Function: Definitions, Properties, and Representations Discrete Mathematics - Second Term 2022-2023

MZI

School of Computing
Telkom University

SoC Tel-U
March 2023

Acknowledgements

This slide is composed based on the following materials:
(1) Discrete Mathematics and Its Applications, 8th Edition, 2019, by K. H. Rosen (main).
(1) Discrete Mathematics with Applications, 5th Edition., 2018, by S. S. Epp.
© Mathematics for Computer Science. MIT, 2010, by E. Lehman, F. T. Leighton, A. R. Meyer.
© Slide for Matematika Diskret 2 (2012) at Fasilkom UI, by B. H. Widjaja.

- Slide for Matematika Diskret at Telkom University, by B. Purnama.

Some of the pictures are taken from the above resources. This slide is intended for academic purpose at FIF Telkom University. If you have any suggestions/comments/questions related with the material on this slide, send an email to <pleasedontspam>@telkomuniversity.ac.id.

Contents

(1) Functions: Definition and Representation
(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function
(3) Function Composition
(4) Inverse Function
(5) Special Functions
(6) Challenging Problems

Contents

(1) Functions: Definition and Representation
(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function
(3) Function Composition
(A) Inverse Function
(5) Special Functions

Challenging Problems

Definition

Definition

Given two nonempty sets A and B. A function from A to B is a relation that associates every member of A into exactly one member of B. A function from A to B can be written using the following notation

$$
\begin{aligned}
f & : A \rightarrow B \\
& : \quad a \mapsto b, \text { with } a \in A \text { and } b \in B
\end{aligned}
$$

A function is also called as a mapping or a transformation. The notation $f(a)=b$ means that a is mapped (by f) to b.
The set A is called as a domain of f and written as $\operatorname{dom}(f)$, while set B is called as codomain of f and is written as $\operatorname{cod}(f)$.

Total Function and Partial Function

Total Function and Partial Function

- All functions in this course are assumed to be total functions, unless they are specified otherwise.

Total Function and Partial Function

Total Function and Partial Function

- All functions in this course are assumed to be total functions, unless they are specified otherwise.
- A total function $f: A \rightarrow B$ is a function with the following property : f associates each member of A with exactly one member of B. We have seen so many examples of total function in high school, such as $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x+1$.

Total Function and Partial Function

Total Function and Partial Function

- All functions in this course are assumed to be total functions, unless they are specified otherwise.
- A total function $f: A \rightarrow B$ is a function with the following property : f associates each member of A with exactly one member of B. We have seen so many examples of total function in high school, such as $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x+1$.
- A partial function is a function without total property, a partial function $f: A \rightarrow B$ is a function with the following property: f associates each member of A with at most one member of B. We also have seen an example of a partial function in high school as well as Calculus, such as $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=\sqrt{x}$.

Total Function and Partial Function

Total Function and Partial Function

- All functions in this course are assumed to be total functions, unless they are specified otherwise.
- A total function $f: A \rightarrow B$ is a function with the following property : f associates each member of A with exactly one member of B. We have seen so many examples of total function in high school, such as $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x+1$.
- A partial function is a function without total property, a partial function $f: A \rightarrow B$ is a function with the following property: f associates each member of A with at most one member of B. We also have seen an example of a partial function in high school as well as Calculus, such as $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=\sqrt{x}$. Notice that $\operatorname{dom}(f) \neq \mathbb{R}$ because f is undefined for $x<0$, for example, the value of $f(-3)$ is undefined.

Image (Map), Preimage (Pre-map), and Range

Let $f: A \rightarrow B$ and $f(a)=b$ with $a \in A$ and $b \in B$, then

Image (Map), Preimage (Pre-map), and Range

Let $f: A \rightarrow B$ and $f(a)=b$ with $a \in A$ and $b \in B$, then

- b is an image/map of a,

Image (Map), Preimage (Pre-map), and Range

Let $f: A \rightarrow B$ and $f(a)=b$ with $a \in A$ and $b \in B$, then

- b is an image/map of a,
- a is a preimage/pre-map of b.

Image (Map), Preimage (Pre-map), and Range

Let $f: A \rightarrow B$ and $f(a)=b$ with $a \in A$ and $b \in B$, then

- b is an image/map of a,
- a is a preimage/pre-map of b.

A range of f, denoted as $\operatorname{ran}(f)$ or $\operatorname{Im}(f)$, is defined as $\operatorname{ran}(f)=\operatorname{Im}(f)=\{b \in B \mid b=f(a)$, for an $a \in A\}$. It is obvious that $\operatorname{ran}(f) \subseteq \operatorname{cod}(f)$.

Image (Map), Preimage (Pre-map), and Range

Let $f: A \rightarrow B$ and $f(a)=b$ with $a \in A$ and $b \in B$, then

- b is an image/map of a,
- a is a preimage/pre-map of b.

A range of f, denoted as $\operatorname{ran}(f)$ or $\operatorname{Im}(f)$, is defined as $\operatorname{ran}(f)=\operatorname{Im}(f)=\{b \in B \mid b=f(a)$, for an $a \in A\}$. It is obvious that $\operatorname{ran}(f) \subseteq \operatorname{cod}(f)$.

If f is a function from A to B, we say that f maps A to B.

Equality of Two Functions

Definition

Two functions f and g are equal if
(1) $\operatorname{dom}(f)=\operatorname{dom}(g)$
(2) $\operatorname{cod}(f)=\operatorname{cod}(g)$
© for every x in domain, $f(x)=g(x)$.
We consider the equality of two functions as the equality of sets (regarding a function as a relation).

Example

Equality of Two Functions

Definition

Two functions f and g are equal if
(1) $\operatorname{dom}(f)=\operatorname{dom}(g)$
(2) $\operatorname{cod}(f)=\operatorname{cod}(g)$

- for every x in domain, $f(x)=g(x)$.

We consider the equality of two functions as the equality of sets (regarding a function as a relation).

Example

A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x+1$ and $g: \mathbb{Q} \rightarrow \mathbb{Q}$ where $g(x)=x+1$ is not equal, although they have the same formula.

Equality of Two Functions

Definition

Two functions f and g are equal if
(1) $\operatorname{dom}(f)=\operatorname{dom}(g)$
(2) $\operatorname{cod}(f)=\operatorname{cod}(g)$
(0) for every x in domain, $f(x)=g(x)$.

We consider the equality of two functions as the equality of sets (regarding a function as a relation).

Example

A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x+1$ and $g: \mathbb{Q} \rightarrow \mathbb{Q}$ where $g(x)=x+1$ is not equal, although they have the same formula. This is because $\operatorname{dom}(f)=\mathbb{Z}$ while $\operatorname{dom}(g)=\mathbb{Q}$.

Function as a Relation

- A function is a relation with a special property.

Function as a Relation

- A function is a relation with a special property.
- A binary relation $f \subseteq A \times B$ is a function if it satisfies the following property: if $(a, b) \in f$ and $(a, c) \in f$, then $b=c$. We write this in predicate logic as $(\forall a \in A)(\forall b \in B)(\forall c \in B) \quad((a, b) \in f \wedge(a, c) \in f \rightarrow b=c)$.

Function as a Relation

- A function is a relation with a special property.
- A binary relation $f \subseteq A \times B$ is a function if it satisfies the following property: if $(a, b) \in f$ and $(a, c) \in f$, then $b=c$. We write this in predicate logic as $(\forall a \in A)(\forall b \in B)(\forall c \in B) \quad((a, b) \in f \wedge(a, c) \in f \rightarrow b=c)$.
- A function is also a relation, therefore the properties of relation are applied on function.

A function can be represented in a form of:

A function can be represented in a form of:

- ordered pair,

A function can be represented in a form of:

- ordered pair,
- assignment,

A function can be represented in a form of:

- ordered pair,
- assignment,
- a definition in natural language,

A function can be represented in a form of:

- ordered pair,
- assignment,
- a definition in natural language,
- a definition in programming language,

A function can be represented in a form of:

- ordered pair,
- assignment,
- a definition in natural language,
- a definition in programming language,
- an arrow diagram (if the domain and codomain of the function have finite cardinality)

A function can be represented in a form of:

- ordered pair,
- assignment,
- a definition in natural language,
- a definition in programming language,
- an arrow diagram (if the domain and codomain of the function have finite cardinality)
- a matrix 0-1 (if the domain and codomain of the function have finite cardinality)

A function can be represented in a form of:

- ordered pair,
- assignment,
- a definition in natural language,
- a definition in programming language,
- an arrow diagram (if the domain and codomain of the function have finite cardinality)
- a matrix 0-1 (if the domain and codomain of the function have finite cardinality)
- a digraph (if the domain and codomain of the function are equal and have a finite cardinality)

We have already seen the representation of ordered pair, arrow diagram, matrix, and digraph in the course material about relation.

Function as Ordered Pairs

As in a relation, a function can be represented as an ordered pair.

Example

A relation $f=\{(1, a),(2, b),(3, c)\}$ from set $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ is a function.

Function as Ordered Pairs

As in a relation, a function can be represented as an ordered pair.

Example

A relation $f=\{(1, a),(2, b),(3, c)\}$ from set $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ is a function. We can write this function as $f(1)=a, f(2)=b$, and $f(3)=c$.

Function as Ordered Pairs

As in a relation, a function can be represented as an ordered pair.

Example

A relation $f=\{(1, a),(2, b),(3, c)\}$ from set $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ is a function. We can write this function as $f(1)=a, f(2)=b$, and $f(3)=c$. We have $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=Y$.
A relation $g=\{(1, a),(2, b),(3, b)\}$ from set $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ is a function.

Function as Ordered Pairs

As in a relation, a function can be represented as an ordered pair.

Example

A relation $f=\{(1, a),(2, b),(3, c)\}$ from set $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ is a function. We can write this function as $f(1)=a, f(2)=b$, and $f(3)=c$. We have $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=Y$.
A relation $g=\{(1, a),(2, b),(3, b)\}$ from set $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ is a function. We can write this function as $g(1)=a, g(2)=b$, and $g(3)=b$.

Function as Ordered Pairs

As in a relation, a function can be represented as an ordered pair.

Example

A relation $f=\{(1, a),(2, b),(3, c)\}$ from set $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ is a function. We can write this function as $f(1)=a, f(2)=b$, and $f(3)=c$. We have $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=Y$.
A relation $g=\{(1, a),(2, b),(3, b)\}$ from set $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ is a function. We can write this function as $g(1)=a, g(2)=b$, and $g(3)=b$. We have $\operatorname{dom}(g)=X, \operatorname{cod}(g)=Y$, and $\operatorname{ran}(g)=\operatorname{Im}(g)=\{a, b\} \subset Y$.

Exercise: Function as Ordered Pairs

Exercise

Determine whether each of these relations is a function or not. If it is a function, determine its domain, codomain, and range.
(0) f is a relation from $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ where $f=\{(1, a),(2, a),(3, a)\}$.
(0) g is a relation from $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ where $g=\{(1, a),(2, b),(2, c),(3, c)\}$.
(0) h is a relation from $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ where $h=\{(1, a),(2, c)\}$.

- k is a relation from $X=\{1,2,3\}$ to $Y=\{a, b, c\}$ where $k=\{(1, a),(2, b),(2, c)\}$.

Solution:
(1) f is a function from X to Y where $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, $\operatorname{ran}(f)=\operatorname{Im}(f)=\{a\}$.

Solution:
(1) f is a function from X to Y where $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, $\operatorname{ran}(f)=\operatorname{Im}(f)=\{a\}$.
(2) g is not a function from X to Y because $(2, b) \in g$ and $(2, c) \in g$, however, $b \neq c$.

Solution:
(1) f is a function from X to Y where $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, $\operatorname{ran}(f)=\operatorname{Im}(f)=\{a\}$.
(2) g is not a function from X to Y because $(2, b) \in g$ and $(2, c) \in g$, however, $b \neq c$. In other words, $(2, b) \in g \wedge(2, c) \in g \rightarrow b=c$ is false.

Solution:
(1) f is a function from X to Y where $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, $\operatorname{ran}(f)=\operatorname{Im}(f)=\{a\}$.
(2) g is not a function from X to Y because $(2, b) \in g$ and $(2, c) \in g$, however, $b \neq c$. In other words, $(2, b) \in g \wedge(2, c) \in g \rightarrow b=c$ is false.

- h is not a function from X to Y because there is no $y \in Y$ such that $(3, y) \in h$, or $h(3)$ is undefined.

Solution:
(1) f is a function from X to Y where $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, $\operatorname{ran}(f)=\operatorname{Im}(f)=\{a\}$.
(2) g is not a function from X to Y because $(2, b) \in g$ and $(2, c) \in g$, however, $b \neq c$. In other words, $(2, b) \in g \wedge(2, c) \in g \rightarrow b=c$ is false.
0 h is not a function from X to Y because there is no $y \in Y$ such that $(3, y) \in h$, or $h(3)$ is undefined. Here, h is not a (total) function, but we can consider it as a partial function.

Solution:
(1) f is a function from X to Y where $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, $\operatorname{ran}(f)=\operatorname{Im}(f)=\{a\}$.
(2) g is not a function from X to Y because $(2, b) \in g$ and $(2, c) \in g$, however, $b \neq c$. In other words, $(2, b) \in g \wedge(2, c) \in g \rightarrow b=c$ is false.
0 h is not a function from X to Y because there is no $y \in Y$ such that $(3, y) \in h$, or $h(3)$ is undefined. Here, h is not a (total) function, but we can consider it as a partial function.

- k is not a function from X to Y because:

Solution:
(1) f is a function from X to Y where $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, $\operatorname{ran}(f)=\operatorname{Im}(f)=\{a\}$.
(2) g is not a function from X to Y because $(2, b) \in g$ and $(2, c) \in g$, however, $b \neq c$. In other words, $(2, b) \in g \wedge(2, c) \in g \rightarrow b=c$ is false.
(0) h is not a function from X to Y because there is no $y \in Y$ such that $(3, y) \in h$, or $h(3)$ is undefined. Here, h is not a (total) function, but we can consider it as a partial function.

- k is not a function from X to Y because:
- $(2, b) \in k$ and $(2, c) \in k$, but $b \neq c$

Solution:
(1) f is a function from X to Y where $\operatorname{dom}(f)=X, \operatorname{cod}(f)=Y$, $\operatorname{ran}(f)=\operatorname{Im}(f)=\{a\}$.
(2) g is not a function from X to Y because $(2, b) \in g$ and $(2, c) \in g$, however, $b \neq c$. In other words, $(2, b) \in g \wedge(2, c) \in g \rightarrow b=c$ is false.
(0) h is not a function from X to Y because there is no $y \in Y$ such that $(3, y) \in h$, or $h(3)$ is undefined. Here, h is not a (total) function, but we can consider it as a partial function.

- k is not a function from X to Y because:
- $(2, b) \in k$ and $(2, c) \in k$, but $b \neq c$
- there is no $y \in Y$ such that $(3, y) \in k$, or $k(3)$ is undefined.

Function Representation with Assignment Formula

The most usual way to represent a function is by assignment formula.

Example

Let $f, g, h: \mathbb{Z} \rightarrow \mathbb{Z}$ be relations defined as below:
(1) $f(x)=x+1$
(2) $g(x)=x^{3}$

- $h(x)=3-x$

Relations f, g, h are functions. We have

Function Representation with Assignment Formula

The most usual way to represent a function is by assignment formula.

Example

Let $f, g, h: \mathbb{Z} \rightarrow \mathbb{Z}$ be relations defined as below:
(1) $f(x)=x+1$
(2) $g(x)=x^{3}$

- $h(x)=3-x$

Relations f, g, h are functions. We have
(1) $f(x)=x+1$ means that every $x \in \mathbb{Z}$ is associated (mapped) to $x+1$, obviously $(x+1) \in \mathbb{Z}$.

Function Representation with Assignment Formula

The most usual way to represent a function is by assignment formula.

Example

Let $f, g, h: \mathbb{Z} \rightarrow \mathbb{Z}$ be relations defined as below:
(1) $f(x)=x+1$
(2) $g(x)=x^{3}$

- $h(x)=3-x$

Relations f, g, h are functions. We have
(1) $f(x)=x+1$ means that every $x \in \mathbb{Z}$ is associated (mapped) to $x+1$, obviously $(x+1) \in \mathbb{Z}$.
(3) $g(x)=x^{3}$ means that every $x \in \mathbb{Z}$ is associated (mapped) to x^{3}, obviously $x^{3} \in \mathbb{Z}$.

Function Representation with Assignment Formula

The most usual way to represent a function is by assignment formula.

Example

Let $f, g, h: \mathbb{Z} \rightarrow \mathbb{Z}$ be relations defined as below:
(1) $f(x)=x+1$
(2) $g(x)=x^{3}$

- $h(x)=3-x$

Relations f, g, h are functions. We have
(1) $f(x)=x+1$ means that every $x \in \mathbb{Z}$ is associated (mapped) to $x+1$, obviously $(x+1) \in \mathbb{Z}$.
(3) $g(x)=x^{3}$ means that every $x \in \mathbb{Z}$ is associated (mapped) to x^{3}, obviously $x^{3} \in \mathbb{Z}$.
(0) $h(x)=3-x$ means that every $x \in \mathbb{Z}$ is associated (mapped) to $3-x$, obviously $3-x \in \mathbb{Z}$.

Exercise: Function Representation with Assignment Formula

Exercise

Determine whether each of these relations is a function or not. If it is a function, determine its domain, codomain, and range.
(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}$.
(2) $g: \mathbb{Z} \rightarrow \mathbb{Z}$ where $g(x)=\frac{1}{x}$.

- $h: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$where $h(x)=\frac{1}{x}$.
- $k: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$where $k(x)=\sqrt{x}$.

Solution:

(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}$ is a function, where $\operatorname{dom}(f)=\mathbb{Z}, \operatorname{cod}(f)=\mathbb{Z}$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=$

Solution:

(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}$ is a function, where $\operatorname{dom}(f)=\mathbb{Z}, \operatorname{cod}(f)=\mathbb{Z}$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=\left\{y \in \mathbb{Z} \mid y=x^{2}\right.$ for an $\left.x \in \mathbb{Z}\right\}=\left\{x^{2} \mid x \in \mathbb{Z}\right\}$.

Solution:

(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}$ is a function, where $\operatorname{dom}(f)=\mathbb{Z}, \operatorname{cod}(f)=\mathbb{Z}$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=\left\{y \in \mathbb{Z} \mid y=x^{2}\right.$ for an $\left.x \in \mathbb{Z}\right\}=\left\{x^{2} \mid x \in \mathbb{Z}\right\}$. Therefore, $\operatorname{ran}(f)$ or $\operatorname{Im}(f)$ is a set of all non-negative integers that are perfect squares.

Solution:

(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}$ is a function, where $\operatorname{dom}(f)=\mathbb{Z}, \operatorname{cod}(f)=\mathbb{Z}$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=\left\{y \in \mathbb{Z} \mid y=x^{2}\right.$ for an $\left.x \in \mathbb{Z}\right\}=\left\{x^{2} \mid x \in \mathbb{Z}\right\}$. Therefore, $\operatorname{ran}(f)$ or $\operatorname{Im}(f)$ is a set of all non-negative integers that are perfect squares.
(C) $g: \mathbb{Z} \rightarrow \mathbb{Z}$ with $g(x)=\frac{1}{x}$ is not a function, because $g(0)$ is undefined. g is a partial function, because if $x=1$ or $x=-1$, so the value of $g(x)$ is defined and has a single value.

Solution:

(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}$ is a function, where $\operatorname{dom}(f)=\mathbb{Z}, \operatorname{cod}(f)=\mathbb{Z}$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=\left\{y \in \mathbb{Z} \mid y=x^{2}\right.$ for an $\left.x \in \mathbb{Z}\right\}=\left\{x^{2} \mid x \in \mathbb{Z}\right\}$. Therefore, $\operatorname{ran}(f)$ or $\operatorname{Im}(f)$ is a set of all non-negative integers that are perfect squares.
(0) $g: \mathbb{Z} \rightarrow \mathbb{Z}$ with $g(x)=\frac{1}{x}$ is not a function, because $g(0)$ is undefined. g is a partial function, because if $x=1$ or $x=-1$, so the value of $g(x)$ is defined and has a single value.

- $h: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$with $h(x)=\frac{1}{x}$ is a function, where $\operatorname{dom}(h)=\mathbb{Q}^{+}$, $\operatorname{cod}(h)=\mathbb{Q}^{+}$, and
$\operatorname{ran}(h)=\operatorname{Im}(h)=$

Solution:
(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}$ is a function, where $\operatorname{dom}(f)=\mathbb{Z}, \operatorname{cod}(f)=\mathbb{Z}$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=\left\{y \in \mathbb{Z} \mid y=x^{2}\right.$ for an $\left.x \in \mathbb{Z}\right\}=\left\{x^{2} \mid x \in \mathbb{Z}\right\}$. Therefore, $\operatorname{ran}(f)$ or $\operatorname{Im}(f)$ is a set of all non-negative integers that are perfect squares.
(C) $g: \mathbb{Z} \rightarrow \mathbb{Z}$ with $g(x)=\frac{1}{x}$ is not a function, because $g(0)$ is undefined. g is a partial function, because if $x=1$ or $x=-1$, so the value of $g(x)$ is defined and has a single value.

- $h: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$with $h(x)=\frac{1}{x}$ is a function, where $\operatorname{dom}(h)=\mathbb{Q}^{+}$, $\operatorname{cod}(h)=\mathbb{Q}^{+}$, and
$\operatorname{ran}(h)=\operatorname{Im}(h)=\left\{y \in \mathbb{Q}^{+} \left\lvert\, y=\frac{1}{x}\right.\right.$ for an $\left.x \in \mathbb{Q}^{+}\right\}=\mathbb{Q}^{+}$, because for every $y \in \mathbb{Q}^{+}$there is $x \in \mathbb{Q}^{+}$such that $x y=1$. Therefore, $\operatorname{ran}(h)$ or $\operatorname{Im}(h)$ is \mathbb{Q}^{+}.

Solution:
(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}$ is a function, where $\operatorname{dom}(f)=\mathbb{Z}, \operatorname{cod}(f)=\mathbb{Z}$, and $\operatorname{ran}(f)=\operatorname{Im}(f)=\left\{y \in \mathbb{Z} \mid y=x^{2}\right.$ for an $\left.x \in \mathbb{Z}\right\}=\left\{x^{2} \mid x \in \mathbb{Z}\right\}$. Therefore, $\operatorname{ran}(f)$ or $\operatorname{Im}(f)$ is a set of all non-negative integers that are perfect squares.
(0) $g: \mathbb{Z} \rightarrow \mathbb{Z}$ with $g(x)=\frac{1}{x}$ is not a function, because $g(0)$ is undefined. g is a partial function, because if $x=1$ or $x=-1$, so the value of $g(x)$ is defined and has a single value.

- $h: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$with $h(x)=\frac{1}{x}$ is a function, where $\operatorname{dom}(h)=\mathbb{Q}^{+}$, $\operatorname{cod}(h)=\mathbb{Q}^{+}$, and
$\operatorname{ran}(h)=\operatorname{Im}(h)=\left\{y \in \mathbb{Q}^{+} \left\lvert\, y=\frac{1}{x}\right.\right.$ for an $\left.x \in \mathbb{Q}^{+}\right\}=\mathbb{Q}^{+}$, because for every $y \in \mathbb{Q}^{+}$there is $x \in \mathbb{Q}^{+}$such that $x y=1$. Therefore, $\operatorname{ran}(h)$ or $\operatorname{Im}(h)$ is \mathbb{Q}^{+}.
(0) $k: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$with $k(x)=\sqrt{x}$ is not a function, because $k(2)$ is undefined. This happens because $k(2)=\sqrt{2} \notin \mathbb{Q}^{+}$(remember that $\sqrt{2}$ is an irrational number). k is a partial function, because if \sqrt{x} is defined and $\sqrt{x} \in \mathbb{Q}^{+}$, then it has a single value.

Function Representation in Natural Language

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}$. Then f can be described in natural language as: " f maps each integer to its square".

We can see that it is simpler to write a function in assignment formula, rather than natural language, but it is not always the case.

Example

Let $A=\{x \mid x$ is a string of length 5 whose characters are in $\{0,1,2\}\}$. A function $f: A \rightarrow \mathbb{N}_{0}$ is defined as the number of character of 2 within a string x. For example:
(1) $f(21222)=$

We can see that it is simpler to write a function in assignment formula, rather than natural language, but it is not always the case.

Example

Let $A=\{x \mid x$ is a string of length 5 whose characters are in $\{0,1,2\}\}$. A function $f: A \rightarrow \mathbb{N}_{0}$ is defined as the number of character of 2 within a string x. For example:
(1) $f(21222)=4$
(2) $f(21202)=$

We can see that it is simpler to write a function in assignment formula, rather than natural language, but it is not always the case.

Example

Let $A=\{x \mid x$ is a string of length 5 whose characters are in $\{0,1,2\}\}$. A function $f: A \rightarrow \mathbb{N}_{0}$ is defined as the number of character of 2 within a string x. For example:
(1) $f(21222)=4$
(2) $f(21202)=3$

- $f(02102)=$

We can see that it is simpler to write a function in assignment formula, rather than natural language, but it is not always the case.

Example

Let $A=\{x \mid x$ is a string of length 5 whose characters are in $\{0,1,2\}\}$. A function $f: A \rightarrow \mathbb{N}_{0}$ is defined as the number of character of 2 within a string x. For example:
(1) $f(21222)=4$
(2) $f(21202)=3$

- $f(02102)=2$.
f can also be written in assignment formula representation.

We can see that it is simpler to write a function in assignment formula, rather than natural language, but it is not always the case.

Example

Let $A=\{x \mid x$ is a string of length 5 whose characters are in $\{0,1,2\}\}$. A function $f: A \rightarrow \mathbb{N}_{0}$ is defined as the number of character of 2 within a string x. For example:
(1) $f(21222)=4$
(2) $f(21202)=3$

- $f(02102)=2$.
f can also be written in assignment formula representation. Let $x=x_{1} x_{2} x_{3} x_{4} x_{5}$

$$
f(x)=f\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right)=
$$

We can see that it is simpler to write a function in assignment formula, rather than natural language, but it is not always the case.

Example

Let $A=\{x \mid x$ is a string of length 5 whose characters are in $\{0,1,2\}\}$. A function $f: A \rightarrow \mathbb{N}_{0}$ is defined as the number of character of 2 within a string x. For example:
(1) $f(21222)=4$
(2) $f(21202)=3$

- $f(02102)=2$.
f can also be written in assignment formula representation. Let $x=x_{1} x_{2} x_{3} x_{4} x_{5}$

$$
f(x)=f\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right)=\left|\left\{x_{i} \mid\left(x_{i}=2\right) \wedge(1 \leq i \leq 5)\right\}\right| .
$$

Function Representation in Programming Language

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function with $f(x)=\left\{\begin{array}{cc}3 x+1, & x \text { is odd } \\ \frac{x}{2}, & x \text { is even }\end{array}\right.$. This function can be written in Python language as follows:

Function f in Python

(1) def $f(x)$:
(2) if $(x \% 2==1)$:
(3) return $(3 * x+1)$

- else:
(3) return (x // 2)

Contents

(1) Functions: Definition and Representation
(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function
(3) Function Composition

4 Inverse Function
(0) Special Functions
(6) Challenging Problems

Contents

(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function

Injective Function

Definition (Injective function)

Let $f: A \rightarrow B$ be a function, f is injective (one-to-one) if every element in the domain of f is mapped to a different element in B, or in other words, for every $x_{1}, x_{2} \in \operatorname{dom}(f)$ we have: if $x_{1} \neq x_{2}$ then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$; we write it in predicate logic as follows:

$$
\begin{aligned}
& \left(\forall x_{1}\right)\left(\forall x_{2}\right) \quad\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right), \text { which is equivalent to } \\
& \left(\forall x_{1}\right)\left(\forall x_{2}\right) \quad\left(f\left(x_{1}\right)=f\left(x_{2}\right) \rightarrow x_{1}=x_{2}\right) .
\end{aligned}
$$

If f is an injective function, then f is also called an injection.

Remark

Note that $f: A \rightarrow B$ is injective if there is no two different elements in A that has the same image.

Examples of Injective Function

Example

Let $A=\{a, b, c, d\}$ and $B=\{1,2,3,4,5\}$. A function $f: A \rightarrow B$ defined as

$$
f(a)=1, f(b)=3, f(c)=5, \text { and } f(d)=2
$$

is an injective function, because there is no two elements in A with the same image. We have: if $x \neq y$ then $f(x) \neq f(y)$. An arrow diagram from this function can be described as follows

Examples of Injective Function

Example

Let $A=\{a, b, c, d\}$ and $B=\{1,2,3,4,5\}$. A function $f: A \rightarrow B$ defined as

$$
f(a)=1, f(b)=3, f(c)=5, \text { and } f(d)=2
$$

is an injective function, because there is no two elements in A with the same image. We have: if $x \neq y$ then $f(x) \neq f(y)$. An arrow diagram from this function can be described as follows

Checking the Injectivity of a Function

(1) To prove f is injective, we show that if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then $x_{1}=x_{2}$.
(2) To prove f is not injective, we must find $x_{1}, x_{2} \in \operatorname{dom}(f)$ with $x_{1} \neq x_{2}$ that satisfies $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Exercise

Exercise

Check whether the following functions are injective:
(c) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w, x\}$, and $f=\{(1, w),(2, u),(3, v)\}$.
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, u),(2, u),(3, v)\}$.

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}+1$.
(-) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.
Solution:

Exercise

Exercise

Check whether the following functions are injective:
(c) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w, x\}$, and $f=\{(1, w),(2, u),(3, v)\}$.
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, u),(2, u),(3, v)\}$.

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}+1$.
(- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.
Solution:
(1) f is injective, because $f(1)=w, f(2)=u$, and $f(3)=v$,

Exercise

Exercise

Check whether the following functions are injective:
(c) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w, x\}$, and $f=\{(1, w),(2, u),(3, v)\}$.
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, u),(2, u),(3, v)\}$.
(0) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}+1$.
(- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.
Solution:
(1) f is injective, because $f(1)=w, f(2)=u$, and $f(3)=v$, there is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.

Exercise

Exercise

Check whether the following functions are injective:
(c) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w, x\}$, and $f=\{(1, w),(2, u),(3, v)\}$.
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, u),(2, u),(3, v)\}$.
(0) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}+1$.
(- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.
Solution:
(1) f is injective, because $f(1)=w, f(2)=u$, and $f(3)=v$, there is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.
(0) f is not injective, because $1 \neq 2$ but $f(1)=f(2)=u$.

Exercise

Exercise

Check whether the following functions are injective:
(c) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w, x\}$, and $f=\{(1, w),(2, u),(3, v)\}$.
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, u),(2, u),(3, v)\}$.
(0) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}+1$.
(- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.
Solution:
(1) f is injective, because $f(1)=w, f(2)=u$, and $f(3)=v$, there is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.
(2) f is not injective, because $1 \neq 2$ but $f(1)=f(2)=u$.

- f is not injective, because $-1 \neq 1$ but $f(-1)=f(1)=2$.

Exercise

Exercise

Check whether the following functions are injective:
(1) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w, x\}$, and $f=\{(1, w),(2, u),(3, v)\}$.
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, u),(2, u),(3, v)\}$.

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}+1$.
(- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.
Solution:
(1) f is injective, because $f(1)=w, f(2)=u$, and $f(3)=v$, there is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.
(2) f is not injective, because $1 \neq 2$ but $f(1)=f(2)=u$.
- f is not injective, because $-1 \neq 1$ but $f(-1)=f(1)=2$.
- f is injective, because we have:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow$

Exercise

Exercise

Check whether the following functions are injective:
(1) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w, x\}$, and $f=\{(1, w),(2, u),(3, v)\}$.
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, u),(2, u),(3, v)\}$.

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}+1$.
(- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.
Solution:
(1) f is injective, because $f(1)=w, f(2)=u$, and $f(3)=v$, there is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.
(2) f is not injective, because $1 \neq 2$ but $f(1)=f(2)=u$.
- f is not injective, because $-1 \neq 1$ but $f(-1)=f(1)=2$.
- f is injective, because we have:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}-1=x_{2}-1 \Rightarrow$

Exercise

Exercise

Check whether the following functions are injective:
(1) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w, x\}$, and $f=\{(1, w),(2, u),(3, v)\}$.
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, u),(2, u),(3, v)\}$.

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}+1$.
(- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.
Solution:
(1) f is injective, because $f(1)=w, f(2)=u$, and $f(3)=v$, there is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.
(2) f is not injective, because $1 \neq 2$ but $f(1)=f(2)=u$.
- f is not injective, because $-1 \neq 1$ but $f(-1)=f(1)=2$.
- f is injective, because we have:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}-1=x_{2}-1 \Rightarrow x_{1}=x_{2}$. So,
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.

Contents

(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function

Surjective Function

Definition (Surjective function)

Let $f: A \rightarrow B$ be a function, f is surjective (onto) if for every $b \in B$ there exist $a \in A$ such that $f(a)=b$; we can write in predicate logic formula as

$$
\forall y \exists x(y=f(x)), \text { with } x \in A \text { and } y \in B
$$

If f is surjective, then f is called a surjection.

Remark

Note that $f: A \rightarrow B$ is surjective (onto) if every elements in B has at least one preimage. We can also say that $f: A \rightarrow B$ is surjective if $\operatorname{ran}(f)=\operatorname{Im}(f)=B$.

Example of Surjective Function

Example

Let $A=\{a, b, c, d\}$ and $B=\{1,2,3\}$. A function $f: A \rightarrow B$ defined as

$$
f(a)=1, f(b)=3, f(c)=1, \text { and } f(d)=2
$$

is surjective, because for every $y \in B$ there exists $x \in A$ such that $f(x)=y$. For $y=1$, we have $f(a)=1$ (and $f(c)=1$). Also, for $y=2$, we have $f(d)=2$. Lastly, for $y=3$, we have $f(b)=3$.

Example of Surjective Function

Example

Let $A=\{a, b, c, d\}$ and $B=\{1,2,3\}$. A function $f: A \rightarrow B$ defined as

$$
f(a)=1, f(b)=3, f(c)=1, \text { and } f(d)=2
$$

is surjective, because for every $y \in B$ there exists $x \in A$ such that $f(x)=y$. For $y=1$, we have $f(a)=1$ (and $f(c)=1$). Also, for $y=2$, we have $f(d)=2$. Lastly, for $y=3$, we have $f(b)=3$.

Checking the Surjectivity of a Function

(1) To prove that f is surjective, we show that if $y \in B$ then there is always an element $x \in A$ such that $f(x)=y$.
We can also conclude that f is surjective if $\operatorname{ran}(f)=B$.
(2) To prove that f is not surjective, we must find $y \in B$ that satisfies $y \neq f(x)$ for all $x \in \operatorname{dom}(f)$.
We can also conclude that f is not surjective if $\operatorname{ran}(f) \neq B$ (in this case, $\operatorname{ran}(f) \subset B)$.

Exercise

Exercise

Check whether the following functions are surjective.
(0) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w, x\}$ and $f=\{(1, w),(2, u),(3, v)\}$.
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$ and $f=\{(1, w),(2, u),(3, v)\}$.

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x^{2}+1$.
- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.

Solution:

(1) f is not surjective because $x \in B$ does not have a preimage, or there is no $a \in A$ such that $f(a)=x$.

Solution:
(1) f is not surjective because $x \in B$ does not have a preimage, or there is no $a \in A$ such that $f(a)=x$.
(0) f is surjective because all $b \in B$ have preimage. We have $u=f(2)$, $v=f(3)$, and $w=f(1)$.

Solution:
(1) f is not surjective because $x \in B$ does not have a preimage, or there is no $a \in A$ such that $f(a)=x$.
(0) f is surjective because all $b \in B$ have preimage. We have $u=f(2)$, $v=f(3)$, and $w=f(1)$.

- f is not surjective because not all $y \in \mathbb{Z}$ have preimage.

Solution:
(1) f is not surjective because $x \in B$ does not have a preimage, or there is no $a \in A$ such that $f(a)=x$.
(0) f is surjective because all $b \in B$ have preimage. We have $u=f(2)$, $v=f(3)$, and $w=f(1)$.

- f is not surjective because not all $y \in \mathbb{Z}$ have preimage. One of the counterexample is $y=$

Solution:
(1) f is not surjective because $x \in B$ does not have a preimage, or there is no $a \in A$ such that $f(a)=x$.
(0) f is surjective because all $b \in B$ have preimage. We have $u=f(2)$, $v=f(3)$, and $w=f(1)$.

- f is not surjective because not all $y \in \mathbb{Z}$ have preimage. One of the counterexample is $y=-1$. There is no $x \in \mathbb{Z}$ satisfies $f(x)=-1$,

Solution:
(1) f is not surjective because $x \in B$ does not have a preimage, or there is no $a \in A$ such that $f(a)=x$.
(0) f is surjective because all $b \in B$ have preimage. We have $u=f(2)$, $v=f(3)$, and $w=f(1)$.

- f is not surjective because not all $y \in \mathbb{Z}$ have preimage. One of the counterexample is $y=-1$. There is no $x \in \mathbb{Z}$ satisfies $f(x)=-1$, because this gives $x^{2}+1=-1 \Rightarrow x^{2}=-2$.

Solution:
(1) f is not surjective because $x \in B$ does not have a preimage, or there is no $a \in A$ such that $f(a)=x$.
(2) f is surjective because all $b \in B$ have preimage. We have $u=f(2)$, $v=f(3)$, and $w=f(1)$.

- f is not surjective because not all $y \in \mathbb{Z}$ have preimage. One of the counterexample is $y=-1$. There is no $x \in \mathbb{Z}$ satisfies $f(x)=-1$, because this gives $x^{2}+1=-1 \Rightarrow x^{2}=-2$.
(0) f is surjective because every $y \in \mathbb{Z}$ has preimage. For every $y \in \mathbb{Z}$ we can choose $x=$

Solution:
(1) f is not surjective because $x \in B$ does not have a preimage, or there is no $a \in A$ such that $f(a)=x$.
(0) f is surjective because all $b \in B$ have preimage. We have $u=f(2)$, $v=f(3)$, and $w=f(1)$.

- f is not surjective because not all $y \in \mathbb{Z}$ have preimage. One of the counterexample is $y=-1$. There is no $x \in \mathbb{Z}$ satisfies $f(x)=-1$, because this gives $x^{2}+1=-1 \Rightarrow x^{2}=-2$.
(0) f is surjective because every $y \in \mathbb{Z}$ has preimage. For every $y \in \mathbb{Z}$ we can choose $x=y+1$ such that $f(x)=f(y+1)=(y+1)-1=y$.

Contents

(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function

Bijective Function

Definition (Bijective function)

Let $f: A \rightarrow B$ be a function, f is bijective (one to one correspondence) if f is both injective and surjective. If f is bijective, then f is called a bijection.

Bijective Function Example

Example

Let $A=\{a, b, c, d\}$ and $B=\{1,2,3,4\}$. A function $f: A \rightarrow B$ defined as

$$
f(a)=4, f(b)=1, f(c)=3, \text { and } f(d)=2
$$

is bijective because f is both injective and surjective. Function f is injective because there is no $x, y \in A$ with $f(x)=f(y)$ but $x \neq y$. Also, f is surjective because every $y \in B$ has preimage. We have $1=f(b), 2=f(d), 3=f(c)$, and $4=f(a)$.

Bijective Function Example

Example

Let $A=\{a, b, c, d\}$ and $B=\{1,2,3,4\}$. A function $f: A \rightarrow B$ defined as

$$
f(a)=4, f(b)=1, f(c)=3, \text { and } f(d)=2
$$

is bijective because f is both injective and surjective. Function f is injective because there is no $x, y \in A$ with $f(x)=f(y)$ but $x \neq y$. Also, f is surjective because every $y \in B$ has preimage. We have $1=f(b), 2=f(d), 3=f(c)$, and $4=f(a)$.

Exercise

Exercise

Check whether these functions are bijective or not.
(1) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, u),(2, w),(3, v)\}$
(2) $f: A \rightarrow B$ where $A=\{1,2,3\}$ and $B=\{u, v\}$, and $f=\{(1, u),(2, u),(3, v)\}$.

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=x-1$.
- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ where $f(x)=2 x$.

Solution:
(c) We have $f(1)=u, f(2)=w$, and $f(3)=v$. There is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ but $f\left(a_{1}\right)=f\left(a_{2}\right)$, then f is injective. In addition, for every $b \in B$ there exists $a \in A$ such that $b=f(a)$, then f is surjective. Because f injective and surjective, then f is bijective.

Solution:
(c) We have $f(1)=u, f(2)=w$, and $f(3)=v$. There is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ but $f\left(a_{1}\right)=f\left(a_{2}\right)$, then f is injective. In addition, for every $b \in B$ there exists $a \in A$ such that $b=f(a)$, then f is surjective. Because f injective and surjective, then f is bijective.
(2) f is not bijective because f is not injective. We have $1 \neq 2$ but $f(1)=f(2)=u$.

Solution:
(1) We have $f(1)=u, f(2)=w$, and $f(3)=v$. There is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ but $f\left(a_{1}\right)=f\left(a_{2}\right)$, then f is injective. In addition, for every $b \in B$ there exists $a \in A$ such that $b=f(a)$, then f is surjective. Because f injective and surjective, then f is bijective.
(2) f is not bijective because f is not injective. We have $1 \neq 2$ but $f(1)=f(2)=u$.

- f is injective because: $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}-1=x_{2}-1 \Rightarrow x_{1}=x_{2}$. We also have f is surjective because for every $y \in \mathbb{Z}$ we can choose $x=y+1$ so that $f(x)=f(y+1)=y+1-1=y$. Hence, f is bijective.

Solution:
(1) We have $f(1)=u, f(2)=w$, and $f(3)=v$. There is no $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$ but $f\left(a_{1}\right)=f\left(a_{2}\right)$, then f is injective. In addition, for every $b \in B$ there exists $a \in A$ such that $b=f(a)$, then f is surjective. Because f injective and surjective, then f is bijective.
(2) f is not bijective because f is not injective. We have $1 \neq 2$ but $f(1)=f(2)=u$.

- f is injective because: $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}-1=x_{2}-1 \Rightarrow x_{1}=x_{2}$. We also have f is surjective because for every $y \in \mathbb{Z}$ we can choose $x=y+1$ so that $f(x)=f(y+1)=y+1-1=y$. Hence, f is bijective.
(0) f is not bijective because f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=1$. If there is $x \in \mathbb{Z}$ such that $f(x)=1$, then we have $f(x)=2 x=1$, so $x=\frac{1}{2} \notin \mathbb{Z}$.

Contents

(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

- Relation a. is not a function.

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

- Relation a. is not a function.
- Relation b. is not a (total) function, but a bijective partial function.

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

- Relation a. is not a function.
- Relation b. is not a (total) function, but a bijective partial function.
- Relation c. is a function but not injective neither surjective.

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

- Relation a.is not a function.

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

- Relation a.is not a function.
- Relation b. is a surjective function, but not injective.

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

- Relation a.is not a function.
- Relation b. is a surjective function, but not injective.
- Relation c. is a bijective function.

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

- Relation a. is a surjective function, but not injective.

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

- Relation a. is a surjective function, but not injective.
- Relation b. is an injective function, but not surjective.

Exercise

Exercise

From the following relations, which function is injective, surjective, or bijective?

Solution:

- Relation a. is a surjective function, but not injective.
- Relation b. is an injective function, but not surjective.
- Relation c. is a bijective function.

Exercise

Exercise

Check whether the relation f that is described by the following arrow diagram is a function. If so, determine whether f is injective, surjective, or bijective.
(1) 1. f is:
2. f is:

Solution:

Exercise

Exercise

Check whether the relation f that is described by the following arrow diagram is a function. If so, determine whether f is injective, surjective, or bijective.
(1) 1. f is:
2. f is:

Solution:
(1) f is a function from A to B and injective (because image of every $x \in A$ is different) but not surjective because $2 \in B$ does not have a preimage. So, f is not bijective.

Exercise

Exercise

Check whether the relation f that is described by the following arrow diagram is a function. If so, determine whether f is injective, surjective, or bijective.
(1) 1. f is:
2. f is:

Solution:
(1) f is a function from A to B and injective (because image of every $x \in A$ is different) but not surjective because $2 \in B$ does not have a preimage. So, f is not bijective.
(3) f is a function from A to B and surjective (because every $y \in B$ has a preimage) but not injective because $f(a)=f(d)=2$. So, f is not bijective.

Exercise

Exercise

Check whether f, represented as arrow diagram, is a function or not. If it is, check whether f is injective, surjective, or bijective.

1. f is:
2. f is:

Solution:

Exercise

Exercise

Check whether f, represented as arrow diagram, is a function or not. If it is, check whether f is injective, surjective, or bijective.

1. f is:
2. f is:

Solution:
(1) f is not an injective function because $f(a)=f(d)=2$. Also, f is not a surjective function because $4 \in B$ does not have a preimage. So, f is not bijective.

Exercise

Exercise

Check whether f, represented as arrow diagram, is a function or not. If it is, check whether f is injective, surjective, or bijective.

1. f is:
2. f is:

Solution:
(1) f is not an injective function because $f(a)=f(d)=2$. Also, f is not a surjective function because $4 \in B$ does not have a preimage. So, f is not bijective.
(0) f is not a function, because $(a, 1) \in f$ and $(a, 2) \in f$. So, f is not injective, surjective, nor bijective.

Exercise

Exercise

Check whether the following functions are injective, surjective, bijective, or none of them.
(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=2 x+3$.
(0) $f: \mathbb{Z} \rightarrow \mathbb{N}_{0}$ with $f(x)=|x|$, the notation $|x|$ denotes the absolute value of x.

- $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}+2$.
- $f: \mathbb{Q} \rightarrow \mathbb{Q}$ with $f(x)=2 x+1$.

Solution:

(0) f is injective.

Solution:

(1) f is injective. Notice that:

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow
$$

Solution:

(1) f is injective. Notice that:

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow
$$

Solution:

(1) f is injective. Notice that:

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow
$$

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective.

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$.

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$,

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$.

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$. The function f is surjective because for every $y \in \mathbb{N}_{0}$ there is $x=y \in \mathbb{Z}$ such that $f(x)=|x|=x=y$. Hence, f is not bijective.

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$. The function f is surjective because for every $y \in \mathbb{N}_{0}$ there is $x=y \in \mathbb{Z}$ such that $f(x)=|x|=x=y$. Hence, f is not bijective.
(0) f is not injective because $f(-1)=f(1)=3$.

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$. The function f is surjective because for every $y \in \mathbb{N}_{0}$ there is $x=y \in \mathbb{Z}$ such that $f(x)=|x|=x=y$. Hence, f is not bijective.
(0) f is not injective because $f(-1)=f(1)=3$. Moreover f is not surjective because there is no $x \in \mathbb{Z}$ such that $f(x)=0$.

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$. The function f is surjective because for every $y \in \mathbb{N}_{0}$ there is $x=y \in \mathbb{Z}$ such that $f(x)=|x|=x=y$. Hence, f is not bijective.
(0) f is not injective because $f(-1)=f(1)=3$. Moreover f is not surjective because there is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ satisfies $f(x)=0$, then $f(x)=x^{2}+2=0 \Rightarrow x^{2}=-2$, which is not possible for all $x \in \mathbb{Z}$.

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$. The function f is surjective because for every $y \in \mathbb{N}_{0}$ there is $x=y \in \mathbb{Z}$ such that $f(x)=|x|=x=y$. Hence, f is not bijective.
(0) f is not injective because $f(-1)=f(1)=3$. Moreover f is not surjective because there is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ satisfies $f(x)=0$, then $f(x)=x^{2}+2=0 \Rightarrow x^{2}=-2$, which is not possible for all $x \in \mathbb{Z}$.

- f is injective because

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+1=2 x_{2}+1 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2} .
$$

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$. The function f is surjective because for every $y \in \mathbb{N}_{0}$ there is $x=y \in \mathbb{Z}$ such that $f(x)=|x|=x=y$. Hence, f is not bijective.
(0) f is not injective because $f(-1)=f(1)=3$. Moreover f is not surjective because there is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ satisfies $f(x)=0$, then $f(x)=x^{2}+2=0 \Rightarrow x^{2}=-2$, which is not possible for all $x \in \mathbb{Z}$.

- f is injective because $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+1=2 x_{2}+1 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. The function f is surjective because for every $y \in \mathbb{Q}$, we can choose $x=$

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$. The function f is surjective because for every $y \in \mathbb{N}_{0}$ there is $x=y \in \mathbb{Z}$ such that $f(x)=|x|=x=y$. Hence, f is not bijective.
(0) f is not injective because $f(-1)=f(1)=3$. Moreover f is not surjective because there is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ satisfies $f(x)=0$, then $f(x)=x^{2}+2=0 \Rightarrow x^{2}=-2$, which is not possible for all $x \in \mathbb{Z}$.

- f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+1=2 x_{2}+1 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. The function f is surjective because for every $y \in \mathbb{Q}$, we can choose $x=\frac{y-1}{2} \in \mathbb{Q}$. So, $f(x)=$

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$. The function f is surjective because for every $y \in \mathbb{N}_{0}$ there is $x=y \in \mathbb{Z}$ such that $f(x)=|x|=x=y$. Hence, f is not bijective.
(0) f is not injective because $f(-1)=f(1)=3$. Moreover f is not surjective because there is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ satisfies $f(x)=0$, then $f(x)=x^{2}+2=0 \Rightarrow x^{2}=-2$, which is not possible for all $x \in \mathbb{Z}$.

- f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+1=2 x_{2}+1 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. The function f is surjective because for every $y \in \mathbb{Q}$, we can choose $x=\frac{y-1}{2} \in \mathbb{Q}$. So, $f(x)=f\left(\frac{y-1}{2}\right)=$

Solution:
(1) f is injective. Notice that:
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+3=2 x_{2}+3 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. But f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ that satisfies $f(x)=0$, then $f(x)=2 x+3=0$, so $x=-\frac{3}{2} \notin \mathbb{Z}$. Then f is not bijective.
(2) f is not injective because $f(-1)=f(1)=|-1|=|1|=1$. The function f is surjective because for every $y \in \mathbb{N}_{0}$ there is $x=y \in \mathbb{Z}$ such that $f(x)=|x|=x=y$. Hence, f is not bijective.

- f is not injective because $f(-1)=f(1)=3$. Moreover f is not surjective because there is no $x \in \mathbb{Z}$ such that $f(x)=0$. If there is $x \in \mathbb{Z}$ satisfies $f(x)=0$, then $f(x)=x^{2}+2=0 \Rightarrow x^{2}=-2$, which is not possible for all $x \in \mathbb{Z}$.
- f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 2 x_{1}+1=2 x_{2}+1 \Rightarrow 2 x_{1}=2 x_{2} \Rightarrow x_{1}=x_{2}$. The function f is surjective because for every $y \in \mathbb{Q}$, we can choose $x=\frac{y-1}{2} \in \mathbb{Q}$. So, $f(x)=f\left(\frac{y-1}{2}\right)=2\left(\frac{y-1}{2}\right)+1=y-1+1=y$. Therefore, f is bijective.

Challenging Problem

Exercise

Check whether these functions is injective, surjective, bijective, or none of them.
(1) $f: \mathbb{R} \backslash\{1\} \rightarrow \mathbb{R} \backslash\{1\}$ with $f(x)=\frac{x}{x-1}$.
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)= \begin{cases}2 x+1, & \text { if } x \leq 1 \\ 4 x+3, & \text { if } x>1 .\end{cases}$

- $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=\left\{\begin{array}{ll}2 x+1, & \text { if } x>1 \\ 4 x+3, & \text { if } x \leq 1 .\end{array}\right.$.

Contents

(1) Functions: Definition and Representation
(D) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function
(3) Function Composition
(4) Inverse Function
(5) Special Functions

Challenging Problems

Function Composition

Definition

Let A, B, C be three sets, $f: A \rightarrow B$ and $g: B \rightarrow C$. Function composition of g and f is function $g \circ f: A \rightarrow C$ defined as

$$
(g \circ f)(x)=g(f(x))
$$

for every $x \in \operatorname{dom}(f)$.
In order for $g \circ f$ to be defined, it should be $\operatorname{ran}(f) \subseteq \operatorname{dom}(g)$.

Illustration of Function Composition

Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions with $\operatorname{ran}(f)=Y^{\prime} \subseteq Y$, such that $\operatorname{ran}(f) \subseteq \operatorname{dom}(g)$. Function composition $g \circ f$ can be illustrated below.

We have $(g \circ f)(x)=g(f(x))$ for every $x \in X$.

Function Composition Example

Let $X=\{1,2,3\}, Y=\{a, b, c, d, e\}$, and $Z=\{x, y, z\}$. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions defined as:
$f=\{(1, c),(2, b),(3, a)\}$ and
$g=\{(a, y),(b, y),(c, z),(d, z),(e, z)\}$.
We have the following illustration:

Function Composition Example

Let $X=\{1,2,3\}, Y=\{a, b, c, d, e\}$, and $Z=\{x, y, z\}$. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions defined as:
$f=\{(1, c),(2, b),(3, a)\}$ and
$g=\{(a, y),(b, y),(c, z),(d, z),(e, z)\}$.
We have the following illustration:

We can see that: $(g \circ f)(1)=$

Function Composition Example

Let $X=\{1,2,3\}, Y=\{a, b, c, d, e\}$, and $Z=\{x, y, z\}$. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions defined as:
$f=\{(1, c),(2, b),(3, a)\}$ and
$g=\{(a, y),(b, y),(c, z),(d, z),(e, z)\}$.
We have the following illustration:

We can see that: $(g \circ f)(1)=g(f(1))=g(c)=z$, $(g \circ f)(2)=$

Function Composition Example

Let $X=\{1,2,3\}, Y=\{a, b, c, d, e\}$, and $Z=\{x, y, z\}$. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions defined as:
$f=\{(1, c),(2, b),(3, a)\}$ and
$g=\{(a, y),(b, y),(c, z),(d, z),(e, z)\}$.
We have the following illustration:

We can see that:

$$
\begin{aligned}
& (g \circ f)(1)=g(f(1))=g(c)=z, \\
& (g \circ f)(2)=g(f(2))=g(b)=y, \text { and } \\
& (g \circ f)(3)=
\end{aligned}
$$

Function Composition Example

Let $X=\{1,2,3\}, Y=\{a, b, c, d, e\}$, and $Z=\{x, y, z\}$. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions defined as:
$f=\{(1, c),(2, b),(3, a)\}$ and
$g=\{(a, y),(b, y),(c, z),(d, z),(e, z)\}$.
We have the following illustration:

We can see that:

$$
\begin{aligned}
& (g \circ f)(1)=g(f(1))=g(c)=z, \\
& (g \circ f)(2)=g(f(2))=g(b)=y, \text { and } \\
& (g \circ f)(3)=g(f(3))=g(a)=y .
\end{aligned}
$$

Then $g \circ f=$

Function Composition Example

Let $X=\{1,2,3\}, Y=\{a, b, c, d, e\}$, and $Z=\{x, y, z\}$. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions defined as:
$f=\{(1, c),(2, b),(3, a)\}$ and
$g=\{(a, y),(b, y),(c, z),(d, z),(e, z)\}$.
We have the following illustration:

We can see that:

$$
\begin{aligned}
& (g \circ f)(1)=g(f(1))=g(c)=z, \\
& (g \circ f)(2)=g(f(2))=g(b)=y, \text { and } \\
& (g \circ f)(3)=g(f(3))=g(a)=y .
\end{aligned}
$$

Then $g \circ f=\{(1, z),(2, y),(3, y)\}$.

Note that $g \circ f$ is a function from X to Z with $\operatorname{ran}(g \circ f)=\operatorname{Im}(g \circ f)=\{y, z\}$.

Note that $g \circ f$ is a function from X to Z with $\operatorname{ran}(g \circ f)=\operatorname{Im}(g \circ f)=\{y, z\}$.

Exercise

Exercise

If possible, determine the composition of the following functions.
(1) $f:\{a, b, c\} \rightarrow\{a, b, c\}$ with $f(a)=b, f(b)=c, f(c)=a$ and $g:\{a, b, c\} \rightarrow\{1,2,3\}$ with $g(a)=1, g(b)=2, g(c)=3$. Find $f \circ f$, $f \circ f \circ f, g \circ f$, and $f \circ g$.
(3) $f, g: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x-1$ and $g(x)=x^{2}$, find the formula for $(f \circ g)(x)$ and $(g \circ f)(x)$.

- $f, g: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x$ and $g(x)=1$, find the formula for $(f \circ g)(x)$ and $(g \circ f)(x)$.
(- $f, g: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=1$ and $g(x)=2$, find the formula for $(f \circ g)(x)$ and $(g \circ f)(x)$.
- $f, g: \mathbb{Q} \rightarrow \mathbb{Q}$ with $f(x)=2 x-1$ and $g(x)=\frac{x+1}{2}$, find the formula for $(f \circ g)(x)$ and $(g \circ f)(x)$.

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$.

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$.

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$.

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$. Lastly, because $\operatorname{dom}(f)=\{a, b, c\}$ and $\operatorname{ran}(g)=\{1,2,3\}$, then $f \circ g$ is not defined.
(2) We have $(f \circ g)(x)=f(g(x))=$

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$. Lastly, because $\operatorname{dom}(f)=\{a, b, c\}$ and $\operatorname{ran}(g)=\{1,2,3\}$, then $f \circ g$ is not defined.
(2) We have
$(f \circ g)(x)=f(g(x))=g(x)-1=x^{2}-1$.
$(g \circ f)(x)=g(f(x))=$

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$. Lastly, because $\operatorname{dom}(f)=\{a, b, c\}$ and $\operatorname{ran}(g)=\{1,2,3\}$, then $f \circ g$ is not defined.
(2) We have
$(f \circ g)(x)=f(g(x))=g(x)-1=x^{2}-1$.
$(g \circ f)(x)=g(f(x))=(x-1)^{2}=x^{2}-2 x+1$.

- We have
$(f \circ g)(x)=f(g(x))=$

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$. Lastly, because $\operatorname{dom}(f)=\{a, b, c\}$ and $\operatorname{ran}(g)=\{1,2,3\}$, then $f \circ g$ is not defined.
(2) We have
$(f \circ g)(x)=f(g(x))=g(x)-1=x^{2}-1$.
$(g \circ f)(x)=g(f(x))=(x-1)^{2}=x^{2}-2 x+1$.

- We have
$(f \circ g)(x)=f(g(x))=g(x)=1$.
$(g \circ f)(x)=g(f(x))=$

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$. Lastly, because $\operatorname{dom}(f)=\{a, b, c\}$ and $\operatorname{ran}(g)=\{1,2,3\}$, then $f \circ g$ is not defined.
(2) We have
$(f \circ g)(x)=f(g(x))=g(x)-1=x^{2}-1$.
$(g \circ f)(x)=g(f(x))=(x-1)^{2}=x^{2}-2 x+1$.

- We have
$(f \circ g)(x)=f(g(x))=g(x)=1$.
$(g \circ f)(x)=g(f(x))=1$.
- We have
$(f \circ g)(x)=f(g(x))=$

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$. Lastly, because $\operatorname{dom}(f)=\{a, b, c\}$ and $\operatorname{ran}(g)=\{1,2,3\}$, then $f \circ g$ is not defined.
(2) We have
$(f \circ g)(x)=f(g(x))=g(x)-1=x^{2}-1$.
$(g \circ f)(x)=g(f(x))=(x-1)^{2}=x^{2}-2 x+1$.

- We have
$(f \circ g)(x)=f(g(x))=g(x)=1$.
$(g \circ f)(x)=g(f(x))=1$.
- We have
$(f \circ g)(x)=f(g(x))=1$.
$(g \circ f)(x)=g(f(x))=$

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$. Lastly, because $\operatorname{dom}(f)=\{a, b, c\}$ and $\operatorname{ran}(g)=\{1,2,3\}$, then $f \circ g$ is not defined.
(2) We have
$(f \circ g)(x)=f(g(x))=g(x)-1=x^{2}-1$.
$(g \circ f)(x)=g(f(x))=(x-1)^{2}=x^{2}-2 x+1$.

- We have
$(f \circ g)(x)=f(g(x))=g(x)=1$.
$(g \circ f)(x)=g(f(x))=1$.
- We have
$(f \circ g)(x)=f(g(x))=1$.
$(g \circ f)(x)=g(f(x))=2$.
- We have
$(f \circ g)(x)=f(g(x))=$

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$. Lastly, because $\operatorname{dom}(f)=\{a, b, c\}$ and $\operatorname{ran}(g)=\{1,2,3\}$, then $f \circ g$ is not defined.
(2) We have
$(f \circ g)(x)=f(g(x))=g(x)-1=x^{2}-1$.
$(g \circ f)(x)=g(f(x))=(x-1)^{2}=x^{2}-2 x+1$.

- We have
$(f \circ g)(x)=f(g(x))=g(x)=1$.
$(g \circ f)(x)=g(f(x))=1$.
- We have
$(f \circ g)(x)=f(g(x))=1$.
$(g \circ f)(x)=g(f(x))=2$.
- We have
$(f \circ g)(x)=f(g(x))=2 g(x)-1=2\left(\frac{x+1}{2}\right)-1=x+1-1=x$.
$(g \circ f)(x)=g(f(x))=$

Solution:

(1) We have $f \circ f$ is a function defined as: $(f \circ f)(a)=c,(f \circ f)(b)=a$, $(f \circ f)(c)=b$. Next, $f \circ f \circ f$ is a function defined as: $(f \circ f \circ f)(a)=a$, $(f \circ f \circ f)(b)=b,(f \circ f \circ f)(c)=c$. The function $g \circ f$ is a function defined as: $(g \circ f)(a)=2,(g \circ f)(b)=3,(g \circ f)(c)=1$. Lastly, because $\operatorname{dom}(f)=\{a, b, c\}$ and $\operatorname{ran}(g)=\{1,2,3\}$, then $f \circ g$ is not defined.
(2) We have
$(f \circ g)(x)=f(g(x))=g(x)-1=x^{2}-1$.
$(g \circ f)(x)=g(f(x))=(x-1)^{2}=x^{2}-2 x+1$.

- We have
$(f \circ g)(x)=f(g(x))=g(x)=1$.
$(g \circ f)(x)=g(f(x))=1$.
- We have
$(f \circ g)(x)=f(g(x))=1$.
$(g \circ f)(x)=g(f(x))=2$.
- We have
$(f \circ g)(x)=f(g(x))=2 g(x)-1=2\left(\frac{x+1}{2}\right)-1=x+1-1=x$.
$(g \circ f)(x)=g(f(x))=\frac{f(x)+1}{2}=\frac{(2 x-1)+1}{2}=\frac{2 x}{2}=x$.

Contents

(1) Functions: Definition and Representation
(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function
(3) Function Composition
(4) Inverse Function
(5) Special Functions
(6) Challenging Problems

Inverse Function

Definition

Let $f: A \rightarrow B$ be a bijective function. Inverse function of f is function $f^{-1}: B \rightarrow A$ such that

$$
\begin{aligned}
\left(f^{-1} \circ f\right)(a) & =f^{-1}(f(a))=a, \\
\left(f \circ f^{-1}\right)(b) & =f\left(f^{-1}(b)\right)=b,
\end{aligned}
$$

for every $a \in A$ and $b \in B$. If f has inverse, then f is invertible.
REMEMBER: the requirement for a function $f: A \rightarrow B$ to have an inverse is f should have bijective property (as a one-to-one correspondence). If $f: A \rightarrow B$ is not bijective, then f^{-1} is not defined.

Inverse Function Example

Example

Let $f: A \rightarrow B$ with $A=\{1,2,3\}$ and $B=\{u, v, w\}$,and $f=\{(1, w),(2, u),(3, v)\}$. Function f has bijective properties (as one-to-one correspondence). We have $f(1)=w, f(2)=u$, and $f(3)=v$.

Inverse Function Example

Example

Let $f: A \rightarrow B$ with $A=\{1,2,3\}$ and $B=\{u, v, w\}$,and $f=\{(1, w),(2, u),(3, v)\}$. Function f has bijective properties (as one-to-one correspondence). We have $f(1)=w, f(2)=u$, and $f(3)=v$. Inverse function of f is f^{-1} with the properties $\left(f \circ f^{-1}\right)(b)=b$ and $\left(f^{-1} \circ f\right)(a)=a$ for all $a \in A$ and $b \in B$. We have

$$
f^{-1}(u)=
$$

Inverse Function Example

Example

Let $f: A \rightarrow B$ with $A=\{1,2,3\}$ and $B=\{u, v, w\}$,and $f=\{(1, w),(2, u),(3, v)\}$. Function f has bijective properties (as one-to-one correspondence). We have $f(1)=w, f(2)=u$, and $f(3)=v$. Inverse function of f is f^{-1} with the properties $\left(f \circ f^{-1}\right)(b)=b$ and $\left(f^{-1} \circ f\right)(a)=a$ for all $a \in A$ and $b \in B$. We have

$$
f^{-1}(u)=2, f^{-1}(v)=
$$

Inverse Function Example

Example

Let $f: A \rightarrow B$ with $A=\{1,2,3\}$ and $B=\{u, v, w\}$,and $f=\{(1, w),(2, u),(3, v)\}$. Function f has bijective properties (as one-to-one correspondence). We have $f(1)=w, f(2)=u$, and $f(3)=v$. Inverse function of f is f^{-1} with the properties $\left(f \circ f^{-1}\right)(b)=b$ and $\left(f^{-1} \circ f\right)(a)=a$ for all $a \in A$ and $b \in B$. We have

$$
f^{-1}(u)=2, f^{-1}(v)=3, \text { and } f^{-1}(w)=
$$

Inverse Function Example

Example

Let $f: A \rightarrow B$ with $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, w),(2, u),(3, v)\}$. Function f has bijective properties (as one-to-one correspondence). We have $f(1)=w, f(2)=u$, and $f(3)=v$. Inverse function of f is f^{-1} with the properties $\left(f \circ f^{-1}\right)(b)=b$ and $\left(f^{-1} \circ f\right)(a)=a$ for all $a \in A$ and $b \in B$. We have

$$
f^{-1}(u)=2, f^{-1}(v)=3, \text { and } f^{-1}(w)=1 .
$$

Notice that

$$
\left(f \circ f^{-1}\right)(u)=
$$

Inverse Function Example

Example

Let $f: A \rightarrow B$ with $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, w),(2, u),(3, v)\}$. Function f has bijective properties (as one-to-one correspondence). We have $f(1)=w, f(2)=u$, and $f(3)=v$. Inverse function of f is f^{-1} with the properties $\left(f \circ f^{-1}\right)(b)=b$ and $\left(f^{-1} \circ f\right)(a)=a$ for all $a \in A$ and $b \in B$. We have

$$
f^{-1}(u)=2, f^{-1}(v)=3, \text { and } f^{-1}(w)=1 .
$$

Notice that

$$
\begin{aligned}
& \left(f \circ f^{-1}\right)(u)=f\left(f^{-1}(u)\right)=f(2)=u \\
& \left(f \circ f^{-1}\right)(v)=
\end{aligned}
$$

Inverse Function Example

Example

Let $f: A \rightarrow B$ with $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, w),(2, u),(3, v)\}$. Function f has bijective properties (as one-to-one correspondence). We have $f(1)=w, f(2)=u$, and $f(3)=v$. Inverse function of f is f^{-1} with the properties $\left(f \circ f^{-1}\right)(b)=b$ and $\left(f^{-1} \circ f\right)(a)=a$ for all $a \in A$ and $b \in B$. We have

$$
f^{-1}(u)=2, f^{-1}(v)=3, \text { and } f^{-1}(w)=1 .
$$

Notice that

$$
\begin{aligned}
\left(f \circ f^{-1}\right)(u) & =f\left(f^{-1}(u)\right)=f(2)=u, \\
\left(f \circ f^{-1}\right)(v) & =f\left(f^{-1}(v)\right)=f(3)=v, \\
\left(f \circ f^{-1}\right)(w) & =
\end{aligned}
$$

Inverse Function Example

Example

Let $f: A \rightarrow B$ with $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, w),(2, u),(3, v)\}$. Function f has bijective properties (as one-to-one correspondence). We have $f(1)=w, f(2)=u$, and $f(3)=v$. Inverse function of f is f^{-1} with the properties $\left(f \circ f^{-1}\right)(b)=b$ and $\left(f^{-1} \circ f\right)(a)=a$ for all $a \in A$ and $b \in B$. We have

$$
f^{-1}(u)=2, f^{-1}(v)=3, \text { and } f^{-1}(w)=1 .
$$

Notice that

$$
\begin{aligned}
\left(f \circ f^{-1}\right)(u) & =f\left(f^{-1}(u)\right)=f(2)=u, \\
\left(f \circ f^{-1}\right)(v) & =f\left(f^{-1}(v)\right)=f(3)=v, \\
\left(f \circ f^{-1}\right)(w) & =f\left(f^{-1}(w)\right)=f(1)=w,
\end{aligned}
$$

using the similar idea, we can also prove that

Inverse Function Example

Example

Let $f: A \rightarrow B$ with $A=\{1,2,3\}$ and $B=\{u, v, w\}$, and $f=\{(1, w),(2, u),(3, v)\}$. Function f has bijective properties (as one-to-one correspondence). We have $f(1)=w, f(2)=u$, and $f(3)=v$. Inverse function of f is f^{-1} with the properties $\left(f \circ f^{-1}\right)(b)=b$ and $\left(f^{-1} \circ f\right)(a)=a$ for all $a \in A$ and $b \in B$. We have

$$
f^{-1}(u)=2, f^{-1}(v)=3, \text { and } f^{-1}(w)=1 .
$$

Notice that

$$
\begin{aligned}
\left(f \circ f^{-1}\right)(u) & =f\left(f^{-1}(u)\right)=f(2)=u, \\
\left(f \circ f^{-1}\right)(v) & =f\left(f^{-1}(v)\right)=f(3)=v, \\
\left(f \circ f^{-1}\right)(w) & =f\left(f^{-1}(w)\right)=f(1)=w,
\end{aligned}
$$

using the similar idea, we can also prove that $\left(f^{-1} \circ f\right)(1)=1$, $\left(f^{-1} \circ f\right)(2)=2$, and $\left(f^{-1} \circ f\right)(3)=3$.

Exercise

Exercise

Find (if exists) the inverse of these following functions:
(1) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x-1$.
(2) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=x^{2}+1$.

- $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}$ with $f(x)=\frac{x-1}{x}$.
(0) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with $f(x)=2 x$.

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=$

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=$

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=y+1$, then we have $f^{-1}(x)=$

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=y+1$, then we have $f^{-1}(x)=x+1$. Notice that
$\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(x+1)=(x+1)-1=x$ and $\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(x-1)=(x-1)+1=x$.

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=y+1$, then we have $f^{-1}(x)=x+1$. Notice that
$\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(x+1)=(x+1)-1=x$ and $\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(x-1)=(x-1)+1=x$.
(0) f is not bijective because f is not injective neither surjective. We have $f(1)=f(-1)=2$ and there is no $x \in \mathbb{Z}$ such that $f(x)=0$. Thus, f has no inverse.

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=y+1$, then we have $f^{-1}(x)=x+1$. Notice that
$\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(x+1)=(x+1)-1=x$ and $\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(x-1)=(x-1)+1=x$.
(0) f is not bijective because f is not injective neither surjective. We have $f(1)=f(-1)=2$ and there is no $x \in \mathbb{Z}$ such that $f(x)=0$. Thus, f has no inverse.

- f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow$

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=y+1$, then we have $f^{-1}(x)=x+1$. Notice that
$\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(x+1)=(x+1)-1=x$ and $\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(x-1)=(x-1)+1=x$.
(0) f is not bijective because f is not injective neither surjective. We have $f(1)=f(-1)=2$ and there is no $x \in \mathbb{Z}$ such that $f(x)=0$. Thus, f has no inverse.

- f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{x_{1}-1}{x_{1}}=\frac{x_{2}-1}{x_{2}} \Rightarrow$

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=y+1$, then we have $f^{-1}(x)=x+1$. Notice that
$\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(x+1)=(x+1)-1=x$ and $\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(x-1)=(x-1)+1=x$.
(0) f is not bijective because f is not injective neither surjective. We have $f(1)=f(-1)=2$ and there is no $x \in \mathbb{Z}$ such that $f(x)=0$. Thus, f has no inverse.

- f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{x_{1}-1}{x_{1}}=\frac{x_{2}-1}{x_{2}} \Rightarrow 1-\frac{1}{x_{1}}=1-\frac{1}{x_{2}} \Rightarrow$

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=y+1$, then we have $f^{-1}(x)=x+1$. Notice that
$\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(x+1)=(x+1)-1=x$ and $\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(x-1)=(x-1)+1=x$.
(0) f is not bijective because f is not injective neither surjective. We have $f(1)=f(-1)=2$ and there is no $x \in \mathbb{Z}$ such that $f(x)=0$. Thus, f has no inverse.

- f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{x_{1}-1}{x_{1}}=\frac{x_{2}-1}{x_{2}} \Rightarrow 1-\frac{1}{x_{1}}=1-\frac{1}{x_{2}} \Rightarrow \frac{1}{x_{1}}=\frac{1}{x_{2}} \Rightarrow x_{1}=x_{2}$.
But f is not surjective because there is no x such that $f(x)=1$.

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=y+1$, then we have $f^{-1}(x)=x+1$. Notice that
$\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(x+1)=(x+1)-1=x$ and $\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(x-1)=(x-1)+1=x$.
(0) f is not bijective because f is not injective neither surjective. We have $f(1)=f(-1)=2$ and there is no $x \in \mathbb{Z}$ such that $f(x)=0$. Thus, f has no inverse.

- f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{x_{1}-1}{x_{1}}=\frac{x_{2}-1}{x_{2}} \Rightarrow 1-\frac{1}{x_{1}}=1-\frac{1}{x_{2}} \Rightarrow \frac{1}{x_{1}}=\frac{1}{x_{2}} \Rightarrow x_{1}=x_{2}$. But f is not surjective because there is no x such that $f(x)=1$. If there is such x, then $f(x)=\frac{x-1}{x}=1$, so $x-1=x$, hence $-1=0$. Because f is not bijective, then f is not invertible.

Solution:
(1) f is bijective because f is injective and surjective (prove it!). If $f(x)=x-1=y$, then $x=y+1$, so $f^{-1}(y)=y+1$, then we have $f^{-1}(x)=x+1$. Notice that
$\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(x+1)=(x+1)-1=x$ and $\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(x-1)=(x-1)+1=x$.
(0) f is not bijective because f is not injective neither surjective. We have $f(1)=f(-1)=2$ and there is no $x \in \mathbb{Z}$ such that $f(x)=0$. Thus, f has no inverse.

- f is injective because
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{x_{1}-1}{x_{1}}=\frac{x_{2}-1}{x_{2}} \Rightarrow 1-\frac{1}{x_{1}}=1-\frac{1}{x_{2}} \Rightarrow \frac{1}{x_{1}}=\frac{1}{x_{2}} \Rightarrow x_{1}=x_{2}$. But f is not surjective because there is no x such that $f(x)=1$. If there is such x, then $f(x)=\frac{x-1}{x}=1$, so $x-1=x$, hence $-1=0$. Because f is not bijective, then f is not invertible.
(- f is not bijective because f is not surjective. There is no $x \in \mathbb{Z}$ such that $f(x)=1$.

Contents

(1) Functions: Definition and Representation
(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function
(3) Function Composition
(4) Inverse Function
(5) Special Functions
(6) Challenging Problems

Floor Function and Ceiling Function

Definition

Floor function maps the real number x to the greatest integer smaller than or equal to x. Floor function is denoted by $\lfloor\cdots\rfloor$. Formally, for every $x \in \mathbb{R},\lfloor x\rfloor=n$ where $n \leq x<n+1$.

Definition

Ceiling function maps the real number x to the smallest integer greater than or equal to x. Ceiling function is denoted by $\lceil\cdots\rceil$. Formally, for every $x \in \mathbb{R}$, $\lceil x\rceil=m$ where $m-1<x \leq m$.

Intuitively: $\lfloor x\rfloor$ rounds x "down", while $\lceil x\rceil$ rounds x "up".

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(c) $\lfloor 0.7\rfloor=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.

- $\lfloor 1.1\rfloor=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.

- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.
(- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.
(- $\lfloor 1\rfloor=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.
(- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.

- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.
(- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.

- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=1$.
(-) $\lfloor-3.5\rfloor=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.

- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.
- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=1$.
- $\lfloor-3.5\rfloor=-4$ and $\lceil-3.5\rceil=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.

- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.
(- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=1$.
(0. $\lfloor-3.5\rfloor=-4$ and $\lceil-3.5\rceil=-3$.
(1) $\lfloor-2.7\rfloor=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.

- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.
(- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=1$.
(0) $\lfloor-3.5\rfloor=-4$ and $\lceil-3.5\rceil=-3$.
($\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.

- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.
- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=1$.
- $\lfloor-3.5\rfloor=-4$ and $\lceil-3.5\rceil=-3$.
(0) $\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2$.
- $\lfloor-1.3\rfloor=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.

- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.
- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=1$.
- $\lfloor-3.5\rfloor=-4$ and $\lceil-3.5\rceil=-3$.
(0) $\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2$.
- $\lfloor-1.3\rfloor=-2$ and $\lceil-1.3\rceil=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.
(- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.

- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=1$.
(0. $\lfloor-3.5\rfloor=-4$ and $\lceil-3.5\rceil=-3$.
(1) $\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2$.
- $\lfloor-1.3\rfloor=-2$ and $\lceil-1.3\rceil=-1$.
($\lfloor-4\rfloor=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.

- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.
- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=1$.
- $\lfloor-3.5\rfloor=-4$ and $\lceil-3.5\rceil=-3$.
(1) $\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2$.
- $\lfloor-1.3\rfloor=-2$ and $\lceil-1.3\rceil=-1$.
(- $\lfloor-4\rfloor=-4$ and $\lceil-4\rceil=$

Examples (Floor and Ceiling)

Example

We have

(1) $\lfloor 3.5\rfloor=3$ and $\lceil 3.5\rceil=4$.
(2) $\lfloor 0.7\rfloor=0$ and $\lceil 0.7\rceil=1$.

- $\lfloor 1.1\rfloor=1$ and $\lceil 1.1\rceil=2$.
- $\lfloor 1\rfloor=1$ and $\lceil 1\rceil=1$.
- $\lfloor-3.5\rfloor=-4$ and $\lceil-3.5\rceil=-3$.
(1) $\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2$.
- $\lfloor-1.3\rfloor=-2$ and $\lceil-1.3\rceil=-1$.
(- $\lfloor-4\rfloor=-4$ and $\lceil-4\rceil=-4$.

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$\lfloor\sqrt{2}\rfloor$ and $\lceil\sqrt{2} \mid$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1)

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$[\sqrt{2}\rfloor$ and $\lceil\sqrt{2} \mid$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}\rceil$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3,2)$

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$[\sqrt{2}\rfloor$ and $\lceil\sqrt{2} \mid$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3$, 2) $\lfloor 3.1\rfloor=3$ and $\lceil 3.1\rceil=4$, 3)

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$[\sqrt{2}\rfloor$ and $\lceil\sqrt{2} \mid$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}\rceil$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3$, 2) $\lfloor 3.1\rfloor=3$ and $\lceil 3.1\rceil=4$, 3) $\lfloor-1.4\rfloor=-2$ and $\lceil-1.4\rceil=-1,4)$

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$[\sqrt{2}\rfloor$ and $\lceil\sqrt{2} \mid$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3$, 2) $\lfloor 3.1\rfloor=3$ and $\lceil 3.1\rceil=4$, 3) $\lfloor-1.4\rfloor=-2$ and $\lceil-1.4\rceil=-1,4)\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2,5)$

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$\lfloor\sqrt{2}\rfloor$ and $\lceil\sqrt{2}\rceil$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}\rceil$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3$, 2) $\lfloor 3.1\rfloor=3$ and $\lceil 3.1\rceil=4$, 3) $\lfloor-1.4\rfloor=-2$ and $\lceil-1.4\rceil=-1,4)\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2,5)\lfloor\pi\rfloor=3$ and $\lceil\pi\rceil=4, \mathbf{6})$

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$\lfloor\sqrt{2}\rfloor$ and $\lceil\sqrt{2} \mid$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3$, 2) $\lfloor 3.1\rfloor=3$ and $\lceil 3.1\rceil=4$, 3) $\lfloor-1.4\rfloor=-2$ and $\lceil-1.4\rceil=-1,4)\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2,5)\lfloor\pi\rfloor=3$ and $\lceil\pi\rceil=4,6)\lfloor-\pi\rfloor=-4$ and $\lceil-\pi\rceil=-3,7)$

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$\lfloor\sqrt{2}\rfloor$ and $\lceil\sqrt{2}\rceil$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}\rceil$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3$, 2) $\lfloor 3.1\rfloor=3$ and $\lceil 3.1\rceil=4$, 3) $\lfloor-1.4\rfloor=-2$ and $\lceil-1.4\rceil=-1,4)\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2$, 5) $\lfloor\pi\rfloor=3$ and $\lceil\pi\rceil=4, \mathbf{6})\lfloor-\pi\rfloor=-4$ and $\lceil-\pi\rceil=-3,7)\lfloor\sqrt{2}\rfloor=1$ and $\lceil\sqrt{2}\rceil=2,8)$

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$\lfloor\sqrt{2}\rfloor$ and $\lceil\sqrt{2} \mid$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3$, 2) $\lfloor 3.1\rfloor=3$ and $\lceil 3.1\rceil=4$, 3) $\lfloor-1.4\rfloor=-2$ and $\lceil-1.4\rceil=-1,4)\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2,5)\lfloor\pi\rfloor=3$ and $\lceil\pi\rceil=4, \mathbf{6})\lfloor-\pi\rfloor=-4$ and $\lceil-\pi\rceil=-3,7)\lfloor\sqrt{2}\rfloor=1$ and $\lceil\sqrt{2}\rceil=2,8)$ $\lfloor-\sqrt{2}\rfloor=-2$ and $\lceil-\sqrt{2}\rceil=-1,9)$

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$\lfloor\sqrt{2}\rfloor$ and $\lceil\sqrt{2} \mid$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3$, 2) $\lfloor 3.1\rfloor=3$ and $\lceil 3.1\rceil=4$, 3) $\lfloor-1.4\rfloor=-2$ and $\lceil-1.4\rceil=-1,4)\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2$, 5) $\lfloor\pi\rfloor=3$ and $\lceil\pi\rceil=4, \mathbf{6})\lfloor-\pi\rfloor=-4$ and $\lceil-\pi\rceil=-3,7)\lfloor\sqrt{2}\rfloor=1$ and $\lceil\sqrt{2}\rceil=2,8)$ $\lfloor-\sqrt{2}\rfloor=-2$ and $\lceil-\sqrt{2}\rceil=-1, \mathbf{9})\lfloor-3 \sqrt{2}\rfloor=-5$ and $\lceil-3 \sqrt{2}\rceil=-4,10)$

Exercise

Exercise

Find:

1)	$\lfloor 2.8\rfloor$ and $\lceil 2.8\rceil$
2)	$\lfloor 3.1\rfloor$ and $\lceil 3.1\rceil$
3)	$\lfloor-1.4\rfloor$ and $\lceil-1.4\rceil$
4)	$\lfloor-2.7\rfloor$ and $\lceil-2.7\rceil$
5)	$\lfloor\pi\rfloor$ and $\lceil\pi\rceil$

6)	$\lfloor-\pi\rfloor$ and $\lceil-\pi\rceil$
7)	$\lfloor\sqrt{2}\rfloor$ and $\lceil\sqrt{2}\rceil$
8)	$[-\sqrt{2}\rfloor$ and $\lceil-\sqrt{2}$
9)	$[-3 \sqrt{2}\rfloor$ and $\lceil-3 \sqrt{2}\rceil$
10)	$[2 \sqrt{3}\rfloor$ and $\lceil 2 \sqrt{3}\rceil$

Solution: 1) $\lfloor 2.8\rfloor=2$ and $\lceil 2.8\rceil=3$, 2) $\lfloor 3.1\rfloor=3$ and $\lceil 3.1\rceil=4$, 3) $\lfloor-1.4\rfloor=-2$ and $\lceil-1.4\rceil=-1,4)\lfloor-2.7\rfloor=-3$ and $\lceil-2.7\rceil=-2,5)\lfloor\pi\rfloor=3$ and $\lceil\pi\rceil=4, \mathbf{6})\lfloor-\pi\rfloor=-4$ and $\lceil-\pi\rceil=-3,7)\lfloor\sqrt{2}\rfloor=1$ and $\lceil\sqrt{2}\rceil=2,8)$ $\lfloor-\sqrt{2}\rfloor=-2$ and $\lceil-\sqrt{2}\rceil=-1, \mathbf{9})\lfloor-3 \sqrt{2}\rfloor=-5$ and $\lceil-3 \sqrt{2}\rceil=-4,10)$ $\lfloor 2 \sqrt{3}\rfloor=3$ and $\lceil 2 \sqrt{3}\rceil=4$.

Modulo (mod) and Divisor (div Functions)

Theorem

Let $a \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, then there is $q \in \mathbb{Z}$ and $r \in \mathbb{Z}$ with $0 \leq r<m$ such that

$$
a=m q+r
$$

Integers q and r are unique for every a and m. Furthermore:
(0) the value of q is called as a quotient of a divided by m and is denoted as a div m;
(2) the value of r is called as a remainder of a divided by m and is denoted as $a \bmod m$ (the value of the remainder is never negative).
mod and div will be discussed further in elementary number theory.

Example

Example

We have

(1) $25 \bmod 7=$

Example

Example

We have

(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=$

Example

Example

We have

(c) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(C) $16 \bmod 4=$

Example

Example

We have

(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=$

Example

Example

We have

(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(C) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=$

Example

Example

We have

(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(C) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.
(0) $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=$

Example

Example

We have

(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.
(3) $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
(ㄷ) $0 \bmod 5=$

Example

Example

We have

(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(C) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
(-) $0 \bmod 5=0$ and $0 \operatorname{div} 5=$

Example

Example

We have

(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(C) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
($0 \bmod 5=0$ and $0 \operatorname{div} 5=0$, because $0=5(0)+0$.
(0) $27 \bmod 4=$

Example

Example

We have

(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
- $0 \bmod 5=0$ and $0 \operatorname{div} 5=0$, because $0=5(0)+0$.
(0) $27 \bmod 4=3$ and $27 \operatorname{div} 4=$

Example

Example

We have

(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
- $0 \bmod 5=0$ and $0 \operatorname{div} 5=0$, because $0=5(0)+0$.
- $27 \bmod 4=3$ and $27 \operatorname{div} 4=6$, because $27=4(6)+3$.
(-) $-27 \bmod 4=$

Example

Example

We have
(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
- $0 \bmod 5=0$ and $0 \operatorname{div} 5=0$, because $0=5(0)+0$.
- $27 \bmod 4=3$ and $27 \operatorname{div} 4=6$, because $27=4(6)+3$.
- $-27 \bmod 4=1$ and $-27 \operatorname{div} 4=$

Example

Example

We have
(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
- $0 \bmod 5=0$ and $0 \operatorname{div} 5=0$, because $0=5(0)+0$.
- $27 \bmod 4=3$ and $27 \operatorname{div} 4=6$, because $27=4(6)+3$.
- $-27 \bmod 4=1$ and $-27 \operatorname{div} 4=-7$, because $-27=4(-7)+1$.
- $37 \bmod 6=$

Example

Example

We have
(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
- $0 \bmod 5=0$ and $0 \operatorname{div} 5=0$, because $0=5(0)+0$.
- $27 \bmod 4=3$ and $27 \operatorname{div} 4=6$, because $27=4(6)+3$.
- $-27 \bmod 4=1$ and $-27 \operatorname{div} 4=-7$, because $-27=4(-7)+1$.
- $37 \bmod 6=1$ and $37 \operatorname{div} 6=$

Example

Example

We have
(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
- $0 \bmod 5=0$ and $0 \operatorname{div} 5=0$, because $0=5(0)+0$.
- $27 \bmod 4=3$ and $27 \operatorname{div} 4=6$, because $27=4(6)+3$.
- $-27 \bmod 4=1$ and $-27 \operatorname{div} 4=-7$, because $-27=4(-7)+1$.
- $37 \bmod 6=1$ and $37 \operatorname{div} 6=6$, because $37=6(6)+1$.
(-) $-37 \bmod 6=$

Example

Example

We have
(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.

- $4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.
- $0 \bmod 5=0$ and $0 \operatorname{div} 5=0$, because $0=5(0)+0$.
- $27 \bmod 4=3$ and $27 \operatorname{div} 4=6$, because $27=4(6)+3$.
- $-27 \bmod 4=1$ and $-27 \operatorname{div} 4=-7$, because $-27=4(-7)+1$.
- $37 \bmod 6=1$ and $37 \operatorname{div} 6=6$, because $37=6(6)+1$.
(-) $-37 \bmod 6=5$ and $-37 \operatorname{div} 6=$

Example

Example

We have
(1) $25 \bmod 7=4$ and $25 \operatorname{div} 7=3$, because $25=7(3)+4$.
(2) $16 \bmod 4=0$ and $16 \operatorname{div} 4=4$, because $16=4(4)+0$.
($4512 \bmod 45=12$ and $4512 \operatorname{div} 45=100$, because $4512=45(100)+12$.

- $0 \bmod 5=0$ and $0 \operatorname{div} 5=0$, because $0=5(0)+0$.
- $27 \bmod 4=3$ and $27 \operatorname{div} 4=6$, because $27=4(6)+3$.
- $-27 \bmod 4=1$ and $-27 \operatorname{div} 4=-7$, because $-27=4(-7)+1$.
- $37 \bmod 6=1$ and $37 \operatorname{div} 6=6$, because $37=6(6)+1$.
(-) $-37 \bmod 6=5$ and $-37 \operatorname{div} 6=-7$, because $-37=6(-7)+5$.

Factorial Function

Definition

A factorial function is a function from \mathbb{N}_{0} to \mathbb{N} defined as

$$
n!=\left\{\begin{array}{cc}
1, & \text { if } n=0 \\
n \times(n-1) \times \cdots \times 2 \times 1, & \text { if } n>0
\end{array}\right.
$$

For example, we have $0!=1,1!=1,2!=2,3!=6,4!=24$, and $5!=120$.

Exponential Function

Definition

Let $a \in \mathbb{R}$ and $a \neq 0$. An exponential function is defined as:
(c) For $n \in \mathbb{N}_{0}$, then

$$
a^{n}=\left\{\begin{array}{cc}
1, & \text { if } n=0 \\
\underbrace{a \times a \times \cdots \times a}_{n \text { terms }}, & \text { if } n>0
\end{array}\right.
$$

(2) For $n \in \mathbb{Z}$, if $n=-m<0$, then $a^{n}=a^{-m}=\frac{1}{a^{m}}$,
(0) For $q \in \mathbb{Q}$, if $q=\frac{m}{n}$ with $m, n \in \mathbb{Z}$ and $n \neq 0$, then $a^{q}=a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$,
(- For $x \in \mathbb{R}$, if x is irrational, then a^{x} defined as $a^{x}=e^{x \ln a}$, where $\ln a$ is natural logarithm of a.

Example of Exponential Function

Logarithmic Function

Logarithmic Function

From an expression $y=a^{x}$, we have $x={ }^{a} \log y=\log _{a} y$. The function $f(x)=\log _{a} x$ with $a>0$ is a logarithmic function with base a.

Recursive Function

Recursive Function

A function f is called a recursive function if its definition is referred to f itself. A recursive function consists of a base case (or base cases) and a recursive case (or recursive cases).

Example

The factorial function can be defined recursively:

$$
n!=\left\{\begin{array}{cc}
1, & \text { if } n=0 \\
n \times(n-1)!, & \text { if } n>0
\end{array}\right.
$$

We have $0!=0,1!=1 \cdot 0!=1,2!=2 \cdot 1!=2$, and so forth. Case $n!=1$ if $n=0$ is called as a base case, while case $n!=n \times(n-1)$! is called as a recursive case.

Recursive Function and Recursive Algorithm

A recursive function can be defined using a particular formula or using a program in a particular programming language.

Example

The function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined recursively as:

$$
f(n)=\left\{\begin{array}{cc}
1, & n=1 \\
2, & n=2 \\
f(n-1)+f(n-2), & n \geq 3
\end{array}\right.
$$

can also be defined by using Python:

```
deff(n):
    if n== 1: return 1
    if n== 2: return 2
    else: return f(n-1) +f(n-2)
```


Exercise

Find $f(5), f(6)$, and $f(7)$.

Contents

(1) Functions: Definition and Representation
(2) Injective, Surjective, and Bijective Function

- Injective Function
- Surjective Function
- Bijective Function
- Exercise: Injective, Surjective, and Bijective Function
(3) Function Composition
(1) Inverse Function
(5) Special Functions
(6) Challenging Problems

Challenging Problems

Ackermann Function

Ackermann function is an important function in theoretical computer science due to its prevalence in recursive algorithm concerning sets. One type of this function is $A: \mathbb{N}_{0} \times \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ which is defined as:

$$
A(m, n)= \begin{cases}2 n, & \text { if } m=0 \\ 0, & \text { if } m \geq 1 \text { and } n=0 \\ 2 & \text { if } m \geq 1 \text { and } n=1 \\ A(m-1, A(m, n-1)) & \text { if } m \geq 1 \text { and } n \geq 2\end{cases}
$$

Determine the value of $A(2,2), A(2,3)$, and $A(3,3)$.

Nearest Power of 2

Computer usually processes numbers in their bit expressions (a base 2 number). For instance:

$$
2:=\mathbf{1 0}, 4:=\mathbf{1 0 0}, 6:=\mathbf{1 1 0}, 7:=\mathbf{1 1 1}, 10:=\mathbf{1 0 1 0}
$$

In order to represent a positive integer n in its bit expression, we need to know its bit length (the number of digits required) Suppose the minimum bit length for representing a number n is $\ell(n)$. Thus, we have

$$
\ell(2)=2, \ell(4)=3, \ell(6)=3, \ell(7)=3, \ell(10)=4 .
$$

Basically, $\ell(n)$ is the least integer k such that $n \leq 2^{k}$. Give a formal-mathematical definition of $\ell(n)$.

Piecewise Function

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=\left\{\begin{array}{ll}4 x+3, & \text { if } x \leq 1 \\ 2 x+1, & \text { if } x>1 .\end{array}\right.$. Check whether f is injective, surjective, bijective, or none of them.

