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Motivation

Motivation: Why do we need predicate logic?

In propositional logic discussion, we’ve seen that propositional formulas can be
useful for describing and determining the consistency of a system specification in
computer science. However, propositional logic is not always practical.

In propositional logic, every atomic fact is denoted using different propositional
variable, e.g.:

“Alex is a student” is denoted by p,

“Bernard is a student” is denoted by q, and

“Calvin is a student” is denoted by r.

In the above examples, we don’t see the relationship between p, q, and r,
although all of these propositions state that “someone” is a student.
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Motivation

In English, each of the previous phrases has a similar structure:

Alex︸︷︷︸
Subject

is a student︸ ︷︷ ︸
Predicate

Bernard︸ ︷︷ ︸
Subject

is a student︸ ︷︷ ︸
Predicate

Calvin︸ ︷︷ ︸
Subject

is a student︸ ︷︷ ︸
Predicate
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Motivation

Predicate

From propositional logic, we know that “x > 2021” is a statement , but not a
proposition.

The statement “x > 2021”or “x is larger than 2021”consists of:

variable x which is a member of a particular set, let’s denote this set by D
(from the word domain);
predicate “is larger than 2021”.

The set D is called the domain or the universe of discourse.
The statement “x > 2021”can be written as P (x), where P is a predicate and x
is a variable.

P (x) does not have a truth value unless x is replaced by an element in D.
The number of variable(s) observed in a predicate P is called the arity of P .

A unary predicate is a predicate with arity 1.
A binary predicate is a predicate with arity 2.
A ternary predicate is a predicate with arity 3.
An n-ary predicate is a predicate with arity n.
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Motivation

Atomic Propositions in Predicate Logic

By using predicate logic, atomic propositions in our previous example have similar
structures. Suppose we have

“Alex is a student”.

“Bernard is a student”

“Calvin is a student”.

All of these three propositions can be denoted respectively as Student (Alex),
Student (Bernard), and Student (Calvin). In these propositions, Student is a
predicate and Alex, Bernard, Calvin are called constants. In these examples,
Student is a predicate with arity 1 and the domain D can be a collection of all
people in the world.

To express “x is a student” in predicate logic, we can write Student (x).
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Motivation

Suppose we have following propositions:

“Alex likes crepes”

“Bernard likes meatball”

“Calvin likes pizza”

These propositions can be denoted respectively as Likes (Alex, crepes),
Likes (Bernard,meatball), and Likes (Calvin, pizza). In these propositions, ,
Likes is a predicate with arity 2 and the domain of the predicate can be
D1 ×D2 = {(x, y) | x is a person and y is a food}. This means D1 is a
collection of all people and D2 is the collection of all foods. The order of the
domain cannot be swapped over, D1 ×D2 is not equal to D2 ×D1.

To denote “(person) x likes (food) y”, we write Likes (x, y).

MZI (SoC Tel-U) Predicate Logic 1 October 2023 9 / 48



Motivation

Suppose we have following propositions:

“Alex likes crepes”

“Bernard likes meatball”

“Calvin likes pizza”

These propositions can be denoted respectively as Likes (Alex, crepes),
Likes (Bernard,meatball), and Likes (Calvin, pizza). In these propositions, ,
Likes is a predicate with arity

2 and the domain of the predicate can be
D1 ×D2 = {(x, y) | x is a person and y is a food}. This means D1 is a
collection of all people and D2 is the collection of all foods. The order of the
domain cannot be swapped over, D1 ×D2 is not equal to D2 ×D1.

To denote “(person) x likes (food) y”, we write Likes (x, y).

MZI (SoC Tel-U) Predicate Logic 1 October 2023 9 / 48



Motivation

Suppose we have following propositions:

“Alex likes crepes”

“Bernard likes meatball”

“Calvin likes pizza”

These propositions can be denoted respectively as Likes (Alex, crepes),
Likes (Bernard,meatball), and Likes (Calvin, pizza). In these propositions, ,
Likes is a predicate with arity 2 and the domain of the predicate can be
D1 ×D2 = {(x, y) | x is a person and y is a food}. This means D1 is a
collection of all people and D2 is the collection of all foods. The order of the
domain cannot be swapped over, D1 ×D2 is not equal to D2 ×D1.

To denote “(person) x likes (food) y”, we write Likes (x, y).

MZI (SoC Tel-U) Predicate Logic 1 October 2023 9 / 48



Motivation

Predicate logic can be used to logically express following sentences in more formal,
precise, and detailed ways:

There exists an informatics student who sits in front of a computer every day.

Every freshman in informatics major takes Calculus 1.

Predicate logic is used in the following deduction:

“Every freshman in informatics major takes Calculus 1”
“Alex is an informatics freshman”
“Therefore, Alex takes Calculus 1”

Remark
Predicate logic covered in this Mathematical Logic course is also called as
first-order predicate logic or simply first-order logic. In this type of logic,
quantification is applied to variables representing elements in particular domains
(this will be discussed later in the slides).
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Motivation

Predicate as a function (1)

A predicate with arity n can be considered as a function from D1 ×D2 × · · · ×Dn
to {F,T}, where D1 ×D2 × · · · ×Dn is a set of ordered tuple (d1, d2, . . . , dn)
with di ∈ Di for each i = 1, 2, . . . , n.

Example
A unary predicate P with P (x) denotes “x > 2021”can be considered as a
function

P : D → {F,T} ,

where D is the set of observed numbers. The truth values of P (2021) and
P (2022) according to P (x) are obtained as follows:

P (2021) ≡ (2021 > 2021) ≡ F because 2021 > 2021 is false
P (2022) ≡ (2022 > 2021) ≡ T because 2022 > 2021 is true.
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where D is the set of observed numbers. The truth values of P (2021) and
P (2022) according to P (x) are obtained as follows:

P (2021) ≡ (2021 > 2021) ≡ F because 2021 > 2021 is false
P (2022) ≡ (2022 > 2021) ≡ T because

2022 > 2021 is true.
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Motivation

Predicate as a function (2)

Example
A binary predicate Q with Q (x, y) denotes “2x = 3y”can be considered as a
function

Q : D ×D → {F,T} ,

where D is the set of observed numbers. The truth values of Q (1, 2) and Q (3, 2)
according to Q (x, y) are obtained as follows:

Q (1, 2) ≡ (2 · 1 = 3 · 2) ≡ F because 2 · 1 = 3 · 2 is false
Q (3, 2) ≡ (2 · 3 = 3 · 2) ≡ T because 2 · 3 = 3 · 2 is true
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Motivation

Predicate as a function (3)

Example
A ternary predicate R with R (x, y, z) denotes “x+ y = z”can be considered as a
function

R : D ×D ×D → {F,T} ,

where D is the set of observed numbers. The truth values of R (1, 2, 3) and
R (3, 2, 1) according to R (x, y, z) are obtained as follows:

R (1, 2, 3) ≡ (1 + 2 = 3) ≡ T because 1 + 2 = 3 is true.
R (3, 2, 1) ≡ (3 + 2 = 1) ≡ F because 3 + 2 = 1 is false.
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Motivation

We’ve seen the methods for verifying the truth values of predicates with arity 1, 2,
and 3.

How about predicates with arity 0 (i.e., nullary predicate)?

The truth value of a predicate with arity 0 does not depend on any element
in the domain D,

the truth value of a predicate with arity 0 always equal regardless the element
in D, in other words, the truth value remains constant,

a proposition in propositional logic which we’ve learned earlier can be
considered as a predicate with arity 0.
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Quantification and Quantifier

Quantification and Quantifier

In a predicate, there are two types of quantification which can be applied to
variables:

1 universal quantification
2 existential quantification

These quantifications express the extent to which range a predicate is true over a
range of elements. In English, the words all, some, many, none, and few are used
in quantification.
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Quantification and Quantifier

Universal Quantification

Universal Quantification
Universal quantification for predicate P (x) is the statement

“P (x) for all (every) element x in the domain D”

This statement is denoted symbolically as

∀x ∈ D P (x) , or

∀x P (x) , if D is clear from context.

P (x) is the scope of quantification ∀x.
The above formulation is usually read as

“For all (every) x in D we have P (x)”, or

“P (x) is true for every x in the universe of discourse”

The symbol ∀ is called the universal quantifier .
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More About Universal Quantification

If the domain D is finite, for example, suppose D = {a1, a2, . . . , an}, then we have

∀x P (x) ≡

P (a1) ∧ P (a2) ∧ · · · ∧ P (an)

∀x P (x) is false if there is (at least) one x in D that makes P (x) false.

The value x which makes ∀x P (x) false is called the counterexample of the
statement ∀x P (x).

Example
Suppose there are three people in a particular classroom, Alice, Bob, and Charlie.
The statement “everyone in the classroom is a student” can be expressed as
“Alice, Bob, and Charlie are students in the classroom”. The statement “everyone
in the classroom is a student” is false if at least one of Alice, Bob, or Charlie is
not a student. Suppose, for example, Bob is not a student in the classroom, then
Bob is the counterexample of the statement “everyone in the classroom is a
student”.
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Quantification and Quantifier

Existential Quantification

Existential Quantification
Existential quantification for predicate P (x) is the statement

“P (x) for some (at least one) element x in the domain D”

This statement is denoted symbolically as

∃x ∈ D P (x) , or

∃x P (x) , if D is clear from context.

P (x) is the scope of quantification ∃x.
The above formulation is usually read as

“There is an x in D such that P (x)”, or

“There is at least one x in the universe of discourse such that P (x)”

The symbol ∃ is called the existential quantifier .
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Quantification and Quantifier

More About Existential Quantification

If the domain D is finite, for example, suppose D = {a1, a2, . . . , an}, then we have

∃x P (x) ≡

P (a1) ∨ P (a2) ∨ · · · ∨ P (an)

∃x P (x) is false if all x in D make P (x) false.

Example
Suppose there are three people in a particular classroom, Alice, Bob, and Charlie.
The statement “there is a student in the classroom”can be expressed as “Alice or
Bob or Charlie is a student in the classroom”. The statement “there is a student
in the classroom” is false, if everyone in the classroom, i.e., Alice, Bob, and
Charlie is not a student.
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Quantification and Quantifier

Truth Value of a Quantified Predicate

∀x P (x) ∃x P (x)
true when P (x) is true There is an x

for every x for which P (x) is true
false when There is an x P (x) is false

for which P (x) is false for every x
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Bounded and Free Variables

Bounded and Free Variables
Suppose P is a unary predicate, a variable x occurs in P (x) is called bounded
variable if

1 x is replaced by a particular element in domain D, or
2 x is bounded by a particular quantifier (∀x or ∃x)

A variable that is not bounded is called free variable. The terminology concerning
bounded and free variables are not only for unary predicate, but also for other
predicates with arity n > 1.
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Example
Suppose P is a binary predicate, P (x, y) is evaluated in domain D1 ×D2, we
have:

in ∀x ∈ D1 P (x, y) we have x is a bounded variable and y is a free variable
in ∀y ∈ D2 P (x, y) we have y is a bounded variable and x is a free variable
in ∀x ∈ D1 P (x, d2) we have x and y are bounded variables (variable y is
replaced by d2)

in ∃y ∈ D2 P (d1, y) we have x and y are bounded variables (variable x is
replaced by d1)

in ∃x ∈ D1 ∀y ∈ D2 P (x, y) we have x and y are bounded variables
in ∃y ∈ D2 ∀x ∈ D1 P (x, y) we have x and y are bounded variables
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Example
Suppose Q is a ternary predicate, Q (x, y, z) is evaluated in domain
D1 ×D2 ×D3, we have:

in ∀x ∈ D1 Q (x, y, z) we have x is a bounded variable, y and z are free
variables

in ∃x ∈ D1 ∀y ∈ D2 Q (x, y, z) we have x and y are bounded variables, z is
a free variable

in ∃x ∈ D1 ∃y ∈ D2 ∀z ∈ D3 Q (x, y, z) we have x, y, and z are bounded
variables

in Q (d1, y, d3) we have x and z are bounded variables (variables x and z are
respectively replaced by d1 and d3), y is a free variable
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Bounded and Free Variables, Nested Quantifier

Example
Suppose Q is a ternary predicate, Q (x, y, z) is evaluated in domain
D1 ×D2 ×D3, we have:

in ∀x ∈ D1 Q (x, y, z) we have x is a bounded variable, y and z are free
variables

in ∃x ∈ D1 ∀y ∈ D2 Q (x, y, z) we have x and y are bounded variables, z is
a free variable

in ∃x ∈ D1 ∃y ∈ D2 ∀z ∈ D3 Q (x, y, z) we have x, y, and z are bounded
variables

in Q (d1, y, d3) we have x and z are bounded variables (variables x and z are
respectively replaced by d1 and d3), y is a free variable

MZI (SoC Tel-U) Predicate Logic 1 October 2023 25 / 48



Bounded and Free Variables, Nested Quantifier

Example
Suppose Q is a ternary predicate, Q (x, y, z) is evaluated in domain
D1 ×D2 ×D3, we have:

in ∀x ∈ D1 Q (x, y, z) we have x is a bounded variable, y and z are free
variables

in ∃x ∈ D1 ∀y ∈ D2 Q (x, y, z) we have

x and y are bounded variables, z is
a free variable

in ∃x ∈ D1 ∃y ∈ D2 ∀z ∈ D3 Q (x, y, z) we have x, y, and z are bounded
variables

in Q (d1, y, d3) we have x and z are bounded variables (variables x and z are
respectively replaced by d1 and d3), y is a free variable

MZI (SoC Tel-U) Predicate Logic 1 October 2023 25 / 48



Bounded and Free Variables, Nested Quantifier

Example
Suppose Q is a ternary predicate, Q (x, y, z) is evaluated in domain
D1 ×D2 ×D3, we have:

in ∀x ∈ D1 Q (x, y, z) we have x is a bounded variable, y and z are free
variables

in ∃x ∈ D1 ∀y ∈ D2 Q (x, y, z) we have x and y are bounded variables, z is
a free variable

in ∃x ∈ D1 ∃y ∈ D2 ∀z ∈ D3 Q (x, y, z) we have x, y, and z are bounded
variables

in Q (d1, y, d3) we have x and z are bounded variables (variables x and z are
respectively replaced by d1 and d3), y is a free variable

MZI (SoC Tel-U) Predicate Logic 1 October 2023 25 / 48



Bounded and Free Variables, Nested Quantifier

Example
Suppose Q is a ternary predicate, Q (x, y, z) is evaluated in domain
D1 ×D2 ×D3, we have:

in ∀x ∈ D1 Q (x, y, z) we have x is a bounded variable, y and z are free
variables

in ∃x ∈ D1 ∀y ∈ D2 Q (x, y, z) we have x and y are bounded variables, z is
a free variable

in ∃x ∈ D1 ∃y ∈ D2 ∀z ∈ D3 Q (x, y, z) we have

x, y, and z are bounded
variables

in Q (d1, y, d3) we have x and z are bounded variables (variables x and z are
respectively replaced by d1 and d3), y is a free variable

MZI (SoC Tel-U) Predicate Logic 1 October 2023 25 / 48



Bounded and Free Variables, Nested Quantifier

Example
Suppose Q is a ternary predicate, Q (x, y, z) is evaluated in domain
D1 ×D2 ×D3, we have:

in ∀x ∈ D1 Q (x, y, z) we have x is a bounded variable, y and z are free
variables

in ∃x ∈ D1 ∀y ∈ D2 Q (x, y, z) we have x and y are bounded variables, z is
a free variable

in ∃x ∈ D1 ∃y ∈ D2 ∀z ∈ D3 Q (x, y, z) we have x, y, and z are bounded
variables

in Q (d1, y, d3) we have x and z are bounded variables (variables x and z are
respectively replaced by d1 and d3), y is a free variable

MZI (SoC Tel-U) Predicate Logic 1 October 2023 25 / 48



Bounded and Free Variables, Nested Quantifier

Example
Suppose Q is a ternary predicate, Q (x, y, z) is evaluated in domain
D1 ×D2 ×D3, we have:

in ∀x ∈ D1 Q (x, y, z) we have x is a bounded variable, y and z are free
variables

in ∃x ∈ D1 ∀y ∈ D2 Q (x, y, z) we have x and y are bounded variables, z is
a free variable

in ∃x ∈ D1 ∃y ∈ D2 ∀z ∈ D3 Q (x, y, z) we have x, y, and z are bounded
variables

in Q (d1, y, d3) we have

x and z are bounded variables (variables x and z are
respectively replaced by d1 and d3), y is a free variable

MZI (SoC Tel-U) Predicate Logic 1 October 2023 25 / 48



Bounded and Free Variables, Nested Quantifier

Example
Suppose Q is a ternary predicate, Q (x, y, z) is evaluated in domain
D1 ×D2 ×D3, we have:

in ∀x ∈ D1 Q (x, y, z) we have x is a bounded variable, y and z are free
variables

in ∃x ∈ D1 ∀y ∈ D2 Q (x, y, z) we have x and y are bounded variables, z is
a free variable

in ∃x ∈ D1 ∃y ∈ D2 ∀z ∈ D3 Q (x, y, z) we have x, y, and z are bounded
variables

in Q (d1, y, d3) we have x and z are bounded variables (variables x and z are
respectively replaced by d1 and d3), y is a free variable

MZI (SoC Tel-U) Predicate Logic 1 October 2023 25 / 48



Bounded and Free Variables, Nested Quantifier

Formula with Nested Quantifier

Let P be a ternary predicate whose universe of discourse is D1 ×D2 ×D3. When
D1, D2, and D3 are clear from context, then the formula

∀x ∈ D1 ∃y ∈ D2 ∀z ∈ D3 P (x, y, z)

can be simplified as
∀x∃y∀z P (x, y, z)

This rule is also applied to any predicate with arity n > 1.

In other words, we may omit writing the domain whenever the domain is clear
from context.
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Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means

“for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words

“every lecturers in Tel-U at least teaches one subject”,
2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means

“there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”

or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means

“there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words

“there is a lecture in Tel-U who teaches every subject”,
4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means

“for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words

“every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example
Suppose Teach (x, y) means “person x teaches subject y”where the domain of x
is the set of all lecturers in Tel-U and the domain of y is the set of all courses in
Tel-U, then ∀x∃y Teach (x, y), ∃y∀x Teach (x, y), ∃x∀y Teach (x, y),
∀y∃x Teach (x, y) have different meanings:

1 ∀x∃y Teach (x, y) means “for every lecturer x, he/she teaches a subject y”
or in other words “every lecturers in Tel-U at least teaches one subject”,

2 ∃y∀x Teach (x, y) means “there is a subject y which is taught by every
lecturer x”or in other words “there is a subject taught by every lecturer in
Tel-U”,

3 ∃x∀y Teach (x, y) means “there is a lecturer x who teaches every subject y”
or in other words “there is a lecture in Tel-U who teaches every subject”,

4 ∀y∃x Teach (x, y) means “for every subject y, there is a lecturer x who
teaches y”or in other words “every subject in Tel-U is taught by someone”.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 27 / 48



Bounded and Free Variables, Nested Quantifier

Quantifier Scope

Quantifier Scope
In predicate logic expression ∀x∃y Teach (x, y) we have

∀x∃y Teach (x, y)︸ ︷︷ ︸
scope of ∃y︸ ︷︷ ︸

scope of ∀x

∃y contains Teach (x, y), in subformula ∃y Teach (x, y) variable x is a free
variable.

∀x contains ∃y Teach (x, y), in subformula ∀x∃y Teach (x, y) variable x is a
bounded variable.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 28 / 48



Bounded and Free Variables, Nested Quantifier

Quantifier Scope

Quantifier Scope
In predicate logic expression ∀x∃y Teach (x, y) we have

∀x∃y Teach (x, y)︸ ︷︷ ︸
scope of ∃y︸ ︷︷ ︸

scope of ∀x

∃y contains Teach (x, y), in subformula ∃y Teach (x, y) variable x is a free
variable.

∀x contains ∃y Teach (x, y), in subformula ∀x∃y Teach (x, y) variable x is a
bounded variable.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 28 / 48



Bounded and Free Variables, Nested Quantifier

Quantifier Scope

Quantifier Scope
In predicate logic expression ∀x∃y Teach (x, y) we have

∀x∃y Teach (x, y)︸ ︷︷ ︸
scope of ∃y︸ ︷︷ ︸

scope of ∀x

∃y contains Teach (x, y), in subformula ∃y Teach (x, y) variable x is a free
variable.

∀x contains ∃y Teach (x, y), in subformula ∀x∃y Teach (x, y) variable x is a
bounded variable.

MZI (SoC Tel-U) Predicate Logic 1 October 2023 28 / 48



Precedence of Quantifiers and Other Logical Operators

Contents

1 Motivation

2 Quantification and Quantifier

3 Bounded and Free Variables, Nested Quantifier

4 Precedence of Quantifiers and Other Logical Operators

5 Predicate Formulas (Supplementary)

MZI (SoC Tel-U) Predicate Logic 1 October 2023 29 / 48



Precedence of Quantifiers and Other Logical Operators

Precedence of Quantifiers and Other Operators

Suppose we have a logical expression ∀x P (x) ∧Q (x). We need to put the
parentheses to make the expression clear, which one is correct?

1 ∀x (P (x) ∧Q (x))
2 (∀x P (x)) ∧Q (x)

In predicate logic, the quantifier ∀ and ∃ bind more tightly than other logical
operators.
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Precedence of Quantifiers and Other Logical Operators

The precedence of quantifier and logical operators in predicate logic is described
by following table:

Operator Precedence

∀ 1
∃ 2
¬ 3
∧ 4
∨ 5
⊕ 6
→ 7
↔ 8

Therefore ∀x P (x) ∧Q (x) means

(∀x P (x)) ∧Q (x).
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Predicate Formulas (Supplementary)

Terms in Predicate Logic

Predicate formulas are made up of terms which are defined as follows:

Terms
1 Any variable is a term. Variables are usually denoted by lowercase letters:
u, v, w, x, y, z, u1, u2, . . ., v1, v2, . . ., w1, w2, . . ., x1, x2, . . ., y1, y2, . . .,
z1, z2, . . ..

2 All constants in the domain (or universe of discourse) are terms. Constants
are usually denoted by lowercase letters: a, b, c, a1, a2, . . ., b1, b2, . . .,
c1, c2, . . ., or concretely. For example, constants might be numbers 0, 1, 2 (if
the domain is a particular set of numbers), constants might be names Alex,
Bob, or Charlie (if the domain is a particular set of people), etc.

3 If t1, t2, . . . , tn are terms and f is a function with arity n ≥ 1, then
f (t1, t2, . . . , tn) is also term. In this case, f is considered as a function with
n variable whose value is a single term.
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Example
Suppose f is a unary function and g is a binary function, a and b are constants, x
and y are variables, then:

1 a, b, x, and y are terms.
2 f (a), f (b), f (x), f (y) are terms, because f is a unary function.
3 g (a, b), g (y, x), g (b, y), g (x, x),

are terms, because g is a binary function.
4 g (a), g (b), g (x), g (y) are NOT terms, because g is a binary function.
5 f (f (a)), f (f (b)), f (f (c)) are terms, because f (· · · ) is a term and f is a
unary function.

6 g (a, f (x)), g (a, f (y)), g (f (b) , f (y)), g (y, f (x)) are terms, because a, y,
and f (· · · ) are terms and g is a binary function.

7 f (a, b), f (x, y), f (y, f (x)) are NOT terms, because f is a unary function.
8 g (a, b, x), g (f (a) , y, f (x)), g (y, f (a) , g (x, b)) are NOT terms, because g
is a binary function.

9 g (g (a, b) , g (x, y)), g (f (a) , f (f (x))), are terms .
10 g (f (a)), f (g (a)), g (x, f (x, y)) are NOT terms because f is a unary
function and g is a binary function.
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Predicate Formulas (Supplementary)

Example
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Predicate Formulas (Supplementary)

Subterm

Subterm
1 A term t is a subterm of t itself.
2 If s and t are two terms used for constructing more complex term u, then s
and t are proper subterm of u.

3 Subterm is transitive: if s is a subterm of t and t is a subterm of u, then s is
subterm of u.

Example
Suppose 1 and 2 are constants, x is a variable, f is a unary function, and + and
× are binary function. Let t be a term 1 + (2× f (x)), then the subterm of t are
(1)

1 + (2× f (x)), (2) 2× f (x), (3) f (x), (4) 1, (5) 2, and (6) x.
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Predicate Formulas (Supplementary)

Exercise
Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and
+ and × are binary function. Determine all subterms of
(1 + f (1))× ((1 + x)× (y + 2)).

Solution:

subterms of (1 + f (1))× ((1 + x)× (y + 2)) are:

(1 + f (1))× ((1 + x)× (y + 2))
1 + f (1)

(1 + x)× (y + 2)
1 + x

y + 2

f (1)

1

2

x

y
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Exercise
Suppose 2 is a constant, x and y are variables, s is a unary function, and −, +, ∗
are binary function. Determine all subterms of (2− s (x)) + (y ∗ x).

Solution:

subterms of (2− s (x)) + (y ∗ x) are:

(2− s (x)) + (y ∗ x)
2− s (x)
y ∗ x
s (x)

2

x

y
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Parse Tree of A Term

Parse tree can be used to visualize the structure of a term in predicate logic.
For example, if 2 is a constant, x and y are variables, s is a unary function, and
−, +, ∗ are binary function, then the parse tree for term (2− (s (x) + y)) ∗ x is
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Predicate Formulas (Supplementary)

Predicate Formulas

Predicate Formulas
Formulas (or sentences) in predicate logic are made up of:

1 propositional constant: T (true) or F (false)
2 expression P (t1, t2, . . . , tn) where t1, t2, . . . , tn are terms and P is an n-ary
predicate with n ≥ 1

3 logical operators: ¬,∧,∨,⊕,→,↔
and comply following rules:

1 every well-defined expression P (t1, t2, . . . , tn) is a predicate formula,
2 if A and B are two predicate formulas, then ¬A, A ∧B, A ∨B, A⊕B,
A→ B, A↔ B, are all predicate formulas,

3 if A is a predicate formulas and x is a variable, then both of ∀x A and ∃x A
are predicate formulas.
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Predicate Formulas (Supplementary)

Examples of Predicate Formulas

Example
According to the previous definition, if P , Q, R, S are predicates, then we have:

1 ∀xP (x) ∧Q (x) is a predicate formula, this formula can be written as
(∀xP (x)) ∧Q (x), variable x in Q (x) is a free variable.

2 ∃∀xP (x) ∨Q (x, y) is not a predicate formula (because the expression ∃∀x is
not well-defined).

3 ∀x∃P (x→ Q (x))

is not a predicate formula (because the expression ∃P is
not well-defined).

4 ∀x∃y (P (x, y)→ S (y, y)) is a predicate formula, which can be written as
∀x (∃y (P (x, y)→ S (y, y))).
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Example
5 ∃x∀y (S (x, z) ∧ S (y, x))

is a predicate formula, which can be written as
∃x (∀y (S (x, z) ∧ S (y, x))), variable z in S (x, z) is a free variable.

6 ∀x∀y (P (x, y) ∨Q) is not a predicate formula (because the expression Q
without argument is not well-defined).

7 ∀z∃y (P (x)→ Q (y)) is a predicate formula, which can be written as
∀z (∃y (P (x)→ Q (y))), variable x in P (x) is a free variable.

8 P (x) ∧ (Q (x, y)→ ∃R (R (x))) is not a predicate formula (because the
expression R (R (x)) is not well-defined).
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Predicate Formulas (Supplementary)

Exercise
Suppose x and y are variables, a and b are constants over a particular domain D,
f is a unary function over D, g is a binary function over D, P is a unary
predicate, and Q is a binary predicate. Verify whether following expressions are
well-defined predicate formulas.

1 ∀xP (g (f (a) , x))

Predicate formula.

2 ∃x∀y (P (x)→ Q (y, y)).

Predicate formula.

3 ∃x (Q (x)→ P (x, y)).

Not a predicate formula.

4 Q (a, g (f (a) , f (b))).

Predicate formula.

5 P (a, f (x)).

Not a predicate formula.

6 g (x, y)→ f (a).

Not a predicate formula.

7 ∃x∀y (f (x)→ g (x, y)).

Not a predicate formula.

8 ∀x (P (x)→ g (a, f (x))).

Not a predicate formula.

9 ∃y (Q (y, y)↔ P (y)).

Predicate formula.

10 ∃y∃x (Q (y, x) ∧ P (g (x, y))→ P (a)).

Predicate formula.
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Predicate Formulas (Supplementary)

Subformula

The definition of subformula in predicate logic is analogous to the definition of
subformula in propositional logic.

Subformula
1 A formula A is a subformula of A itself.
2 If A and B are two propositional formulas used to construct a more complex
propositional formula C, then A and B are proper subformulas of C.

3 Subformula is transitive: if A is a subformula of B and B is a subformula of
C, then A is a subformula of C.

Example
Let A be a formula ∀x∃y (P (x) ∧Q (y, z)→ R (x, z)), then the subformula of A
are (1)

∀x∃y (P (x) ∧Q (y, z)→ R (x, z)), (2) ∃y (P (x) ∧Q (y, z)→ R (x, z)),
(3) P (x) ∧Q (y, z)→ R (x, z), (4) P (x) ∧Q (y, z), (5) P (x), (6) Q (y, z), and
(7) R (x, z).
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Predicate Formulas (Supplementary)

Exercise
Let m be a constant in the observed domain, determine all subformulas of
∀x∀y (F (x,m) ∧ S (y, x)→ B (x,m)).

Solution:

subformulas of ∀x∀y (F (x,m) ∧ S (y, x)→ B (x,m)) are:

∀x∀y (F (x,m) ∧ S (y, x)→ B (x,m))

∀y (F (x,m) ∧ S (y, x)→ B (x,m))

F (x,m) ∧ S (y, x)→ B (x,m)

F (x,m) ∧ S (y, x)
F (x,m)

S (y, x)

B (x,m)
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Solution: subformulas of ∀x∀y (F (x,m) ∧ S (y, x)→ B (x,m)) are:

∀x∀y (F (x,m) ∧ S (y, x)→ B (x,m))

∀y (F (x,m) ∧ S (y, x)→ B (x,m))

F (x,m) ∧ S (y, x)→ B (x,m)

F (x,m) ∧ S (y, x)
F (x,m)

S (y, x)

B (x,m)
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Predicate Formulas (Supplementary)

Exercise
Determine all subformulas of ∃x (∃z P (y, z) ∧ ∀y (¬Q (y, x) ∨ ∃z ¬P (y, z))).

Solution:

subformulas of ∃x (∃z P (y, z) ∧ ∀y (¬Q (y, x) ∨ ∃z ¬P (y, z))) are:
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∃z P (y, z)
∀y (¬Q (y, x) ∨ ∃z ¬P (y, z))
¬Q (y, x) ∨ ∃z ¬P (y, z)
∃z ¬P (y, z)
¬P (y, z)
¬Q (y, x)
P (y, z)

Q (y, x)
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Parse Tree of a Formula

Parse tree is useful to visualize the structure of a predicate formula.
For example, the parse tree of ∀x ((P (x)→ Q (x)) ∧ S (x, y)) is



Parse Tree of a Formula

Parse tree is useful to visualize the structure of a predicate formula.
For example, the parse tree of ∀x ((P (x)→ Q (x)) ∧ S (x, y)) is



Predicate Formulas (Supplementary)

Exercise
Let x, y, z be variables, a be a constant, f be a unary function, and B,E,M,S be
predicates. Draw the parse tree of each of these formulas.

1 ∀x∃y (M (x, y) ∧ ∀z (M (z, y))→ E (x, z)).
2 ∀x∃y∀z (M (x, y) ∧ (M (z, y)→ E (x, z))).
3 ∀x (∃y S (x, f (y))→ B (x, f (a))).
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