A_{t} n^{t}\right) s^{n},
$$

with $A_{0}, \ldots, A_{t} \in \mathbb{R}$.
(0) if s a root with multiplicity m from characteristic equation of homogeneous recurrence relation corresponded to (23) then there is a particular solution in the form of

$$
n^{m}\left(A_{0}+A_{1} n+A_{2} n^{2}+\cdots+A_{t-1} n^{t-1}+A_{t} n^{t}\right) s^{n}
$$

with $A_{0}, \ldots, A_{t} \in \mathbb{R}$.

Exercise

Exercise

Find the possible particular solution of nonhomogeneous linear recurrence relation

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}+f(n), \tag{24}
\end{equation*}
$$

if
(1) $f(n)=3^{n}$,
(2) $f(n)=n \cdot 3^{n}$,

- $f(n)=n^{2} \cdot 2^{n}$, and
- $f(n)=\left(n^{2}+1\right) \cdot 3^{n}$.

Homogeneous recurrence relation that corresponds to (24) is

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{25}
\end{equation*}
$$

Its characteristic equation is

Homogeneous recurrence relation that corresponds to (24) is

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{25}
\end{equation*}
$$

Its characteristic equation is $\lambda^{2}-6 \lambda+9=0$, so we have its root is $r=3$ (with multiplicity 2). According to the theorem, we have homogeneous solution for (24) is

$$
x_{n}^{(h)}=
$$

Homogeneous recurrence relation that corresponds to (24) is

$$
\begin{equation*}
x_{n}=6 x_{n-1}-9 x_{n-2}, \tag{25}
\end{equation*}
$$

Its characteristic equation is $\lambda^{2}-6 \lambda+9=0$, so we have its root is $r=3$ (with multiplicity 2). According to the theorem, we have homogeneous solution for (24) is

$$
x_{n}^{(h)}=(A+B n) \cdot 3^{n} .
$$

(1) For $f(n)=3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form
(1) For $f(n)=3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=n^{2}\left(A_{0}\right) \cdot 3^{n}$.
(2) For $f(n)=n \cdot 3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form
(1) For $f(n)=3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=n^{2}\left(A_{0}\right) \cdot 3^{n}$.
(2) For $f(n)=n \cdot 3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=n^{2}\left(A_{0}+A_{1} n\right) \cdot 3^{n}$.
(0) For $f(n)=n^{2} \cdot 2^{n}$, because 2 is not a characteristic root for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form
(1) For $f(n)=3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=n^{2}\left(A_{0}\right) \cdot 3^{n}$.
(2) For $f(n)=n \cdot 3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=n^{2}\left(A_{0}+A_{1} n\right) \cdot 3^{n}$.

- For $f(n)=n^{2} \cdot 2^{n}$, because 2 is not a characteristic root for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=\left(A_{0}+A_{1} n+A_{2} n^{2}\right) \cdot 2^{n}$.
(- For $f(n)=\left(n^{2}+1\right) \cdot 3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form
(1) For $f(n)=3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=n^{2}\left(A_{0}\right) \cdot 3^{n}$.
(2) For $f(n)=n \cdot 3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=n^{2}\left(A_{0}+A_{1} n\right) \cdot 3^{n}$.
(0) For $f(n)=n^{2} \cdot 2^{n}$, because 2 is not a characteristic root for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=\left(A_{0}+A_{1} n+A_{2} n^{2}\right) \cdot 2^{n}$.
(0) For $f(n)=\left(n^{2}+1\right) \cdot 3^{n}$, because 3 is a characteristic root with multiplicity 2 for homogeneous linear recurrence relation (25), then according to the theorem, the possible particular solution is of the form $x_{n}^{(p)}=n^{2}\left(A_{0}+A_{1} n+A_{2} n^{2}\right) \cdot 3^{n}$.

