Predicate Logic 1: Motivation - Parse Tree Mathematical Logic - First Term 2023-2024

MZI
School of Computing
Telkom University

SoC Tel-U
October 2023

Acknowledgements

This slide is compiled using the materials in the following sources:
© Discrete Mathematics and Its Applications (Chapter 1), 8th Edition, 2019, by K. H. Rosen (primary reference).
(2) Discrete Mathematics with Applications (Chapter 3), 5th Edition, 2018, by S. S. Epp.

- Logic in Computer Science: Modelling and Reasoning about Systems (Chapter 2), 2nd Edition, 2004, by M. Huth and M. Ryan.
- Mathematical Logic for Computer Science (Chapter 5, 6), 2nd Edition, 2000, by M. Ben-Ari.
- Discrete Mathematics 1 (2012) slides in Fasilkom UI by B. H. Widjaja.
- Mathematical Logic slides in Telkom University by A. Rakhmatsyah and B. Purnama.

Some figures are excerpted from those sources. This slide is intended for internal academic purpose in SoC Telkom University. No slides are ever free from error nor incapable of being improved. Please convey your comments and corrections (if any) to <pleasedontspam>@telkomuniversity.ac.id.

Contents

(1) Motivation
(2) Quantification and Quantifier
(3) Bounded and Free Variables, Nested Quantifier
(4) Precedence of Quantifiers and Other Logical Operators
(5) Predicate Formulas (Supplementary)

Contents

(1) Motivation

(2) Quantification and Quantifier
(3) Bounded and Free Variables, Nested Quantifier
(4) Precedence of Quantifiers and Other Logical Operators
(5) Predicate Formulas (Supplementary)

Motivation: Why do we need predicate logic?

In propositional logic discussion, we've seen that propositional formulas can be useful for describing and determining the consistency of a system specification in computer science. However, propositional logic is not always practical.

Motivation: Why do we need predicate logic?

In propositional logic discussion, we've seen that propositional formulas can be useful for describing and determining the consistency of a system specification in computer science. However, propositional logic is not always practical.

In propositional logic, every atomic fact is denoted using different propositional variable, e.g.:

Motivation: Why do we need predicate logic?

In propositional logic discussion, we've seen that propositional formulas can be useful for describing and determining the consistency of a system specification in computer science. However, propositional logic is not always practical.

In propositional logic, every atomic fact is denoted using different propositional variable, e.g.:

- "Alex is a student" is denoted by p,
- "Bernard is a student" is denoted by q, and
- "Calvin is a student" is denoted by r.

Motivation: Why do we need predicate logic?

In propositional logic discussion, we've seen that propositional formulas can be useful for describing and determining the consistency of a system specification in computer science. However, propositional logic is not always practical.

In propositional logic, every atomic fact is denoted using different propositional variable, e.g.:

- "Alex is a student" is denoted by p,
- "Bernard is a student" is denoted by q, and
- "Calvin is a student" is denoted by r.

In the above examples, we don't see the relationship between p, q, and r, although all of these propositions state that "someone" is a student.

In English, each of the previous phrases has a similar structure:

In English, each of the previous phrases has a similar structure: - $\underbrace{\text { Alex }}_{\text {Subject }} \underbrace{\text { is a student }}_{\text {Predicate }}$

In English, each of the previous phrases has a similar structure:

- $\underbrace{\text { Alex }}_{\text {Subject }} \underbrace{\text { is a student }}_{\text {Predicate }}$
- $\underbrace{\text { Bernard }}_{\text {Subject }} \underbrace{\text { is a student }}_{\text {Predicate }}$

In English, each of the previous phrases has a similar structure:

- $\underbrace{\text { Alex }}_{\text {Subject }} \underbrace{\text { is a student }}_{\text {Predicate }}$
- Bernard is a student Subject Predicate
- $\underbrace{\text { Calvin }} \underbrace{\text { is a student }}$

Subject Predicate

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

- variable x which is a member of a particular set, let's denote this set by D (from the word domain);

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

- variable x which is a member of a particular set, let's denote this set by D (from the word domain);
- predicate "is larger than 2021".

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

- variable x which is a member of a particular set, let's denote this set by D (from the word domain);
- predicate "is larger than 2021".

The set D is called the domain or the universe of discourse.

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

- variable x which is a member of a particular set, let's denote this set by D (from the word domain);
- predicate "is larger than 2021".

The set D is called the domain or the universe of discourse.
The statement " $x>2021$ " can be written as $P(x)$, where P is a predicate and x is a variable.

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

- variable x which is a member of a particular set, let's denote this set by D (from the word domain);
- predicate "is larger than 2021".

The set D is called the domain or the universe of discourse.
The statement " $x>2021$ " can be written as $P(x)$, where P is a predicate and x is a variable.
$P(x)$ does not have a truth value unless x is replaced by an element in D. The number of variable(s) observed in a predicate P is called the arity of P.

- A unary predicate is a predicate with arity

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

- variable x which is a member of a particular set, let's denote this set by D (from the word domain);
- predicate "is larger than 2021".

The set D is called the domain or the universe of discourse.
The statement " $x>2021$ " can be written as $P(x)$, where P is a predicate and x is a variable.
$P(x)$ does not have a truth value unless x is replaced by an element in D. The number of variable(s) observed in a predicate P is called the arity of P.

- A unary predicate is a predicate with arity 1 .
- A binary predicate is a predicate with arity

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

- variable x which is a member of a particular set, let's denote this set by D (from the word domain);
- predicate "is larger than 2021".

The set D is called the domain or the universe of discourse.
The statement " $x>2021$ " can be written as $P(x)$, where P is a predicate and x is a variable.
$P(x)$ does not have a truth value unless x is replaced by an element in D. The number of variable(s) observed in a predicate P is called the arity of P.

- A unary predicate is a predicate with arity 1 .
- A binary predicate is a predicate with arity 2 .
- A ternary predicate is a predicate with arity

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

- variable x which is a member of a particular set, let's denote this set by D (from the word domain);
- predicate "is larger than 2021".

The set D is called the domain or the universe of discourse.
The statement " $x>2021$ " can be written as $P(x)$, where P is a predicate and x is a variable.
$P(x)$ does not have a truth value unless x is replaced by an element in D. The number of variable(s) observed in a predicate P is called the arity of P.

- A unary predicate is a predicate with arity 1 .
- A binary predicate is a predicate with arity 2 .
- A ternary predicate is a predicate with arity 3 .
- An n-ary predicate is a predicate with arity

Predicate

From propositional logic, we know that " $x>2021$ " is a statement, but not a proposition.
The statement " $x>2021$ " or " x is larger than 2021" consists of:

- variable x which is a member of a particular set, let's denote this set by D (from the word domain);
- predicate "is larger than 2021".

The set D is called the domain or the universe of discourse.
The statement " $x>2021$ " can be written as $P(x)$, where P is a predicate and x is a variable.
$P(x)$ does not have a truth value unless x is replaced by an element in D. The number of variable(s) observed in a predicate P is called the arity of P.

- A unary predicate is a predicate with arity 1 .
- A binary predicate is a predicate with arity 2 .
- A ternary predicate is a predicate with arity 3 .
- An n-ary predicate is a predicate with arity n.

Atomic Propositions in Predicate Logic

By using predicate logic, atomic propositions in our previous example have similar structures. Suppose we have

- "Alex is a student".
- "Bernard is a student"
- "Calvin is a student".

Atomic Propositions in Predicate Logic

By using predicate logic, atomic propositions in our previous example have similar structures. Suppose we have

- "Alex is a student".
- "Bernard is a student"
- "Calvin is a student".

All of these three propositions can be denoted respectively as Student (Alex), Student (Bernard), and Student (Calvin). In these propositions, Student is a predicate and Alex, Bernard, Calvin are called constants. In these examples, Student is a predicate with arity

Atomic Propositions in Predicate Logic

By using predicate logic, atomic propositions in our previous example have similar structures. Suppose we have

- "Alex is a student".
- "Bernard is a student"
- "Calvin is a student".

All of these three propositions can be denoted respectively as Student (Alex), Student (Bernard), and Student (Calvin). In these propositions, Student is a predicate and Alex, Bernard, Calvin are called constants. In these examples, Student is a predicate with arity 1 and the domain D can be a collection of all people in the world.

To express " x is a student" in predicate logic, we can write Student (x).

Suppose we have following propositions:

- "Alex likes crepes"
- "Bernard likes meatball"
- "Calvin likes pizza"

Suppose we have following propositions:

- "Alex likes crepes"
- "Bernard likes meatball"
- "Calvin likes pizza"

These propositions can be denoted respectively as Likes (Alex, crepes), Likes (Bernard, meatball), and Likes (Calvin, pizza). In these propositions, , Likes is a predicate with arity

Suppose we have following propositions:

- "Alex likes crepes"
- "Bernard likes meatball"
- "Calvin likes pizza"

These propositions can be denoted respectively as Likes (Alex, crepes), Likes (Bernard, meatball), and Likes (Calvin, pizza). In these propositions, , Likes is a predicate with arity 2 and the domain of the predicate can be $D_{1} \times D_{2}=\{(x, y) \mid x$ is a person and y is a food $\}$. This means D_{1} is a collection of all people and D_{2} is the collection of all foods. The order of the domain cannot be swapped over, $D_{1} \times D_{2}$ is not equal to $D_{2} \times D_{1}$.

To denote "(person) x likes (food) y ", we write Likes (x, y).

Predicate logic can be used to logically express following sentences in more formal, precise, and detailed ways:

- There exists an informatics student who sits in front of a computer every day.
- Every freshman in informatics major takes Calculus 1.

Predicate logic can be used to logically express following sentences in more formal, precise, and detailed ways:

- There exists an informatics student who sits in front of a computer every day.
- Every freshman in informatics major takes Calculus 1.

Predicate logic is used in the following deduction:
"Every freshman in informatics major takes Calculus 1"
"Alex is an informatics freshman"
"Therefore, Alex takes Calculus 1"

Remark

Predicate logic can be used to logically express following sentences in more formal, precise, and detailed ways:

- There exists an informatics student who sits in front of a computer every day.
- Every freshman in informatics major takes Calculus 1.

Predicate logic is used in the following deduction:
"Every freshman in informatics major takes Calculus 1"
"Alex is an informatics freshman"
"Therefore, Alex takes Calculus 1"

Remark

Predicate logic covered in this Mathematical Logic course is also called as first-order predicate logic or simply first-order logic. In this type of logic, quantification is applied to variables representing elements in particular domains (this will be discussed later in the slides).

Predicate as a function (1)

A predicate with arity n can be considered as a function from $D_{1} \times D_{2} \times \cdots \times D_{n}$ to $\{\mathrm{F}, \mathrm{T}\}$, where $D_{1} \times D_{2} \times \cdots \times D_{n}$ is a set of ordered tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \in D_{i}$ for each $i=1,2, \ldots, n$.

Example

A unary predicate P with $P(x)$ denotes " $x>2021$ " can be considered as a function

$$
P: D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $P(2021)$ and $P(2022)$ according to $P(x)$ are obtained as follows:

Predicate as a function (1)

A predicate with arity n can be considered as a function from $D_{1} \times D_{2} \times \cdots \times D_{n}$ to $\{\mathrm{F}, \mathrm{T}\}$, where $D_{1} \times D_{2} \times \cdots \times D_{n}$ is a set of ordered tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \in D_{i}$ for each $i=1,2, \ldots, n$.

Example

A unary predicate P with $P(x)$ denotes " $x>2021$ " can be considered as a function

$$
P: D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $P(2021)$ and $P(2022)$ according to $P(x)$ are obtained as follows:

- $P(2021) \equiv$

Predicate as a function (1)

A predicate with arity n can be considered as a function from $D_{1} \times D_{2} \times \cdots \times D_{n}$ to $\{\mathrm{F}, \mathrm{T}\}$, where $D_{1} \times D_{2} \times \cdots \times D_{n}$ is a set of ordered tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \in D_{i}$ for each $i=1,2, \ldots, n$.

Example

A unary predicate P with $P(x)$ denotes " $x>2021$ " can be considered as a function

$$
P: D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $P(2021)$ and $P(2022)$ according to $P(x)$ are obtained as follows:

- $P(2021) \equiv(2021>2021) \equiv$

Predicate as a function (1)

A predicate with arity n can be considered as a function from $D_{1} \times D_{2} \times \cdots \times D_{n}$ to $\{\mathrm{F}, \mathrm{T}\}$, where $D_{1} \times D_{2} \times \cdots \times D_{n}$ is a set of ordered tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \in D_{i}$ for each $i=1,2, \ldots, n$.

Example

A unary predicate P with $P(x)$ denotes " $x>2021$ " can be considered as a function

$$
P: D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $P(2021)$ and $P(2022)$ according to $P(x)$ are obtained as follows:

- $P(2021) \equiv(2021>2021) \equiv \mathrm{F}$ because

Predicate as a function (1)

A predicate with arity n can be considered as a function from $D_{1} \times D_{2} \times \cdots \times D_{n}$ to $\{\mathrm{F}, \mathrm{T}\}$, where $D_{1} \times D_{2} \times \cdots \times D_{n}$ is a set of ordered tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \in D_{i}$ for each $i=1,2, \ldots, n$.

Example

A unary predicate P with $P(x)$ denotes " $x>2021$ " can be considered as a function

$$
P: D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $P(2021)$ and $P(2022)$ according to $P(x)$ are obtained as follows:

- $P(2021) \equiv(2021>2021) \equiv \mathrm{F}$ because $2021>2021$ is false
- $P(2022) \equiv$

Predicate as a function (1)

A predicate with arity n can be considered as a function from $D_{1} \times D_{2} \times \cdots \times D_{n}$ to $\{\mathrm{F}, \mathrm{T}\}$, where $D_{1} \times D_{2} \times \cdots \times D_{n}$ is a set of ordered tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \in D_{i}$ for each $i=1,2, \ldots, n$.

Example

A unary predicate P with $P(x)$ denotes " $x>2021$ " can be considered as a function

$$
P: D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $P(2021)$ and $P(2022)$ according to $P(x)$ are obtained as follows:

- $P(2021) \equiv(2021>2021) \equiv \mathrm{F}$ because $2021>2021$ is false
- $P(2022) \equiv(2022>2021) \equiv$

Predicate as a function (1)

A predicate with arity n can be considered as a function from $D_{1} \times D_{2} \times \cdots \times D_{n}$ to $\{\mathrm{F}, \mathrm{T}\}$, where $D_{1} \times D_{2} \times \cdots \times D_{n}$ is a set of ordered tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \in D_{i}$ for each $i=1,2, \ldots, n$.

Example

A unary predicate P with $P(x)$ denotes " $x>2021$ " can be considered as a function

$$
P: D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $P(2021)$ and $P(2022)$ according to $P(x)$ are obtained as follows:

- $P(2021) \equiv(2021>2021) \equiv \mathrm{F}$ because $2021>2021$ is false
- $P(2022) \equiv(2022>2021) \equiv \mathrm{T}$ because

Predicate as a function (1)

A predicate with arity n can be considered as a function from $D_{1} \times D_{2} \times \cdots \times D_{n}$ to $\{\mathrm{F}, \mathrm{T}\}$, where $D_{1} \times D_{2} \times \cdots \times D_{n}$ is a set of ordered tuple $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $d_{i} \in D_{i}$ for each $i=1,2, \ldots, n$.

Example

A unary predicate P with $P(x)$ denotes " $x>2021$ " can be considered as a function

$$
P: D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $P(2021)$ and $P(2022)$ according to $P(x)$ are obtained as follows:

- $P(2021) \equiv(2021>2021) \equiv \mathrm{F}$ because $2021>2021$ is false
- $P(2022) \equiv(2022>2021) \equiv \mathrm{T}$ because $2022>2021$ is true.

Predicate as a function (2)

Example

A binary predicate Q with $Q(x, y)$ denotes " $2 x=3 y$ " can be considered as a function

$$
Q: D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $Q(1,2)$ and $Q(3,2)$ according to $Q(x, y)$ are obtained as follows:

Predicate as a function (2)

Example

A binary predicate Q with $Q(x, y)$ denotes " $2 x=3 y$ " can be considered as a function

$$
Q: D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $Q(1,2)$ and $Q(3,2)$ according to $Q(x, y)$ are obtained as follows:

- $Q(1,2) \equiv$

Predicate as a function (2)

Example

A binary predicate Q with $Q(x, y)$ denotes " $2 x=3 y$ " can be considered as a function

$$
Q: D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $Q(1,2)$ and $Q(3,2)$ according to $Q(x, y)$ are obtained as follows:

- $Q(1,2) \equiv(2 \cdot 1=3 \cdot 2) \equiv$

Predicate as a function (2)

Example

A binary predicate Q with $Q(x, y)$ denotes " $2 x=3 y$ " can be considered as a function

$$
Q: D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $Q(1,2)$ and $Q(3,2)$ according to $Q(x, y)$ are obtained as follows:

- $Q(1,2) \equiv(2 \cdot 1=3 \cdot 2) \equiv \mathrm{F}$ because

Predicate as a function (2)

Example

A binary predicate Q with $Q(x, y)$ denotes " $2 x=3 y$ " can be considered as a function

$$
Q: D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $Q(1,2)$ and $Q(3,2)$ according to $Q(x, y)$ are obtained as follows:

- $Q(1,2) \equiv(2 \cdot 1=3 \cdot 2) \equiv \mathrm{F}$ because $2 \cdot 1=3 \cdot 2$ is false
- $Q(3,2) \equiv$

Predicate as a function (2)

Example

A binary predicate Q with $Q(x, y)$ denotes " $2 x=3 y$ " can be considered as a function

$$
Q: D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $Q(1,2)$ and $Q(3,2)$ according to $Q(x, y)$ are obtained as follows:

- $Q(1,2) \equiv(2 \cdot 1=3 \cdot 2) \equiv \mathrm{F}$ because $2 \cdot 1=3 \cdot 2$ is false
- $Q(3,2) \equiv(2 \cdot 3=3 \cdot 2) \equiv$

Predicate as a function (2)

Example

A binary predicate Q with $Q(x, y)$ denotes " $2 x=3 y$ " can be considered as a function

$$
Q: D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $Q(1,2)$ and $Q(3,2)$ according to $Q(x, y)$ are obtained as follows:

- $Q(1,2) \equiv(2 \cdot 1=3 \cdot 2) \equiv \mathrm{F}$ because $2 \cdot 1=3 \cdot 2$ is false
- $Q(3,2) \equiv(2 \cdot 3=3 \cdot 2) \equiv \mathrm{T}$ because

Predicate as a function (2)

Example

A binary predicate Q with $Q(x, y)$ denotes " $2 x=3 y$ " can be considered as a function

$$
Q: D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $Q(1,2)$ and $Q(3,2)$ according to $Q(x, y)$ are obtained as follows:

- $Q(1,2) \equiv(2 \cdot 1=3 \cdot 2) \equiv \mathrm{F}$ because $2 \cdot 1=3 \cdot 2$ is false
- $Q(3,2) \equiv(2 \cdot 3=3 \cdot 2) \equiv \mathrm{T}$ because $2 \cdot 3=3 \cdot 2$ is true

Predicate as a function (3)

Example

A ternary predicate R with $R(x, y, z)$ denotes " $x+y=z$ " can be considered as a function

$$
R: D \times D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $R(1,2,3)$ and $R(3,2,1)$ according to $R(x, y, z)$ are obtained as follows:

Predicate as a function (3)

Example

A ternary predicate R with $R(x, y, z)$ denotes " $x+y=z$ " can be considered as a function

$$
R: D \times D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $R(1,2,3)$ and $R(3,2,1)$ according to $R(x, y, z)$ are obtained as follows:

- $R(1,2,3) \equiv$

Predicate as a function (3)

Example

A ternary predicate R with $R(x, y, z)$ denotes " $x+y=z$ " can be considered as a function

$$
R: D \times D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $R(1,2,3)$ and $R(3,2,1)$ according to $R(x, y, z)$ are obtained as follows:

- $R(1,2,3) \equiv(1+2=3) \equiv$

Predicate as a function (3)

Example

A ternary predicate R with $R(x, y, z)$ denotes " $x+y=z$ " can be considered as a function

$$
R: D \times D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $R(1,2,3)$ and $R(3,2,1)$ according to $R(x, y, z)$ are obtained as follows:

- $R(1,2,3) \equiv(1+2=3) \equiv \mathrm{T}$ because

Predicate as a function (3)

Example

A ternary predicate R with $R(x, y, z)$ denotes " $x+y=z$ " can be considered as a function

$$
R: D \times D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $R(1,2,3)$ and $R(3,2,1)$ according to $R(x, y, z)$ are obtained as follows:

- $R(1,2,3) \equiv(1+2=3) \equiv \mathrm{T}$ because $1+2=3$ is true.
- $R(3,2,1) \equiv$

Predicate as a function (3)

Example

A ternary predicate R with $R(x, y, z)$ denotes " $x+y=z$ " can be considered as a function

$$
R: D \times D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $R(1,2,3)$ and $R(3,2,1)$ according to $R(x, y, z)$ are obtained as follows:

- $R(1,2,3) \equiv(1+2=3) \equiv \mathrm{T}$ because $1+2=3$ is true.
- $R(3,2,1) \equiv(3+2=1) \equiv$

Predicate as a function (3)

Example

A ternary predicate R with $R(x, y, z)$ denotes " $x+y=z$ " can be considered as a function

$$
R: D \times D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\},
$$

where D is the set of observed numbers. The truth values of $R(1,2,3)$ and $R(3,2,1)$ according to $R(x, y, z)$ are obtained as follows:

- $R(1,2,3) \equiv(1+2=3) \equiv \mathrm{T}$ because $1+2=3$ is true.
- $R(3,2,1) \equiv(3+2=1) \equiv \mathrm{F}$ because

Predicate as a function (3)

Example

A ternary predicate R with $R(x, y, z)$ denotes " $x+y=z$ " can be considered as a function

$$
R: D \times D \times D \rightarrow\{\mathrm{~F}, \mathrm{~T}\}
$$

where D is the set of observed numbers. The truth values of $R(1,2,3)$ and $R(3,2,1)$ according to $R(x, y, z)$ are obtained as follows:

- $R(1,2,3) \equiv(1+2=3) \equiv \mathrm{T}$ because $1+2=3$ is true.
- $R(3,2,1) \equiv(3+2=1) \equiv \mathrm{F}$ because $3+2=1$ is false.

We've seen the methods for verifying the truth values of predicates with arity 1,2 , and 3.

We've seen the methods for verifying the truth values of predicates with arity 1,2 , and 3 . How about predicates with arity 0 (i.e., nullary predicate)?

We've seen the methods for verifying the truth values of predicates with arity 1,2 , and 3 . How about predicates with arity 0 (i.e., nullary predicate)?

- The truth value of a predicate with arity 0 does not depend on any element in the domain D,

We've seen the methods for verifying the truth values of predicates with arity 1,2 , and 3 . How about predicates with arity 0 (i.e., nullary predicate)?

- The truth value of a predicate with arity 0 does not depend on any element in the domain D,
- the truth value of a predicate with arity 0 always equal regardless the element in D, in other words, the truth value remains constant,

We've seen the methods for verifying the truth values of predicates with arity 1,2 , and 3 . How about predicates with arity 0 (i.e., nullary predicate)?

- The truth value of a predicate with arity 0 does not depend on any element in the domain D,
- the truth value of a predicate with arity 0 always equal regardless the element in D, in other words, the truth value remains constant,
- a proposition in propositional logic which we've learned earlier can be considered as a predicate with arity 0 .

Contents

(1) Motivation

(2) Quantification and Quantifier

(3) Bounded and Free Variables, Nested Quantifier

(4) Precedence of Quantifiers and Other Logical Operators
(5) Predicate Formulas (Supplementary)

Quantification and Quantifier

In a predicate, there are two types of quantification which can be applied to variables:
(1) universal quantification
(2) existential quantification

These quantifications express the extent to which range a predicate is true over a range of elements. In English, the words all, some, many, none, and few are used in quantification.

Universal Quantification

Universal Quantification

Universal quantification for predicate $P(x)$ is the statement
" $P(x)$ for all (every) element x in the domain D "
This statement is denoted symbolically as

$$
\begin{aligned}
& \forall x \in D P(x), \text { or } \\
& \forall x P(x), \text { if } D \text { is clear from context. }
\end{aligned}
$$

$P(x)$ is the scope of quantification $\forall x$. The above formulation is usually read as
"For all (every) x in D we have $P(x)$ ", or
" $P(x)$ is true for every x in the universe of discourse"
The symbol \forall is called the universal quantifier.

More About Universal Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\forall x P(x) \equiv
$$

More About Universal Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\forall x P(x) \equiv P\left(a_{1}\right) \wedge P\left(a_{2}\right) \wedge \cdots \wedge P\left(a_{n}\right)
$$

More About Universal Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\forall x P(x) \equiv P\left(a_{1}\right) \wedge P\left(a_{2}\right) \wedge \cdots \wedge P\left(a_{n}\right)
$$

$\forall x P(x)$ is false if there is (at least) one x in D that makes $P(x)$ false.

More About Universal Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\forall x P(x) \equiv P\left(a_{1}\right) \wedge P\left(a_{2}\right) \wedge \cdots \wedge P\left(a_{n}\right)
$$

$\forall x P(x)$ is false if there is (at least) one x in D that makes $P(x)$ false.
The value x which makes $\forall x P(x)$ false is called the counterexample of the statement $\forall x P(x)$.

Example

Suppose there are three people in a particular classroom, Alice, Bob, and Charlie.

More About Universal Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\forall x P(x) \equiv P\left(a_{1}\right) \wedge P\left(a_{2}\right) \wedge \cdots \wedge P\left(a_{n}\right)
$$

$\forall x P(x)$ is false if there is (at least) one x in D that makes $P(x)$ false.
The value x which makes $\forall x P(x)$ false is called the counterexample of the statement $\forall x P(x)$.

Example

Suppose there are three people in a particular classroom, Alice, Bob, and Charlie. The statement "everyone in the classroom is a student" can be expressed as

More About Universal Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\forall x P(x) \equiv P\left(a_{1}\right) \wedge P\left(a_{2}\right) \wedge \cdots \wedge P\left(a_{n}\right)
$$

$\forall x P(x)$ is false if there is (at least) one x in D that makes $P(x)$ false.
The value x which makes $\forall x P(x)$ false is called the counterexample of the statement $\forall x P(x)$.

Example

Suppose there are three people in a particular classroom, Alice, Bob, and Charlie. The statement "everyone in the classroom is a student" can be expressed as "Alice, Bob, and Charlie are students in the classroom".

More About Universal Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\forall x P(x) \equiv P\left(a_{1}\right) \wedge P\left(a_{2}\right) \wedge \cdots \wedge P\left(a_{n}\right)
$$

$\forall x P(x)$ is false if there is (at least) one x in D that makes $P(x)$ false.
The value x which makes $\forall x P(x)$ false is called the counterexample of the statement $\forall x P(x)$.

Example

Suppose there are three people in a particular classroom, Alice, Bob, and Charlie. The statement "everyone in the classroom is a student" can be expressed as "Alice, Bob, and Charlie are students in the classroom". The statement "everyone in the classroom is a student" is false if at least one of Alice, Bob, or Charlie is not a student.

More About Universal Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\forall x P(x) \equiv P\left(a_{1}\right) \wedge P\left(a_{2}\right) \wedge \cdots \wedge P\left(a_{n}\right)
$$

$\forall x P(x)$ is false if there is (at least) one x in D that makes $P(x)$ false.
The value x which makes $\forall x P(x)$ false is called the counterexample of the statement $\forall x P(x)$.

Example

Suppose there are three people in a particular classroom, Alice, Bob, and Charlie. The statement "everyone in the classroom is a student" can be expressed as "Alice, Bob, and Charlie are students in the classroom". The statement "everyone in the classroom is a student" is false if at least one of Alice, Bob, or Charlie is not a student. Suppose, for example, Bob is not a student in the classroom, then Bob is the counterexample of the statement "everyone in the classroom is a student".

Existential Quantification

Existential Quantification

Existential quantification for predicate $P(x)$ is the statement
" $P(x)$ for some (at least one) element x in the domain D "
This statement is denoted symbolically as

$$
\begin{aligned}
& \exists x \in D P(x), \text { or } \\
& \exists x P(x), \text { if } D \text { is clear from context. }
\end{aligned}
$$

$P(x)$ is the scope of quantification $\exists x$. The above formulation is usually read as
"There is an x in D such that $P(x)$ ", or
"There is at least one x in the universe of discourse such that $P(x)$ "
The symbol \exists is called the existential quantifier.

More About Existential Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\exists x P(x) \equiv
$$

More About Existential Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\exists x P(x) \equiv P\left(a_{1}\right) \vee P\left(a_{2}\right) \vee \cdots \vee P\left(a_{n}\right)
$$

More About Existential Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\exists x P(x) \equiv P\left(a_{1}\right) \vee P\left(a_{2}\right) \vee \cdots \vee P\left(a_{n}\right)
$$

$\exists x P(x)$ is false if all x in D make $P(x)$ false.

Example

Suppose there are three people in a particular classroom, Alice, Bob, and Charlie.

More About Existential Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\exists x P(x) \equiv P\left(a_{1}\right) \vee P\left(a_{2}\right) \vee \cdots \vee P\left(a_{n}\right)
$$

$\exists x P(x)$ is false if all x in D make $P(x)$ false.

Example

Suppose there are three people in a particular classroom, Alice, Bob, and Charlie. The statement "there is a student in the classroom" can be expressed as

More About Existential Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\exists x P(x) \equiv P\left(a_{1}\right) \vee P\left(a_{2}\right) \vee \cdots \vee P\left(a_{n}\right)
$$

$\exists x P(x)$ is false if all x in D make $P(x)$ false.

Example

Suppose there are three people in a particular classroom, Alice, Bob, and Charlie. The statement "there is a student in the classroom" can be expressed as "Alice or Bob or Charlie is a student in the classroom".

More About Existential Quantification

If the domain D is finite, for example, suppose $D=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then we have

$$
\exists x P(x) \equiv P\left(a_{1}\right) \vee P\left(a_{2}\right) \vee \cdots \vee P\left(a_{n}\right)
$$

$\exists x P(x)$ is false if all x in D make $P(x)$ false.

Example

Suppose there are three people in a particular classroom, Alice, Bob, and Charlie. The statement "there is a student in the classroom" can be expressed as "Alice or Bob or Charlie is a student in the classroom". The statement "there is a student in the classroom" is false, if everyone in the classroom, i.e., Alice, Bob, and Charlie is not a student.

Truth Value of a Quantified Predicate

	$\forall x P(x)$	$\exists x P(x)$
true when	$P(x)$ is true for every x	There is an x for which $P(x)$ is true
false when	There is an x for which $P(x)$ is false	$P(x)$ is false for every x

Contents

(1) Motivation

(2) Quantification and Quantifier
(3) Bounded and Free Variables, Nested Quantifier

4 Precedence of Quantifiers and Other Logical Operators
(5) Predicate Formulas (Supplementary)

Bounded and Free Variables

Bounded and Free Variables

Suppose P is a unary predicate, a variable x occurs in $P(x)$ is called bounded variable if
(1) x is replaced by a particular element in domain D, or
(0) x is bounded by a particular quantifier ($\forall x$ or $\exists x$)

A variable that is not bounded is called free variable. The terminology concerning bounded and free variables are not only for unary predicate, but also for other predicates with arity $n>1$.

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have y is a bounded variable and x is a free variable

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have y is a bounded variable and x is a free variable
- in $\forall x \in D_{1} P\left(x, d_{2}\right)$ we have

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have y is a bounded variable and x is a free variable
- in $\forall x \in D_{1} P\left(x, d_{2}\right)$ we have x and y are bounded variables (variable y is replaced by d_{2})

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have y is a bounded variable and x is a free variable
- in $\forall x \in D_{1} P\left(x, d_{2}\right)$ we have x and y are bounded variables (variable y is replaced by d_{2})
- in $\exists y \in D_{2} P\left(d_{1}, y\right)$ we have

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have y is a bounded variable and x is a free variable
- in $\forall x \in D_{1} P\left(x, d_{2}\right)$ we have x and y are bounded variables (variable y is replaced by d_{2})
- in $\exists y \in D_{2} P\left(d_{1}, y\right)$ we have x and y are bounded variables (variable x is replaced by d_{1})

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have y is a bounded variable and x is a free variable
- in $\forall x \in D_{1} P\left(x, d_{2}\right)$ we have x and y are bounded variables (variable y is replaced by d_{2})
- in $\exists y \in D_{2} P\left(d_{1}, y\right)$ we have x and y are bounded variables (variable x is replaced by d_{1})
- in $\exists x \in D_{1} \forall y \in D_{2} P(x, y)$ we have

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have y is a bounded variable and x is a free variable
- in $\forall x \in D_{1} P\left(x, d_{2}\right)$ we have x and y are bounded variables (variable y is replaced by d_{2})
- in $\exists y \in D_{2} P\left(d_{1}, y\right)$ we have x and y are bounded variables (variable x is replaced by d_{1})
- in $\exists x \in D_{1} \forall y \in D_{2} P(x, y)$ we have x and y are bounded variables

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have y is a bounded variable and x is a free variable
- in $\forall x \in D_{1} P\left(x, d_{2}\right)$ we have x and y are bounded variables (variable y is replaced by d_{2})
- in $\exists y \in D_{2} P\left(d_{1}, y\right)$ we have x and y are bounded variables (variable x is replaced by d_{1})
- in $\exists x \in D_{1} \forall y \in D_{2} P(x, y)$ we have x and y are bounded variables
- in $\exists y \in D_{2} \forall x \in D_{1} P(x, y)$ we have

Example

Suppose P is a binary predicate, $P(x, y)$ is evaluated in domain $D_{1} \times D_{2}$, we have:

- in $\forall x \in D_{1} P(x, y)$ we have x is a bounded variable and y is a free variable
- in $\forall y \in D_{2} P(x, y)$ we have y is a bounded variable and x is a free variable
- in $\forall x \in D_{1} P\left(x, d_{2}\right)$ we have x and y are bounded variables (variable y is replaced by d_{2})
- in $\exists y \in D_{2} P\left(d_{1}, y\right)$ we have x and y are bounded variables (variable x is replaced by d_{1})
- in $\exists x \in D_{1} \forall y \in D_{2} P(x, y)$ we have x and y are bounded variables
- in $\exists y \in D_{2} \forall x \in D_{1} P(x, y)$ we have x and y are bounded variables

Example

Suppose Q is a ternary predicate, $Q(x, y, z)$ is evaluated in domain $D_{1} \times D_{2} \times D_{3}$, we have:

Example

Suppose Q is a ternary predicate, $Q(x, y, z)$ is evaluated in domain $D_{1} \times D_{2} \times D_{3}$, we have:

- in $\forall x \in D_{1} Q(x, y, z)$ we have x is a bounded variable, y and z are free variables

Example

Suppose Q is a ternary predicate, $Q(x, y, z)$ is evaluated in domain $D_{1} \times D_{2} \times D_{3}$, we have:

- in $\forall x \in D_{1} Q(x, y, z)$ we have x is a bounded variable, y and z are free variables
- in $\exists x \in D_{1} \forall y \in D_{2} Q(x, y, z)$ we have

Example

Suppose Q is a ternary predicate, $Q(x, y, z)$ is evaluated in domain $D_{1} \times D_{2} \times D_{3}$, we have:

- in $\forall x \in D_{1} Q(x, y, z)$ we have x is a bounded variable, y and z are free variables
- in $\exists x \in D_{1} \forall y \in D_{2} Q(x, y, z)$ we have x and y are bounded variables, z is a free variable

Example

Suppose Q is a ternary predicate, $Q(x, y, z)$ is evaluated in domain $D_{1} \times D_{2} \times D_{3}$, we have:

- in $\forall x \in D_{1} Q(x, y, z)$ we have x is a bounded variable, y and z are free variables
- in $\exists x \in D_{1} \forall y \in D_{2} Q(x, y, z)$ we have x and y are bounded variables, z is a free variable
- in $\exists x \in D_{1} \exists y \in D_{2} \forall z \in D_{3} Q(x, y, z)$ we have

Example

Suppose Q is a ternary predicate, $Q(x, y, z)$ is evaluated in domain $D_{1} \times D_{2} \times D_{3}$, we have:

- in $\forall x \in D_{1} Q(x, y, z)$ we have x is a bounded variable, y and z are free variables
- in $\exists x \in D_{1} \forall y \in D_{2} Q(x, y, z)$ we have x and y are bounded variables, z is a free variable
- in $\exists x \in D_{1} \exists y \in D_{2} \forall z \in D_{3} Q(x, y, z)$ we have x, y, and z are bounded variables

Example

Suppose Q is a ternary predicate, $Q(x, y, z)$ is evaluated in domain $D_{1} \times D_{2} \times D_{3}$, we have:

- in $\forall x \in D_{1} Q(x, y, z)$ we have x is a bounded variable, y and z are free variables
- in $\exists x \in D_{1} \forall y \in D_{2} Q(x, y, z)$ we have x and y are bounded variables, z is a free variable
- in $\exists x \in D_{1} \exists y \in D_{2} \forall z \in D_{3} Q(x, y, z)$ we have x, y, and z are bounded variables
- in $Q\left(d_{1}, y, d_{3}\right)$ we have

Example

Suppose Q is a ternary predicate, $Q(x, y, z)$ is evaluated in domain $D_{1} \times D_{2} \times D_{3}$, we have:

- in $\forall x \in D_{1} Q(x, y, z)$ we have x is a bounded variable, y and z are free variables
- in $\exists x \in D_{1} \forall y \in D_{2} Q(x, y, z)$ we have x and y are bounded variables, z is a free variable
- in $\exists x \in D_{1} \exists y \in D_{2} \forall z \in D_{3} Q(x, y, z)$ we have x, y, and z are bounded variables
- in $Q\left(d_{1}, y, d_{3}\right)$ we have x and z are bounded variables (variables x and z are respectively replaced by d_{1} and d_{3}), y is a free variable

Formula with Nested Quantifier

Let P be a ternary predicate whose universe of discourse is $D_{1} \times D_{2} \times D_{3}$. When D_{1}, D_{2}, and D_{3} are clear from context, then the formula

$$
\forall x \in D_{1} \exists y \in D_{2} \forall z \in D_{3} P(x, y, z)
$$

can be simplified as

$$
\forall x \exists y \forall z P(x, y, z)
$$

This rule is also applied to any predicate with arity $n>1$.
In other words, we may omit writing the domain whenever the domain is clear from context.

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach (x, y), $\exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach (x, y), $\exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach (x, y), $\exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach (x, y), $\exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach (x, y), $\exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",
(2) $\exists y \forall x$ Teach (x, y) means

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach (x, y), $\exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",
(3) $\exists y \forall x$ Teach (x, y) means "there is a subject y which is taught by every lecturer x "

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach (x, y), $\exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",
(2) $\exists y \forall x$ Teach (x, y) means "there is a subject y which is taught by every lecturer x " or in other words "there is a subject taught by every lecturer in Tel-U",

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach (x, y), $\exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",
(2) $\exists y \forall x$ Teach (x, y) means "there is a subject y which is taught by every lecturer x " or in other words "there is a subject taught by every lecturer in Tel-U",

- $\exists x \forall y$ Teach (x, y) means

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach $(x, y), \exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",
(2) $\exists y \forall x$ Teach (x, y) means "there is a subject y which is taught by every lecturer x " or in other words "there is a subject taught by every lecturer in Tel-U",
© $\exists x \forall y$ Teach (x, y) means "there is a lecturer x who teaches every subject y " or in other words

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach $(x, y), \exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",
(2) $\exists y \forall x$ Teach (x, y) means "there is a subject y which is taught by every lecturer x " or in other words "there is a subject taught by every lecturer in Tel-U",

- $\exists x \forall y$ Teach (x, y) means "there is a lecturer x who teaches every subject y " or in other words "there is a lecture in Tel-U who teaches every subject",

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach $(x, y), \exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",
(2) $\exists y \forall x$ Teach (x, y) means "there is a subject y which is taught by every lecturer x " or in other words "there is a subject taught by every lecturer in Tel-U",

- $\exists x \forall y$ Teach (x, y) means "there is a lecturer x who teaches every subject y " or in other words "there is a lecture in Tel-U who teaches every subject",
- $\forall y \exists x$ Teach (x, y) means

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach $(x, y), \exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",
(2) $\exists y \forall x$ Teach (x, y) means "there is a subject y which is taught by every lecturer x " or in other words "there is a subject taught by every lecturer in Tel-U",

- $\exists x \forall y$ Teach (x, y) means "there is a lecturer x who teaches every subject y " or in other words "there is a lecture in Tel-U who teaches every subject",
- $\forall y \exists x$ Teach (x, y) means "for every subject y, there is a lecturer x who teaches y " or in other words

Occurrence Order of (Nested) Quantifiers

The occurrence order of quantifiers can affect the meaning of predicate formulas.

Example

Suppose Teach (x, y) means "person x teaches subject y " where the domain of x is the set of all lecturers in Tel-U and the domain of y is the set of all courses in Tel-U, then $\forall x \exists y$ Teach $(x, y), \exists y \forall x$ Teach $(x, y), \exists x \forall y$ Teach (x, y), $\forall y \exists x$ Teach (x, y) have different meanings:
(1) $\forall x \exists y$ Teach (x, y) means "for every lecturer x, he/she teaches a subject y " or in other words "every lecturers in Tel-U at least teaches one subject",
(2) $\exists y \forall x$ Teach (x, y) means "there is a subject y which is taught by every lecturer x " or in other words "there is a subject taught by every lecturer in Tel-U",

- $\exists x \forall y$ Teach (x, y) means "there is a lecturer x who teaches every subject y " or in other words "there is a lecture in Tel-U who teaches every subject",
- $\forall y \exists x$ Teach (x, y) means "for every subject y, there is a lecturer x who teaches y " or in other words "every subject in Tel-U is taught by someone".

Quantifier Scope

Quantifier Scope

In predicate logic expression $\forall x \exists y$ Teach (x, y) we have

$$
\forall x \underbrace{\underbrace{\text { Teach }(x, y)}_{\text {scope of } \exists y}}_{\text {scope of } \forall x}
$$

Quantifier Scope

Quantifier Scope

In predicate logic expression $\forall x \exists y$ Teach (x, y) we have

$$
\forall x \exists y \underbrace{\underbrace{\text { Teach }(x, y)}_{\text {scope of } \exists y}}_{\text {scope of } \forall x}
$$

- $\exists y$ contains Teach (x, y), in subformula $\exists y$ Teach (x, y) variable x is a free variable.

Quantifier Scope

Quantifier Scope

In predicate logic expression $\forall x \exists y$ Teach (x, y) we have

$$
\forall x \exists y \underbrace{\underbrace{\text { Teach }(x, y)}_{\text {scope of } \exists y}}_{\text {scope of } \forall x}
$$

- $\exists y$ contains Teach (x, y), in subformula $\exists y$ Teach (x, y) variable x is a free variable.
- $\forall x$ contains $\exists y$ Teach (x, y), in subformula $\forall x \exists y$ Teach (x, y) variable x is a bounded variable.

Contents

(1) Motivation

(2) Quantification and Quantifier

3 Bounded and Free Variables, Nested Quantifier

4 Precedence of Quantifiers and Other Logical Operators

(5) Predicate Formulas (Supplementary)

Precedence of Quantifiers and Other Operators

Suppose we have a logical expression $\forall x P(x) \wedge Q(x)$. We need to put the parentheses to make the expression clear, which one is correct?
(1) $\forall x(P(x) \wedge Q(x))$
© $(\forall x P(x)) \wedge Q(x)$

Precedence of Quantifiers and Other Operators

Suppose we have a logical expression $\forall x P(x) \wedge Q(x)$. We need to put the parentheses to make the expression clear, which one is correct?
(1) $\forall x(P(x) \wedge Q(x))$

- $(\forall x P(x)) \wedge Q(x)$

In predicate logic, the quantifier \forall and \exists bind more tightly than other logical operators.

The precedence of quantifier and logical operators in predicate logic is described by following table:

Operator	Precedence
\forall	1
\exists	2
\neg	3
\wedge	4
\vee	5
\oplus	6
\rightarrow	7
\leftrightarrow	8

Therefore $\forall x P(x) \wedge Q(x)$ means

The precedence of quantifier and logical operators in predicate logic is described by following table:

Operator	Precedence
\forall	1
\exists	2
\neg	3
\wedge	4
\vee	5
\oplus	6
\rightarrow	7
\leftrightarrow	8

Therefore $\forall x P(x) \wedge Q(x)$ means $(\forall x P(x)) \wedge Q(x)$.

Contents

(1) Motivation

(2) Quantification and Quantifier
3) Bounded and Free Variables, Nested Quantifier
4. Precedence of Quantifiers and Other Logical Operators
(5) Predicate Formulas (Supplementary)

Terms in Predicate Logic

Predicate formulas are made up of terms which are defined as follows:

Terms

(1) Any variable is a term. Variables are usually denoted by lowercase letters: $u, v, w, x, y, z, u_{1}, u_{2}, \ldots, v_{1}, v_{2}, \ldots, w_{1}, w_{2}, \ldots, x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots$, z_{1}, z_{2}, \ldots.
(2) All constants in the domain (or universe of discourse) are terms. Constants are usually denoted by lowercase letters: $a, b, c, a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots$, c_{1}, c_{2}, \ldots, or concretely. For example, constants might be numbers $0,1,2$ (if the domain is a particular set of numbers), constants might be names Alex, Bob, or Charlie (if the domain is a particular set of people), etc.

- If $t_{1}, t_{2}, \ldots, t_{n}$ are terms and f is a function with arity $n \geq 1$, then $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is also term. In this case, f is considered as a function with n variable whose value is a single term.

Example

Suppose f is a unary function and g is a binary function, a and b are constants, x and y are variables, then:
(1) a, b, x, and y are terms.
($f(a), f(b), f(x), f(y)$ are terms, because f is a unary function.

- $g(a, b), g(y, x), g(b, y), g(x, x)$,

Example

Suppose f is a unary function and g is a binary function, a and b are constants, x and y are variables, then:
(3) a, b, x, and y are terms.
(0) $f(a), f(b), f(x), f(y)$ are terms, because f is a unary function.

- $g(a, b), g(y, x), g(b, y), g(x, x)$, are terms, because g is a binary function.
- $g(a), g(b), g(x), g(y)$

Example

Suppose f is a unary function and g is a binary function, a and b are constants, x and y are variables, then:
(3) a, b, x, and y are terms.
(0) $f(a), f(b), f(x), f(y)$ are terms, because f is a unary function.

- $g(a, b), g(y, x), g(b, y), g(x, x)$, are terms, because g is a binary function.
- $g(a), g(b), g(x), g(y)$ are NOT terms, because g is a binary function.
- $f(f(a)), f(f(b)), f(f(c))$

Example

Suppose f is a unary function and g is a binary function, a and b are constants, x and y are variables, then:
(3) a, b, x, and y are terms.
© $f(a), f(b), f(x), f(y)$ are terms, because f is a unary function.

- $g(a, b), g(y, x), g(b, y), g(x, x)$, are terms, because g is a binary function.
- $g(a), g(b), g(x), g(y)$ are NOT terms, because g is a binary function.
- $f(f(a)), f(f(b)), f(f(c))$ are terms, because $f(\cdots)$ is a term and f is a unary function.
- $g(a, f(x)), g(a, f(y)), g(f(b), f(y)), g(y, f(x))$

Example

Suppose f is a unary function and g is a binary function, a and b are constants, x and y are variables, then:
(3) a, b, x, and y are terms.
(0) $f(a), f(b), f(x), f(y)$ are terms, because f is a unary function.

- $g(a, b), g(y, x), g(b, y), g(x, x)$, are terms, because g is a binary function.
- $g(a), g(b), g(x), g(y)$ are NOT terms, because g is a binary function.
- $f(f(a)), f(f(b)), f(f(c))$ are terms, because $f(\cdots)$ is a term and f is a unary function.
- $g(a, f(x)), g(a, f(y)), g(f(b), f(y)), g(y, f(x))$ are terms, because a, y, and $f(\cdots)$ are terms and g is a binary function.
- $f(a, b), f(x, y), f(y, f(x))$

Example

Suppose f is a unary function and g is a binary function, a and b are constants, x and y are variables, then:
(1) a, b, x, and y are terms.
(0) $f(a), f(b), f(x), f(y)$ are terms, because f is a unary function.

- $g(a, b), g(y, x), g(b, y), g(x, x)$, are terms, because g is a binary function.
- $g(a), g(b), g(x), g(y)$ are NOT terms, because g is a binary function.
- $f(f(a)), f(f(b)), f(f(c))$ are terms, because $f(\cdots)$ is a term and f is a unary function.
- $g(a, f(x)), g(a, f(y)), g(f(b), f(y)), g(y, f(x))$ are terms, because a, y, and $f(\cdots)$ are terms and g is a binary function.
- $f(a, b), f(x, y), f(y, f(x))$ are NOT terms, because f is a unary function.
- $g(a, b, x), g(f(a), y, f(x)), g(y, f(a), g(x, b))$

Example

Suppose f is a unary function and g is a binary function, a and b are constants, x and y are variables, then:
(3) a, b, x, and y are terms.
(0) $f(a), f(b), f(x), f(y)$ are terms, because f is a unary function.

- $g(a, b), g(y, x), g(b, y), g(x, x)$, are terms, because g is a binary function.
- $g(a), g(b), g(x), g(y)$ are NOT terms, because g is a binary function.
- $f(f(a)), f(f(b)), f(f(c))$ are terms, because $f(\cdots)$ is a term and f is a unary function.
- $g(a, f(x)), g(a, f(y)), g(f(b), f(y)), g(y, f(x))$ are terms, because a, y, and $f(\cdots)$ are terms and g is a binary function.
- $f(a, b), f(x, y), f(y, f(x))$ are NOT terms, because f is a unary function.
- $g(a, b, x), g(f(a), y, f(x)), g(y, f(a), g(x, b))$ are NOT terms, because g is a binary function.
- $g(g(a, b), g(x, y)), g(f(a), f(f(x)))$,

Example

Suppose f is a unary function and g is a binary function, a and b are constants, x and y are variables, then:
(3) a, b, x, and y are terms.
(0) $f(a), f(b), f(x), f(y)$ are terms, because f is a unary function.

- $g(a, b), g(y, x), g(b, y), g(x, x)$, are terms, because g is a binary function.
- $g(a), g(b), g(x), g(y)$ are NOT terms, because g is a binary function.
- $f(f(a)), f(f(b)), f(f(c))$ are terms, because $f(\cdots)$ is a term and f is a unary function.
- $g(a, f(x)), g(a, f(y)), g(f(b), f(y)), g(y, f(x))$ are terms, because a, y, and $f(\cdots)$ are terms and g is a binary function.
- $f(a, b), f(x, y), f(y, f(x))$ are NOT terms, because f is a unary function.
- $g(a, b, x), g(f(a), y, f(x)), g(y, f(a), g(x, b))$ are NOT terms, because g is a binary function.
- $g(g(a, b), g(x, y)), g(f(a), f(f(x)))$, are terms.
(1) $g(f(a)), f(g(a)), g(x, f(x, y))$

Example

Suppose f is a unary function and g is a binary function, a and b are constants, x and y are variables, then:
(3) a, b, x, and y are terms.
(0) $f(a), f(b), f(x), f(y)$ are terms, because f is a unary function.

- $g(a, b), g(y, x), g(b, y), g(x, x)$, are terms, because g is a binary function.
- $g(a), g(b), g(x), g(y)$ are NOT terms, because g is a binary function.
- $f(f(a)), f(f(b)), f(f(c))$ are terms, because $f(\cdots)$ is a term and f is a unary function.
- $g(a, f(x)), g(a, f(y)), g(f(b), f(y)), g(y, f(x))$ are terms, because a, y, and $f(\cdots)$ are terms and g is a binary function.
- $f(a, b), f(x, y), f(y, f(x))$ are NOT terms, because f is a unary function.
($g(a, b, x), g(f(a), y, f(x)), g(y, f(a), g(x, b))$ are NOT terms, because g is a binary function.
- $g(g(a, b), g(x, y)), g(f(a), f(f(x)))$, are terms.
(1) $g(f(a)), f(g(a)), g(x, f(x, y))$ are NOT terms because f is a unary function and g is a binary function.

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(C) $s(0), s(x), s(y)$ are

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and \times are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(2) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and \times are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(2) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$ are NOT terms.

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(3) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$ are NOT terms.
$0+(0),+(x),+(y)$

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(2) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$ are NOT terms.

- $+(0),+(x),+(y)$ are NOT terms, $+(1,2),+(1, s(x)),+(s(1), s(0))$ are

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(2) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$ are NOT terms.

- $+(0),+(x),+(y)$ are NOT terms, $+(1,2),+(1, s(x)),+(s(1), s(0))$ are terms.

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(2) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$ are NOT terms.

- $+(0),+(x),+(y)$ are NOT terms, $+(1,2),+(1, s(x)),+(s(1), s(0))$ are terms.
- $\times(1,2), \times(+(1,2), 0), \times(+(1,2), \times(s(0), s(1)))$ are

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(2) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$ are NOT terms.

- $+(0),+(x),+(y)$ are NOT terms, $+(1,2),+(1, s(x)),+(s(1), s(0))$ are terms.
- $\times(1,2), \times(+(1,2), 0), \times(+(1,2), \times(s(0), s(1)))$ are terms, $\times(1,+(0))$, $\times(1), \times(1, s(0), s(s(1)))$

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(2) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$ are NOT terms.

- $+(0),+(x),+(y)$ are NOT terms, $+(1,2),+(1, s(x)),+(s(1), s(0))$ are terms.
- $\times(1,2), \times(+(1,2), 0), \times(+(1,2), \times(s(0), s(1)))$ are terms, $\times(1,+(0))$, $\times(1), \times(1, s(0), s(s(1)))$ are NOT terms.

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(3) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$ are NOT terms.

- $+(0),+(x),+(y)$ are NOT terms, $+(1,2),+(1, s(x)),+(s(1), s(0))$ are terms.
- $\times(1,2), \times(+(1,2), 0), \times(+(1,2), \times(s(0), s(1)))$ are terms, $\times(1,+(0))$, $\times(1), \times(1, s(0), s(s(1)))$ are NOT terms.

The terms $+(1,2),+(1, s(x))$, and $+(s(1), s(0))$ are usually written in infix notation, respectively as: $1+2,1+s(x)$, and $s(1)+s(0)$.

Example

Suppose $0,1,2 \ldots$ are constants, x, y, z are variables, s is a unary function, + and x are binary functions, then
(1) $0,1,2, \ldots$ are terms, so are x, y, z.
(3) $s(0), s(x), s(y)$ are terms, $s(x, y), s(0, x), s(z, 2)$ are NOT terms.
© $+(0),+(x),+(y)$ are NOT terms, $+(1,2),+(1, s(x)),+(s(1), s(0))$ are terms.

- $\times(1,2), \times(+(1,2), 0), \times(+(1,2), \times(s(0), s(1)))$ are terms, $\times(1,+(0))$, $\times(1), \times(1, s(0), s(s(1)))$ are NOT terms.
The terms $+(1,2),+(1, s(x))$, and $+(s(1), s(0))$ are usually written in infix notation, respectively as: $1+2,1+s(x)$, and $s(1)+s(0)$.

The terms $\times(1,2), \times(+(1,2), 0)$ and $\times(+(1,2), \times(s(0), s(1)))$ are usually written in infix notation, respectively as: $1 \times 2,(1+2) \times 0$, and $(1+2) \times(s(0) \times s(1))$.

Subterm

Subterm

(1) A term t is a subterm of t itself.
(2) If s and t are two terms used for constructing more complex term u, then s and t are proper subterm of u.
(3) Subterm is transitive: if s is a subterm of t and t is a subterm of u, then s is subterm of u.

Example

Suppose 1 and 2 are constants, x is a variable, f is a unary function, and + and \times are binary function. Let t be a term $1+(2 \times f(x))$, then the subterm of t are (1)

Subterm

Subterm

(1) A term t is a subterm of t itself.
(2) If s and t are two terms used for constructing more complex term u, then s and t are proper subterm of u.
(3) Subterm is transitive: if s is a subterm of t and t is a subterm of u, then s is subterm of u.

Example

Suppose 1 and 2 are constants, x is a variable, f is a unary function, and + and \times are binary function. Let t be a term $1+(2 \times f(x))$, then the subterm of t are (1) $1+(2 \times f(x))$,

Subterm

Subterm

(1) A term t is a subterm of t itself.
(2) If s and t are two terms used for constructing more complex term u, then s and t are proper subterm of u.
(3) Subterm is transitive: if s is a subterm of t and t is a subterm of u, then s is subterm of u.

Example

Suppose 1 and 2 are constants, x is a variable, f is a unary function, and + and \times are binary function. Let t be a term $1+(2 \times f(x))$, then the subterm of t are (1) $1+(2 \times f(x)),(2) 2 \times f(x)$,

Subterm

Subterm

(1) A term t is a subterm of t itself.
(2) If s and t are two terms used for constructing more complex term u, then s and t are proper subterm of u.
(3) Subterm is transitive: if s is a subterm of t and t is a subterm of u, then s is subterm of u.

Example

Suppose 1 and 2 are constants, x is a variable, f is a unary function, and + and \times are binary function. Let t be a term $1+(2 \times f(x))$, then the subterm of t are (1) $1+(2 \times f(x)),(2) 2 \times f(x),(3) f(x)$,

Subterm

Subterm

(1) A term t is a subterm of t itself.
(2) If s and t are two terms used for constructing more complex term u, then s and t are proper subterm of u.
(3) Subterm is transitive: if s is a subterm of t and t is a subterm of u, then s is subterm of u.

Example

Suppose 1 and 2 are constants, x is a variable, f is a unary function, and + and \times are binary function. Let t be a term $1+(2 \times f(x))$, then the subterm of t are (1) $1+(2 \times f(x)),(2) 2 \times f(x)$, (3) $f(x)$, (4) 1 ,

Subterm

Subterm

(1) A term t is a subterm of t itself.
(2) If s and t are two terms used for constructing more complex term u, then s and t are proper subterm of u.
(3) Subterm is transitive: if s is a subterm of t and t is a subterm of u, then s is subterm of u.

Example

Suppose 1 and 2 are constants, x is a variable, f is a unary function, and + and \times are binary function. Let t be a term $1+(2 \times f(x))$, then the subterm of t are
(1) $1+(2 \times f(x))$,
(2) $2 \times f(x)$,
(3) $f(x)$,
(4) 1, (5) 2, and
(6)

Subterm

Subterm

(1) A term t is a subterm of t itself.
(2) If s and t are two terms used for constructing more complex term u, then s and t are proper subterm of u.
(3) Subterm is transitive: if s is a subterm of t and t is a subterm of u, then s is subterm of u.

Example

Suppose 1 and 2 are constants, x is a variable, f is a unary function, and + and \times are binary function. Let t be a term $1+(2 \times f(x))$, then the subterm of t are
(1) $1+(2 \times f(x))$,
(2) $2 \times f(x)$,
(3) $f(x)$,
(4) 1 , (5) 2 , and
(6) x.

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution:

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$
- $1+f(1)$

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$
- $1+f(1)$
- $(1+x) \times(y+2)$

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$
- $1+f(1)$
- $(1+x) \times(y+2)$
- $1+x$

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$
- $1+f(1)$
- $(1+x) \times(y+2)$
- $1+x$
- $y+2$

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$
- $1+f(1)$
- $(1+x) \times(y+2)$
- $1+x$
- $y+2$
- $f(1)$

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$
- $1+f(1)$
- $(1+x) \times(y+2)$
- $1+x$
- $y+2$
- $f(1)$
- 1

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$
- $1+f(1)$
- $(1+x) \times(y+2)$
- $1+x$
- $y+2$
- $f(1)$
- 1
- 2

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$
- $1+f(1)$
- $(1+x) \times(y+2)$
- $1+x$
- $y+2$
- $f(1)$
- 1
- 2
- x

Exercise

Suppose 1 and 2 are constants, x and y are variables, f is a unary function, and + and \times are binary function. Determine all subterms of
$(1+f(1)) \times((1+x) \times(y+2))$.
Solution: subterms of $(1+f(1)) \times((1+x) \times(y+2))$ are:

- $(1+f(1)) \times((1+x) \times(y+2))$
- $1+f(1)$
- $(1+x) \times(y+2)$
- $1+x$
- $y+2$
- $f(1)$
- 1
- 2
- x
- y

Exercise

Suppose 2 is a constant, x and y are variables, s is a unary function, and,,$-+ *$ are binary function. Determine all subterms of $(2-s(x))+(y * x)$.

Solution:

Exercise

Suppose 2 is a constant, x and y are variables, s is a unary function, and,,$-+ *$ are binary function. Determine all subterms of $(2-s(x))+(y * x)$.

Solution: subterms of $(2-s(x))+(y * x)$ are:

- $(2-s(x))+(y * x)$

Exercise

Suppose 2 is a constant, x and y are variables, s is a unary function, and,,$-+ *$ are binary function. Determine all subterms of $(2-s(x))+(y * x)$.

Solution: subterms of $(2-s(x))+(y * x)$ are:

- $(2-s(x))+(y * x)$
- $2-s(x)$

Exercise

Suppose 2 is a constant, x and y are variables, s is a unary function, and,,$-+ *$ are binary function. Determine all subterms of $(2-s(x))+(y * x)$.

Solution: subterms of $(2-s(x))+(y * x)$ are:

- $(2-s(x))+(y * x)$
- $2-s(x)$
- $y * x$

Exercise

Suppose 2 is a constant, x and y are variables, s is a unary function, and,,$-+ *$ are binary function. Determine all subterms of $(2-s(x))+(y * x)$.

Solution: subterms of $(2-s(x))+(y * x)$ are:

- $(2-s(x))+(y * x)$
- $2-s(x)$
- $y * x$
- $s(x)$

Exercise

Suppose 2 is a constant, x and y are variables, s is a unary function, and,,$-+ *$ are binary function. Determine all subterms of $(2-s(x))+(y * x)$.

Solution: subterms of $(2-s(x))+(y * x)$ are:

- $(2-s(x))+(y * x)$
- $2-s(x)$
- $y * x$
- $s(x)$
- 2

Exercise

Suppose 2 is a constant, x and y are variables, s is a unary function, and,,$-+ *$ are binary function. Determine all subterms of $(2-s(x))+(y * x)$.

Solution: subterms of $(2-s(x))+(y * x)$ are:

- $(2-s(x))+(y * x)$
- $2-s(x)$
- $y * x$
- $s(x)$
- 2
- x

Exercise

Suppose 2 is a constant, x and y are variables, s is a unary function, and,,$-+ *$ are binary function. Determine all subterms of $(2-s(x))+(y * x)$.

Solution: subterms of $(2-s(x))+(y * x)$ are:

- $(2-s(x))+(y * x)$
- $2-s(x)$
- $y * x$
- $s(x)$
- 2
- x
- y

Parse Tree of A Term

Parse tree can be used to visualize the structure of a term in predicate logic. For example, if 2 is a constant, x and y are variables, s is a unary function, and ,,$-+ *$ are binary function, then the parse tree for term $(2-(s(x)+y)) * x$ is

Parse Tree of A Term

Parse tree can be used to visualize the structure of a term in predicate logic. For example, if 2 is a constant, x and y are variables, s is a unary function, and ,,$-+ *$ are binary function, then the parse tree for term $(2-(s(x)+y)) * x$ is

Predicate Formulas

Predicate Formulas

Formulas (or sentences) in predicate logic are made up of:
(1) propositional constant: T (true) or F (false)
(2) expression $P\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ where $t_{1}, t_{2}, \ldots, t_{n}$ are terms and P is an n-ary predicate with $n \geq 1$
(3) logical operators: $\neg, \wedge, \vee, \oplus, \rightarrow, \leftrightarrow$ and comply following rules:
(1) every well-defined expression $P\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a predicate formula,
(2) if A and B are two predicate formulas, then $\neg A, A \wedge B, A \vee B, A \oplus B$, $A \rightarrow B, A \leftrightarrow B$, are all predicate formulas,
(0) if A is a predicate formulas and x is a variable, then both of $\forall x A$ and $\exists x A$ are predicate formulas.

Examples of Predicate Formulas

Example

According to the previous definition, if P, Q, R, S are predicates, then we have:
(1) $\forall x P(x) \wedge Q(x)$ is a predicate formula, this formula can be written as $(\forall x P(x)) \wedge Q(x)$, variable x in $Q(x)$ is a free variable.
(0) $\exists \forall x P(x) \vee Q(x, y)$ is not a predicate formula (because the expression $\exists \forall x$ is not well-defined).

- $\forall x \exists P(x \rightarrow Q(x))$

Examples of Predicate Formulas

Example

According to the previous definition, if P, Q, R, S are predicates, then we have:
(1) $\forall x P(x) \wedge Q(x)$ is a predicate formula, this formula can be written as $(\forall x P(x)) \wedge Q(x)$, variable x in $Q(x)$ is a free variable.
(0) $\exists \forall x P(x) \vee Q(x, y)$ is not a predicate formula (because the expression $\exists \forall x$ is not well-defined).

- $\forall x \exists P(x \rightarrow Q(x))$ is not a predicate formula (because the expression $\exists P$ is not well-defined).
- $\forall x \exists y(P(x, y) \rightarrow S(y, y))$

Examples of Predicate Formulas

Example

According to the previous definition, if P, Q, R, S are predicates, then we have:
(1) $\forall x P(x) \wedge Q(x)$ is a predicate formula, this formula can be written as $(\forall x P(x)) \wedge Q(x)$, variable x in $Q(x)$ is a free variable.
(0) $\exists \forall x P(x) \vee Q(x, y)$ is not a predicate formula (because the expression $\exists \forall x$ is not well-defined).

- $\forall x \exists P(x \rightarrow Q(x))$ is not a predicate formula (because the expression $\exists P$ is not well-defined).
- $\forall x \exists y(P(x, y) \rightarrow S(y, y))$ is a predicate formula, which can be written as $\forall x(\exists y(P(x, y) \rightarrow S(y, y)))$.

Example

- $\exists x \forall y(S(x, z) \wedge S(y, x))$

Example

- $\exists x \forall y(S(x, z) \wedge S(y, x))$ is a predicate formula, which can be written as $\exists x(\forall y(S(x, z) \wedge S(y, x)))$, variable z in $S(x, z)$ is a free variable.
- $\forall x \forall y(P(x, y) \vee Q)$

Example

- $\exists x \forall y(S(x, z) \wedge S(y, x))$ is a predicate formula, which can be written as $\exists x(\forall y(S(x, z) \wedge S(y, x)))$, variable z in $S(x, z)$ is a free variable.
- $\forall x \forall y(P(x, y) \vee Q)$ is not a predicate formula (because the expression Q without argument is not well-defined).
- $\forall z \exists y(P(x) \rightarrow Q(y))$

Example

- $\exists x \forall y(S(x, z) \wedge S(y, x))$ is a predicate formula, which can be written as $\exists x(\forall y(S(x, z) \wedge S(y, x)))$, variable z in $S(x, z)$ is a free variable.
- $\forall x \forall y(P(x, y) \vee Q)$ is not a predicate formula (because the expression Q without argument is not well-defined).
- $\forall z \exists y(P(x) \rightarrow Q(y))$ is a predicate formula, which can be written as $\forall z(\exists y(P(x) \rightarrow Q(y)))$, variable x in $P(x)$ is a free variable.
- $P(x) \wedge(Q(x, y) \rightarrow \exists R(R(x)))$

Example

- $\exists x \forall y(S(x, z) \wedge S(y, x))$ is a predicate formula, which can be written as $\exists x(\forall y(S(x, z) \wedge S(y, x)))$, variable z in $S(x, z)$ is a free variable.
- $\forall x \forall y(P(x, y) \vee Q)$ is not a predicate formula (because the expression Q without argument is not well-defined).
- $\forall z \exists y(P(x) \rightarrow Q(y))$ is a predicate formula, which can be written as $\forall z(\exists y(P(x) \rightarrow Q(y)))$, variable x in $P(x)$ is a free variable.
- $P(x) \wedge(Q(x, y) \rightarrow \exists R(R(x)))$ is not a predicate formula (because the expression $R(R(x))$ is not well-defined).

Exercise

Suppose x and y are variables, a and b are constants over a particular domain D, f is a unary function over D, g is a binary function over D, P is a unary predicate, and Q is a binary predicate. Verify whether following expressions are well-defined predicate formulas.

- $\forall x P(g(f(a), x))$
(2) $\exists x \forall y(P(x) \rightarrow Q(y, y))$.
- $\exists x(Q(x) \rightarrow P(x, y))$.
- $Q(a, g(f(a), f(b)))$.
- $P(a, f(x))$.
- $g(x, y) \rightarrow f(a)$.
© $\exists x \forall y(f(x) \rightarrow g(x, y))$.
- $\forall x(P(x) \rightarrow g(a, f(x)))$.
- $\exists y(Q(y, y) \leftrightarrow P(y))$.
© $\exists y \exists x(Q(y, x) \wedge P(g(x, y)) \rightarrow P(a))$.

Exercise

Suppose x and y are variables, a and b are constants over a particular domain D, f is a unary function over D, g is a binary function over D, P is a unary predicate, and Q is a binary predicate. Verify whether following expressions are well-defined predicate formulas.
(1) $\forall x P(g(f(a), x))$ Predicate formula.
(2) $\exists x \forall y(P(x) \rightarrow Q(y, y))$. Predicate formula.

- $\exists x(Q(x) \rightarrow P(x, y))$. Not a predicate formula.
- $Q(a, g(f(a), f(b)))$. Predicate formula.
- $P(a, f(x))$. Not a predicate formula.
(0) $g(x, y) \rightarrow f(a)$. Not a predicate formula.
(- $\exists x \forall y(f(x) \rightarrow g(x, y))$. Not a predicate formula.
(0) $\forall x(P(x) \rightarrow g(a, f(x)))$. Not a predicate formula.
- $\exists y(Q(y, y) \leftrightarrow P(y))$. Predicate formula.
(0) $\exists y \exists x(Q(y, x) \wedge P(g(x, y)) \rightarrow P(a))$. Predicate formula.

Subformula

The definition of subformula in predicate logic is analogous to the definition of subformula in propositional logic.

Subformula

(1) A formula A is a subformula of A itself.
© If A and B are two propositional formulas used to construct a more complex propositional formula C, then A and B are proper subformulas of C.
(0) Subformula is transitive: if A is a subformula of B and B is a subformula of C, then A is a subformula of C.

Example

Let A be a formula $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, then the subformula of A are (1)

Subformula

The definition of subformula in predicate logic is analogous to the definition of subformula in propositional logic.

Subformula

(1) A formula A is a subformula of A itself.
© If A and B are two propositional formulas used to construct a more complex propositional formula C, then A and B are proper subformulas of C.
(0) Subformula is transitive: if A is a subformula of B and B is a subformula of C, then A is a subformula of C.

Example

Let A be a formula $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, then the subformula of A are (1) $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (2)

Subformula

The definition of subformula in predicate logic is analogous to the definition of subformula in propositional logic.

Subformula

(1) A formula A is a subformula of A itself.
© If A and B are two propositional formulas used to construct a more complex propositional formula C, then A and B are proper subformulas of C.
(0) Subformula is transitive: if A is a subformula of B and B is a subformula of C, then A is a subformula of C.

Example

Let A be a formula $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, then the subformula of A are (1) $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (2) $\exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (3)

Subformula

The definition of subformula in predicate logic is analogous to the definition of subformula in propositional logic.

Subformula

(1) A formula A is a subformula of A itself.
© If A and B are two propositional formulas used to construct a more complex propositional formula C, then A and B are proper subformulas of C.
(0) Subformula is transitive: if A is a subformula of B and B is a subformula of C, then A is a subformula of C.

Example

Let A be a formula $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, then the subformula of A are (1) $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (2) $\exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (3) $P(x) \wedge Q(y, z) \rightarrow R(x, z)$, (4)

Subformula

The definition of subformula in predicate logic is analogous to the definition of subformula in propositional logic.

Subformula

(1) A formula A is a subformula of A itself.
© If A and B are two propositional formulas used to construct a more complex propositional formula C, then A and B are proper subformulas of C.
(0) Subformula is transitive: if A is a subformula of B and B is a subformula of C, then A is a subformula of C.

Example

Let A be a formula $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, then the subformula of A are (1) $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (2) $\exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (3) $P(x) \wedge Q(y, z) \rightarrow R(x, z)$, (4) $P(x) \wedge Q(y, z)$, (5)

Subformula

The definition of subformula in predicate logic is analogous to the definition of subformula in propositional logic.

Subformula

(1) A formula A is a subformula of A itself.
© If A and B are two propositional formulas used to construct a more complex propositional formula C, then A and B are proper subformulas of C.
(0) Subformula is transitive: if A is a subformula of B and B is a subformula of C, then A is a subformula of C.

Example

Let A be a formula $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, then the subformula of A are (1) $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (2) $\exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (3) $P(x) \wedge Q(y, z) \rightarrow R(x, z)$, (4) $P(x) \wedge Q(y, z)$, (5) $P(x)$, (6)

Subformula

The definition of subformula in predicate logic is analogous to the definition of subformula in propositional logic.

Subformula

(1) A formula A is a subformula of A itself.
© If A and B are two propositional formulas used to construct a more complex propositional formula C, then A and B are proper subformulas of C.
(0) Subformula is transitive: if A is a subformula of B and B is a subformula of C, then A is a subformula of C.

Example

Let A be a formula $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, then the subformula of A are (1) $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (2) $\exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (3) $P(x) \wedge Q(y, z) \rightarrow R(x, z)$, (4) $P(x) \wedge Q(y, z)$, (5) $P(x)$, (6) $Q(y, z)$, and (7)

Subformula

The definition of subformula in predicate logic is analogous to the definition of subformula in propositional logic.

Subformula

(1) A formula A is a subformula of A itself.
© If A and B are two propositional formulas used to construct a more complex propositional formula C, then A and B are proper subformulas of C.
(0) Subformula is transitive: if A is a subformula of B and B is a subformula of C, then A is a subformula of C.

Example

Let A be a formula $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, then the subformula of A are (1) $\forall x \exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (2) $\exists y(P(x) \wedge Q(y, z) \rightarrow R(x, z))$, (3) $P(x) \wedge Q(y, z) \rightarrow R(x, z)$, (4) $P(x) \wedge Q(y, z)$, (5) $P(x)$, (6) $Q(y, z)$, and (7) $R(x, z)$.

Exercise

Let m be a constant in the observed domain, determine all subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$.

Solution:

Exercise

Let m be a constant in the observed domain, determine all subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$.

Solution: subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$ are:

- $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$

Exercise

Let m be a constant in the observed domain, determine all subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$.

Solution: subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$ are:

- $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $\forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$

Exercise

Let m be a constant in the observed domain, determine all subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$.

Solution: subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$ are:

- $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $\forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $F(x, m) \wedge S(y, x) \rightarrow B(x, m)$

Exercise

Let m be a constant in the observed domain, determine all subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$.

Solution: subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$ are:

- $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $\forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $F(x, m) \wedge S(y, x) \rightarrow B(x, m)$
- $F(x, m) \wedge S(y, x)$

Exercise

Let m be a constant in the observed domain, determine all subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$.

Solution: subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$ are:

- $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $\forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $F(x, m) \wedge S(y, x) \rightarrow B(x, m)$
- $F(x, m) \wedge S(y, x)$
- $F(x, m)$

Exercise

Let m be a constant in the observed domain, determine all subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$.

Solution: subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$ are:

- $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $\forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $F(x, m) \wedge S(y, x) \rightarrow B(x, m)$
- $F(x, m) \wedge S(y, x)$
- $F(x, m)$
- $S(y, x)$

Exercise

Let m be a constant in the observed domain, determine all subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$.

Solution: subformulas of $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$ are:

- $\forall x \forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $\forall y(F(x, m) \wedge S(y, x) \rightarrow B(x, m))$
- $F(x, m) \wedge S(y, x) \rightarrow B(x, m)$
- $F(x, m) \wedge S(y, x)$
- $F(x, m)$
- $S(y, x)$
- $B(x, m)$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$.
Solution:

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$
- $\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$
- $\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\exists z P(y, z)$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$
- $\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\exists z P(y, z)$
- $\forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$
- $\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\exists z P(y, z)$
- $\forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\neg Q(y, x) \vee \exists z \neg P(y, z)$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$
- $\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\exists z P(y, z)$
- $\forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\neg Q(y, x) \vee \exists z \neg P(y, z)$
- $\exists z \neg P(y, z)$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$
- $\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\exists z P(y, z)$
- $\forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\neg Q(y, x) \vee \exists z \neg P(y, z)$
- $\exists z \neg P(y, z)$
- $\neg P(y, z)$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$
- $\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\exists z P(y, z)$
- $\forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\neg Q(y, x) \vee \exists z \neg P(y, z)$
- $\exists z \neg P(y, z)$
- $\neg P(y, z)$
- $\neg Q(y, x)$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$
- $\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\exists z P(y, z)$
- $\forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\neg Q(y, x) \vee \exists z \neg P(y, z)$
- $\exists z \neg P(y, z)$
- $\neg P(y, z)$
- $\neg Q(y, x)$
- $P(y, z)$

Exercise

Determine all subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$. Solution: subformulas of $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$ are:

- $\exists x(\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z)))$
- $\exists z P(y, z) \wedge \forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\exists z P(y, z)$
- $\forall y(\neg Q(y, x) \vee \exists z \neg P(y, z))$
- $\neg Q(y, x) \vee \exists z \neg P(y, z)$
- $\exists z \neg P(y, z)$
- $\neg P(y, z)$
- $\neg Q(y, x)$
- $P(y, z)$
- $Q(y, x)$

Parse Tree of a Formula

Parse tree is useful to visualize the structure of a predicate formula. For example, the parse tree of $\forall x((P(x) \rightarrow Q(x)) \wedge S(x, y))$ is

Parse Tree of a Formula

Parse tree is useful to visualize the structure of a predicate formula． For example，the parse tree of $\forall x((P(x) \rightarrow Q(x)) \wedge S(x, y))$ is

Exercise

Let x, y, z be variables, a be a constant, f be a unary function, and B, E, M, S be predicates. Draw the parse tree of each of these formulas.
(1) $\forall x \exists y(M(x, y) \wedge \forall z(M(z, y)) \rightarrow E(x, z))$.
(2) $\forall x \exists y \forall z(M(x, y) \wedge(M(z, y) \rightarrow E(x, z)))$.

- $\forall x(\exists y S(x, f(y)) \rightarrow B(x, f(a)))$.

