Relation: Properties and Composition

Discrete Mathematics - Second Term 2022-2023

MZI

School of Computing
Telkom University

SoC Tel-U
March 2023

Acknowledgements

This slide is composed based on the following materials:
(1) Discrete Mathematics and Its Applications, 8th Edition, 2019, K. H. Rosen (primary).
(0) Discrete Mathematics with Applications, 5th Edition, 2018, S. S. Epp.

- Mathematics for Computer Science. MIT, 2010, E. Lehman, F. T. Leighton, A. R. Meyer.
- Slide for Matematika Diskret 2 (2012). Fasilkom UI, B. H. Widjaja.
- Slide for Matematika Diskrit. Telkom University, B. Purnama.

Some of the pictures are taken from the above resources. This slide is intended for academic purpose at FIF Telkom University. If you have any suggestions/comments/questions related with the material on this slide, send an email to <pleasedontspam>@telkomuniversity.ac.id.

Contents

(1) Operations on Representation Matrices of Relations
(2) Some Binary Relations with Special Properties

- Reflexive and Irreflexive Relations
- Symmetric, Antisymmetric, and Asymmetric Relations
- Transitive Relations
(3) Relation Properties from Its Representation Matrix

4 Relation Properties from Its Digraph
(5) Relation Composition (Relation Product)

Contents

(1) Operations on Representation Matrices of Relations
(2) Some Binary Relations with Special Properties

- Reflexive and Irreflexive Relations
- Symmetric, Antisymmetric, and Asymmetric Relations
- Transitive Relations
(3) Relation Properties from Its Representation Matrix
(4) Relation Properties from Its Digraph
(5) Relation Composition (Relation Product)

Complement, \vee, and \wedge on 0,1

Definition

If $a \in\{0,1\}$, then $\bar{a}=\neg a= \begin{cases}1, & \text { if } a=0 \\ 0, & \text { if } a=1 .\end{cases}$

Definition

Operation \wedge and \vee on set $\{0,1\}$ defined as: for every $a, b \in\{0,1\}$

$$
\begin{aligned}
& a \vee b= \begin{cases}1, & \text { if } a=1 \text { or } b=1 \\
0, & \text { otherwise },\end{cases} \\
& a \wedge b= \begin{cases}1, & \text { if } a=b=1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Complement, \vee, and \wedge on $0-1$ Matrices

Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ be a $0-1$ matrix with m rows and n columns, then the complement matrix $\overline{\mathbf{A}}$ (or $\neg \mathbf{A}$) is an $m \times n$ matrix whose i-th row and j-th row entry is $\overline{\mathbf{A}}[i, j]=\left[\bar{a}_{i j}\right]$,

Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ be two $0-1$ matrices with m rows and n columns, then the conjunction $\mathbf{A} \wedge \mathbf{B}$ and disjunction $\mathbf{A} \vee \mathbf{B}$ respectively $m \times n$ matrices whose i-th row and j-th row entry is

$$
\begin{aligned}
(\mathbf{A} \wedge \mathbf{B})[i, j] & =\mathbf{A}[i, j] \wedge \mathbf{B}[i, j]=\left[a_{i j} \wedge b_{i j}\right] \\
(\mathbf{A} \vee \mathbf{B})[i, j] & =\mathbf{A}[i, j] \vee \mathbf{B}[i, j]=\left[a_{i j} \vee b_{i j}\right]
\end{aligned}
$$

Representation Matrices for $R^{-1}, \bar{R}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$

Theorem

Let R be a relation from A to B (both are finite sets). If \mathbf{M}_{R} is a representation matrix for R, then representation matrix for relation R^{-1} which is a relation from B to A, noted as $\mathbf{M}_{R^{-1}}$, satisfies $\mathbf{M}_{R^{-1}}=\left(\mathbf{M}_{R}\right)^{T}$.

Theorem

Let R be a relation from A to B (both are finite sets). If \mathbf{M}_{R} is a representation matrix for R, then representation matrix for relation \bar{R}, noted as $\mathbf{M}_{\bar{R}}$, satisfies $\mathbf{M}_{\bar{R}}=\overline{\mathbf{M}}_{R}$.

Theorem

Let R_{1} and R_{2} be two relations from A to B. If $\mathbf{M}_{R_{1}}$ and $\mathbf{M}_{R_{2}}$ are representation matrices of relation R_{1} and R_{2}, respectively, then the representation matrix for $R_{1} \cup R_{2}$ and $R_{1} \cap R_{2}$ are

$$
\begin{aligned}
\mathbf{M}_{R_{1} \cup R_{2}} & =\mathbf{M}_{R_{1}} \vee \mathbf{M}_{R_{1}} \text { and } \\
\mathbf{M}_{R_{1} \cap R_{2}} & =\mathbf{M}_{R_{1}} \wedge \mathbf{M}_{R_{2}} .
\end{aligned}
$$

Exercise

Let R_{1} and R_{2} be two relations on $A=\{a, b, c\}$ and their representation matrices are:

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Find representation matrix for $\bar{R}_{1}, R_{1}^{-1}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$

Solution: $\mathbf{M}_{\bar{R}_{1}}=$

Exercise

Let R_{1} and R_{2} be two relations on $A=\{a, b, c\}$ and their representation matrices are:

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Find representation matrix for $\bar{R}_{1}, R_{1}^{-1}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$

Solution: $\mathbf{M}_{\bar{R}_{1}}=\overline{\mathbf{M}}_{R_{1}}=$

Exercise

Let R_{1} and R_{2} be two relations on $A=\{a, b, c\}$ and their representation matrices are:

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Find representation matrix for $\bar{R}_{1}, R_{1}^{-1}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$
Solution: $\mathbf{M}_{\bar{R}_{1}}=\overline{\mathbf{M}}_{R_{1}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{M}_{R_{1}^{-1}}=$

Exercise

Let R_{1} and R_{2} be two relations on $A=\{a, b, c\}$ and their representation matrices are:

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Find representation matrix for $\bar{R}_{1}, R_{1}^{-1}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$
Solution: $\mathbf{M}_{\bar{R}_{1}}=\overline{\mathbf{M}}_{R_{1}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{M}_{R_{1}^{-1}}=\left(\mathbf{M}_{R_{1}}\right)^{T}=$

Exercise

Let R_{1} and R_{2} be two relations on $A=\{a, b, c\}$ and their representation matrices are:

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Find representation matrix for $\bar{R}_{1}, R_{1}^{-1}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$
Solution: $\mathbf{M}_{\bar{R}_{1}}=\overline{\mathbf{M}}_{R_{1}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{M}_{R_{1}^{-1}}=\left(\mathbf{M}_{R_{1}}\right)^{T}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$,
$\mathbf{M}_{R_{1} \cup R_{2}}=$

Exercise

Let R_{1} and R_{2} be two relations on $A=\{a, b, c\}$ and their representation matrices are:

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

Find representation matrix for $\bar{R}_{1}, R_{1}^{-1}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$
Solution: $\mathbf{M}_{\bar{R}_{1}}=\overline{\mathbf{M}}_{R_{1}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{M}_{R_{1}^{-1}}=\left(\mathbf{M}_{R_{1}}\right)^{T}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$,
$\mathbf{M}_{R_{1} \cup R_{2}}=\mathbf{M}_{R_{1}} \vee \mathbf{M}_{R_{2}}=$

Exercise

Let R_{1} and R_{2} be two relations on $A=\{a, b, c\}$ and their representation matrices are:

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

Find representation matrix for $\bar{R}_{1}, R_{1}^{-1}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$
Solution: $\mathbf{M}_{\bar{R}_{1}}=\overline{\mathbf{M}}_{R_{1}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{M}_{R_{1}^{-1}}=\left(\mathbf{M}_{R_{1}}\right)^{T}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$,
$\mathbf{M}_{R_{1} \cup R_{2}}=\mathbf{M}_{R_{1}} \vee \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$,
$\mathbf{M}_{R_{1} \cap R_{2}}=$

Exercise

Let R_{1} and R_{2} be two relations on $A=\{a, b, c\}$ and their representation matrices are:

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

Find representation matrix for $\bar{R}_{1}, R_{1}^{-1}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$
Solution: $\mathbf{M}_{\bar{R}_{1}}=\overline{\mathbf{M}}_{R_{1}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{M}_{R_{1}^{-1}}=\left(\mathbf{M}_{R_{1}}\right)^{T}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$,
$\mathbf{M}_{R_{1} \cup R_{2}}=\mathbf{M}_{R_{1}} \vee \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$,
$\mathbf{M}_{R_{1} \cap R_{2}}=\mathbf{M}_{R_{1}} \wedge \mathbf{M}_{R_{2}}=$

Exercise

Let R_{1} and R_{2} be two relations on $A=\{a, b, c\}$ and their representation matrices are:

$$
\mathbf{M}_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

Find representation matrix for $\bar{R}_{1}, R_{1}^{-1}, R_{1} \cup R_{2}$, and $R_{1} \cap R_{2}$
Solution: $\mathbf{M}_{\bar{R}_{1}}=\overline{\mathbf{M}}_{R_{1}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right], \mathbf{M}_{R_{1}^{-1}}=\left(\mathbf{M}_{R_{1}}\right)^{T}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$,
$\mathbf{M}_{R_{1} \cup R_{2}}=\mathbf{M}_{R_{1}} \vee \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$,
$\mathbf{M}_{R_{1} \cap R_{2}}=\mathbf{M}_{R_{1}} \wedge \mathbf{M}_{R_{2}}=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

Contents

(1) Operations on Representation Matrices of Relations
(2) Some Binary Relations with Special Properties

- Reflexive and Irreflexive Relations
- Symmetric, Antisymmetric, and Asymmetric Relations
- Transitive Relations
(3) Relation Properties from Its Representation Matrix
(4) Relation Properties from Its Digraph
(5) Relation Composition (Relation Product)

Contents

(2) Some Binary Relations with Special Properties

- Reflexive and Irreflexive Relations
- Symmetric, Antisymmetric, and Asymmetric Relations - Transitive Relations

Reflexive and Irreflexive Relations

Definition

Let R be a binary relation on A, relation R is:
(1) reflexive, if for every $a \in A$ we have $(a, a) \in R$, or $a R a$
(R is reflexive if: $\forall a(a R a)$ or $\forall a((a, a) \in R)$).
© irreflexive, if for every $a \in A$ we have $(a, a) \notin R$, or $a \not R a$.
(R irreflexive if: $\forall a(a \not R a)$ or $\forall a((a, a) \notin R)$ or $\forall a(\neg(a, a) \in R))$.
Question:

Reflexive and Irreflexive Relations

Definition

Let R be a binary relation on A, relation R is:
(1) reflexive, if for every $a \in A$ we have $(a, a) \in R$, or $a R a$
(R is reflexive if: $\forall a(a R a)$ or $\forall a((a, a) \in R)$).
(3) irreflexive, if for every $a \in A$ we have $(a, a) \notin R$, or $a \not R a$.
(R irreflexive if: $\forall a(a \not R a)$ or $\forall a((a, a) \notin R)$ or $\forall a(\neg(a, a) \in R))$.
Question: Does irreflexive mean not reflexive?

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}$, and R_{3} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,3),(2,1),(2,2),(3,3),(4,2),(4,3),(4,4)\}$.
(c) $R_{2}=\{(1,2),(2,3),(3,4),(4,1)\}$.

- $R_{3}=\{(1,1),(1,2),(2,3),(2,4),(3,3),(4,1)\}$.

We have:

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}$, and R_{3} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,3),(2,1),(2,2),(3,3),(4,2),(4,3),(4,4)\}$.
(2) $R_{2}=\{(1,2),(2,3),(3,4),(4,1)\}$.

- $R_{3}=\{(1,1),(1,2),(2,3),(2,4),(3,3),(4,1)\}$.

We have:
(c) Relation R_{1} is reflexive because $(1,1) \in R_{1},(2,2) \in R_{1},(3,3) \in R_{1}$, $(4,4) \in R_{1}$.

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}$, and R_{3} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,3),(2,1),(2,2),(3,3),(4,2),(4,3),(4,4)\}$.
(2) $R_{2}=\{(1,2),(2,3),(3,4),(4,1)\}$.

- $R_{3}=\{(1,1),(1,2),(2,3),(2,4),(3,3),(4,1)\}$.

We have:
(c) Relation R_{1} is reflexive because $(1,1) \in R_{1},(2,2) \in R_{1},(3,3) \in R_{1}$, $(4,4) \in R_{1}$. Relation R_{1} is not irreflexive because $(1,1) \notin R_{1}$ is not true.

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}$, and R_{3} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,3),(2,1),(2,2),(3,3),(4,2),(4,3),(4,4)\}$.
(3) $R_{2}=\{(1,2),(2,3),(3,4),(4,1)\}$.

- $R_{3}=\{(1,1),(1,2),(2,3),(2,4),(3,3),(4,1)\}$.

We have:
(1) Relation R_{1} is reflexive because $(1,1) \in R_{1},(2,2) \in R_{1},(3,3) \in R_{1}$, $(4,4) \in R_{1}$. Relation R_{1} is not irreflexive because $(1,1) \notin R_{1}$ is not true.
(Relation R_{2} is not reflexive because $(1,1) \notin R_{2}$.

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}$, and R_{3} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,3),(2,1),(2,2),(3,3),(4,2),(4,3),(4,4)\}$.
(3) $R_{2}=\{(1,2),(2,3),(3,4),(4,1)\}$.

- $R_{3}=\{(1,1),(1,2),(2,3),(2,4),(3,3),(4,1)\}$.

We have:
(c) Relation R_{1} is reflexive because $(1,1) \in R_{1},(2,2) \in R_{1},(3,3) \in R_{1}$, $(4,4) \in R_{1}$. Relation R_{1} is not irreflexive because $(1,1) \notin R_{1}$ is not true.
(2) Relation R_{2} is not reflexive because $(1,1) \notin R_{2}$. Relation R_{2} is irreflexive because $(1,1) \notin R_{2},(2,2) \notin R_{2},(3,3) \notin R_{2}$, and $(4,4) \notin R_{2}$.

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}$, and R_{3} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,3),(2,1),(2,2),(3,3),(4,2),(4,3),(4,4)\}$.
(2) $R_{2}=\{(1,2),(2,3),(3,4),(4,1)\}$.

- $R_{3}=\{(1,1),(1,2),(2,3),(2,4),(3,3),(4,1)\}$.

We have:
(1) Relation R_{1} is reflexive because $(1,1) \in R_{1},(2,2) \in R_{1},(3,3) \in R_{1}$, $(4,4) \in R_{1}$. Relation R_{1} is not irreflexive because $(1,1) \notin R_{1}$ is not true.
(2) Relation R_{2} is not reflexive because $(1,1) \notin R_{2}$. Relation R_{2} is irreflexive because $(1,1) \notin R_{2},(2,2) \notin R_{2},(3,3) \notin R_{2}$, and $(4,4) \notin R_{2}$.

- Relation R_{3} is not reflexive because $(2,2) \notin R_{3}$.

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}$, and R_{3} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,3),(2,1),(2,2),(3,3),(4,2),(4,3),(4,4)\}$.
(2) $R_{2}=\{(1,2),(2,3),(3,4),(4,1)\}$.

- $R_{3}=\{(1,1),(1,2),(2,3),(2,4),(3,3),(4,1)\}$.

We have:
(1) Relation R_{1} is reflexive because $(1,1) \in R_{1},(2,2) \in R_{1},(3,3) \in R_{1}$, $(4,4) \in R_{1}$. Relation R_{1} is not irreflexive because $(1,1) \notin R_{1}$ is not true.
(2) Relation R_{2} is not reflexive because $(1,1) \notin R_{2}$. Relation R_{2} is irreflexive because $(1,1) \notin R_{2},(2,2) \notin R_{2},(3,3) \notin R_{2}$, and $(4,4) \notin R_{2}$.

- Relation R_{3} is not reflexive because $(2,2) \notin R_{3}$. Relation R_{3} is not irreflexive because it is not true that $(1,1) \notin R_{3}$.

Exercise: Reflexive and Irreflexive Relations

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is reflexive, irreflexive, or not both.
(1) $a R_{1} b$ iff $a \leq b$.
(3) $a R_{2} b$ iff $a=b+1$.

- $a R_{3} b$ iff a divided by b is integer.
($a R_{4} b$ iff $a \geq b^{2}$.
Solution:

Exercise: Reflexive and Irreflexive Relations

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is reflexive, irreflexive, or not both.
(1) $a R_{1} b$ iff $a \leq b$.
(3) $a R_{2} b$ iff $a=b+1$.

- $a R_{3} b$ iff a divided by b is integer.
($a R_{4} b$ iff $a \geq b^{2}$.
Solution:
(1) R_{1} is reflexive because for all $a \in \mathbb{Z}$ we have $a \leq a$,

Exercise: Reflexive and Irreflexive Relations

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is reflexive, irreflexive, or not both.
(1) $a R_{1} b$ iff $a \leq b$.
(3) $a R_{2} b$ iff $a=b+1$.

- $a R_{3} b$ iff a divided by b is integer.
($a R_{4} b$ iff $a \geq b^{2}$.
Solution:
(1) R_{1} is reflexive because for all $a \in \mathbb{Z}$ we have $a \leq a, R_{1}$ is not irreflexive because $0 \leq 0$.

Exercise: Reflexive and Irreflexive Relations

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is reflexive, irreflexive, or not both.
(1) $a R_{1} b$ iff $a \leq b$.
(2) $a R_{2} b$ iff $a=b+1$.
(3) $a R_{3} b$ iff a divided by b is integer.
(9) $a R_{4} b$ iff $a \geq b^{2}$.

Solution:
(1) R_{1} is reflexive because for all $a \in \mathbb{Z}$ we have $a \leq a, R_{1}$ is not irreflexive because $0 \leq 0$.
(2) R_{2} is not reflexive because $0 \neq 0+1$,

Exercise: Reflexive and Irreflexive Relations

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is reflexive, irreflexive, or not both.
(1) $a R_{1} b$ iff $a \leq b$.
(2) $a R_{2} b$ iff $a=b+1$.
(3) $a R_{3} b$ iff a divided by b is integer.
(9) $a R_{4} b$ iff $a \geq b^{2}$.

Solution:
(1) R_{1} is reflexive because for all $a \in \mathbb{Z}$ we have $a \leq a, R_{1}$ is not irreflexive because $0 \leq 0$.
(2) R_{2} is not reflexive because $0 \neq 0+1, R_{2}$ is irreflexive because for all $a \in \mathbb{Z}$ we have $a \neq a+1\left(a \not R_{2} a\right)$.

Exercise: Reflexive and Irreflexive Relations

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is reflexive, irreflexive, or not both.
(1) $a R_{1} b$ iff $a \leq b$.
(2) $a R_{2} b$ iff $a=b+1$.
(3) $a R_{3} b$ iff a divided by b is integer.
(9) $a R_{4} b$ iff $a \geq b^{2}$.

Solution:
(1) R_{1} is reflexive because for all $a \in \mathbb{Z}$ we have $a \leq a, R_{1}$ is not irreflexive because $0 \leq 0$.
(2) R_{2} is not reflexive because $0 \neq 0+1, R_{2}$ is irreflexive because for all $a \in \mathbb{Z}$ we have $a \neq a+1\left(a \not R_{2} a\right)$.
(3) R_{3} is not reflexive because 0 divided by 0 is not an integer,

Exercise: Reflexive and Irreflexive Relations

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is reflexive, irreflexive, or not both.
(1) $a R_{1} b$ iff $a \leq b$.
(2) $a R_{2} b$ iff $a=b+1$.
(3) $a R_{3} b$ iff a divided by b is integer.
(9) $a R_{4} b$ iff $a \geq b^{2}$.

Solution:
(1) R_{1} is reflexive because for all $a \in \mathbb{Z}$ we have $a \leq a, R_{1}$ is not irreflexive because $0 \leq 0$.
(2) R_{2} is not reflexive because $0 \neq 0+1, R_{2}$ is irreflexive because for all $a \in \mathbb{Z}$ we have $a \neq a+1\left(a \not R_{2} a\right)$.
(3) R_{3} is not reflexive because 0 divided by 0 is not an integer, R_{3} is not irreflexive because 1 divides 1 .

Exercise: Reflexive and Irreflexive Relations

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is reflexive, irreflexive, or not both.
(1) $a R_{1} b$ iff $a \leq b$.
(2) $a R_{2} b$ iff $a=b+1$.
(3) $a R_{3} b$ iff a divided by b is integer.
(9) $a R_{4} b$ iff $a \geq b^{2}$.

Solution:
(1) R_{1} is reflexive because for all $a \in \mathbb{Z}$ we have $a \leq a, R_{1}$ is not irreflexive because $0 \leq 0$.
(2) R_{2} is not reflexive because $0 \neq 0+1, R_{2}$ is irreflexive because for all $a \in \mathbb{Z}$ we have $a \neq a+1\left(a \not R_{2} a\right)$.
(3) R_{3} is not reflexive because 0 divided by 0 is not an integer, R_{3} is not irreflexive because 1 divides 1 .
(0) R_{4} is not reflexive because $2 \nsupseteq 2^{2}$,

Exercise: Reflexive and Irreflexive Relations

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is reflexive, irreflexive, or not both.
(1) $a R_{1} b$ iff $a \leq b$.
(2) $a R_{2} b$ iff $a=b+1$.
(3) $a R_{3} b$ iff a divided by b is integer.
(9) $a R_{4} b$ iff $a \geq b^{2}$.

Solution:
(1) R_{1} is reflexive because for all $a \in \mathbb{Z}$ we have $a \leq a, R_{1}$ is not irreflexive because $0 \leq 0$.
(2) R_{2} is not reflexive because $0 \neq 0+1, R_{2}$ is irreflexive because for all $a \in \mathbb{Z}$ we have $a \neq a+1\left(a \not R_{2} a\right)$.
(3) R_{3} is not reflexive because 0 divided by 0 is not an integer, R_{3} is not irreflexive because 1 divides 1 .
(R_{4} is not reflexive because $2 \nsupseteq 2^{2}, R_{4}$ is not irreflexive because $0 \geq 0^{2}$.

Contents

(2) Some Binary Relations with Special Properties

- Reflexive and Irreflexive Relations
- Symmetric, Antisymmetric, and Asymmetric Relations
- Transitive Relations

Symmetric, Antisymmetric, \& Asymmetric

Definition

Let R be a binary relation on A, relation R is:
(1) symmetric, if every $a, b \in A$ satisfies: if $a R b$ then $b R a,(\forall a \forall b(a R b \rightarrow b R a))$;
(2) antisymmetric, if every $a, b \in A$ satisfies if $a R b$ and $b R a$ then $a=b$, $(\forall a \forall b(a R b \wedge b R a \rightarrow a=b))$;
(0) asymmetric, if every $a, b \in A$ satisfies if $a R b$ then $b \not R a,(\forall a \forall b(a R b \rightarrow b \not R a))$.

Question:

Symmetric, Antisymmetric, \& Asymmetric

Definition

Let R be a binary relation on A, relation R is:
(1) symmetric, if every $a, b \in A$ satisfies: if $a R b$ then $b R a,(\forall a \forall b(a R b \rightarrow b R a))$;
(2) antisymmetric, if every $a, b \in A$ satisfies if $a R b$ and $b R a$ then $a=b$, $(\forall a \forall b(a R b \wedge b R a \rightarrow a=b))$;

- asymmetric, if every $a, b \in A$ satisfies if $a R b$ then $b \not R a,(\forall a \forall b(a R b \rightarrow b \not R a))$.

Question: Does antisymmetric mean not symmetric?

Symmetric, Antisymmetric, \& Asymmetric

Definition

Let R be a binary relation on A, relation R is:
(1) symmetric, if every $a, b \in A$ satisfies: if $a R b$ then $b R a,(\forall a \forall b(a R b \rightarrow b R a))$;
(2) antisymmetric, if every $a, b \in A$ satisfies if $a R b$ and $b R a$ then $a=b$, $(\forall a \forall b(a R b \wedge b R a \rightarrow a=b))$;

- asymmetric, if every $a, b \in A$ satisfies if $a R b$ then $b \not R a,(\forall a \forall b(a R b \rightarrow b \not R a))$.

Question: Does antisymmetric mean not symmetric? Does asymmetric mean not symmetric?

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(2,4),(4,2),(4,4)\}$.
(3) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3)\}$.
- $R_{4}=\{(1,2),(3,4)\}$.

We have that:

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(2,4),(4,2),(4,4)\}$.
(3) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3)\}$.
- $R_{4}=\{(1,2),(3,4)\}$.

We have that:
(1) Relation R_{1} is symmetric because $1 R_{1} 2 \rightarrow 2 R_{1} 1$ and $2 R_{1} 4 \rightarrow 4 R_{1} 2$ is T .

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(2,4),(4,2),(4,4)\}$.
(2) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.
(3) $R_{3}=\{(1,1),(2,2),(3,3)\}$.
(- $R_{4}=\{(1,2),(3,4)\}$.
We have that:
(1) Relation R_{1} is symmetric because $1 R_{1} 2 \rightarrow 2 R_{1} 1$ and $2 R_{1} 4 \rightarrow 4 R_{1} 2$ is T . Relation R_{1} is not antisymmetric because $\left(1 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow(1=2)$ is F .

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(2,4),(4,2),(4,4)\}$.
(c) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.
(0) $R_{3}=\{(1,1),(2,2),(3,3)\}$.

- $R_{4}=\{(1,2),(3,4)\}$.

We have that:
(1) Relation R_{1} is symmetric because $1 R_{1} 2 \rightarrow 2 R_{1} 1$ and $2 R_{1} 4 \rightarrow 4 R_{1} 2$ is T . Relation R_{1} is not antisymmetric because $\left(1 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow(1=2)$ is F . Relation R_{1} is not asymmetric because $\left(1 R_{1} 2\right) \rightarrow\left(2 \not R_{1} 1\right)$ is F .

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(2,4),(4,2),(4,4)\}$.
(3) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3)\}$.
- $R_{4}=\{(1,2),(3,4)\}$.

We have that:
(1) Relation R_{1} is symmetric because $1 R_{1} 2 \rightarrow 2 R_{1} 1$ and $2 R_{1} 4 \rightarrow 4 R_{1} 2$ is T . Relation R_{1} is not antisymmetric because $\left(1 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow(1=2)$ is F . Relation R_{1} is not asymmetric because $\left(1 R_{1} 2\right) \rightarrow\left(2 \not R_{1} 1\right)$ is F .
(2) Relation R_{2} is not symmetric because $2 R_{2} 3 \rightarrow 3 R_{2} 2$ is F .

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(2,4),(4,2),(4,4)\}$.
(3) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3)\}$.
- $R_{4}=\{(1,2),(3,4)\}$.

We have that:
(1) Relation R_{1} is symmetric because $1 R_{1} 2 \rightarrow 2 R_{1} 1$ and $2 R_{1} 4 \rightarrow 4 R_{1} 2$ is T . Relation R_{1} is not antisymmetric because $\left(1 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow(1=2)$ is F . Relation R_{1} is not asymmetric because $\left(1 R_{1} 2\right) \rightarrow\left(2 \not R_{1} 1\right)$ is F .
(3) Relation R_{2} is not symmetric because $2 R_{2} 3 \rightarrow 3 R_{2} 2$ is F . Relation R_{2} is not antisymmetric because $\left(2 R_{2} 4\right) \wedge\left(4 R_{2} 2\right) \rightarrow(2=4)$ is F .

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(1,1),(1,2),(2,1),(2,2),(2,4),(4,2),(4,4)\}$.
(3) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3)\}$.
- $R_{4}=\{(1,2),(3,4)\}$.

We have that:
(1) Relation R_{1} is symmetric because $1 R_{1} 2 \rightarrow 2 R_{1} 1$ and $2 R_{1} 4 \rightarrow 4 R_{1} 2$ is T . Relation R_{1} is not antisymmetric because $\left(1 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow(1=2)$ is F . Relation R_{1} is not asymmetric because $\left(1 R_{1} 2\right) \rightarrow\left(2 \not R_{1} 1\right)$ is F .
(3) Relation R_{2} is not symmetric because $2 R_{2} 3 \rightarrow 3 R_{2} 2$ is F . Relation R_{2} is not antisymmetric because $\left(2 R_{2} 4\right) \wedge\left(4 R_{2} 2\right) \rightarrow(2=4)$ is F. Relation R_{2} is not asymmetric because $2 R_{2} 4 \rightarrow 4 \not R_{2} 2$ is F .

- Relation R_{3} is symmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1,2 R_{3} 2 \rightarrow 2 R_{3} 2$, and $3 R_{3} 3 \rightarrow 3 R_{3} 3$ are T .
- Relation R_{3} is symmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1,2 R_{3} 2 \rightarrow 2 R_{3} 2$, and $3 R_{3} 3 \rightarrow 3 R_{3} 3$ are T. Relation R_{3} is antisymmetric because $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right) \rightarrow(a=b)$ is T for every $a, b \in\{1,2,3\}$, because there are no $a \neq b$ satisfies $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right)$.
- Relation R_{3} is symmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1,2 R_{3} 2 \rightarrow 2 R_{3} 2$, and $3 R_{3} 3 \rightarrow 3 R_{3} 3$ are T . Relation R_{3} is antisymmetric because $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right) \rightarrow(a=b)$ is T for every $a, b \in\{1,2,3\}$, because there are no $a \neq b$ satisfies $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right)$. Relation R_{3} is not asymmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1$ is F .
- Relation R_{3} is symmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1,2 R_{3} 2 \rightarrow 2 R_{3} 2$, and $3 R_{3} 3 \rightarrow 3 R_{3} 3$ are T . Relation R_{3} is antisymmetric because $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right) \rightarrow(a=b)$ is T for every $a, b \in\{1,2,3\}$, because there are no $a \neq b$ satisfies $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right)$. Relation R_{3} is not asymmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1$ is F .
(- Relation R_{4} is not symmetric because $1 R_{4} 2 \rightarrow 2 R_{4} 1$ is F .
- Relation R_{3} is symmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1,2 R_{3} 2 \rightarrow 2 R_{3} 2$, and $3 R_{3} 3 \rightarrow 3 R_{3} 3$ are T . Relation R_{3} is antisymmetric because $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right) \rightarrow(a=b)$ is T for every $a, b \in\{1,2,3\}$, because there are no $a \neq b$ satisfies $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right)$. Relation R_{3} is not asymmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1$ is F .
(- Relation R_{4} is not symmetric because $1 R_{4} 2 \rightarrow 2 R_{4} 1$ is F. Relation R_{4} is antisymmetric because $\left(a R_{4} b\right) \wedge\left(b R_{4} a\right) \rightarrow(a=b)$ always T , because $\left(a R_{4} b\right) \wedge\left(b R_{4} a\right)$ always F .
- Relation R_{3} is symmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1,2 R_{3} 2 \rightarrow 2 R_{3} 2$, and $3 R_{3} 3 \rightarrow 3 R_{3} 3$ are T. Relation R_{3} is antisymmetric because $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right) \rightarrow(a=b)$ is T for every $a, b \in\{1,2,3\}$, because there are no $a \neq b$ satisfies $\left(a R_{3} b\right) \wedge\left(b R_{3} a\right)$. Relation R_{3} is not asymmetric because $1 R_{3} 1 \rightarrow 1 R_{3} 1$ is F .
(- Relation R_{4} is not symmetric because $1 R_{4} 2 \rightarrow 2 R_{4} 1$ is F. Relation R_{4} is antisymmetric because $\left(a R_{4} b\right) \wedge\left(b R_{4} a\right) \rightarrow(a=b)$ always T , because $\left(a R_{4} b\right) \wedge\left(b R_{4} a\right)$ always F . Relation R_{4} is asymmetric because $1 R_{4} 2 \rightarrow 2 \not R_{4} 1$ and $3 R_{4} 4 \rightarrow 4 \not R_{4} 3$ are T.

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have:

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(0) R_{1} is symmetric because for every integers a and b we have: $a R_{1} b \Rightarrow$

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have:
$a R_{1} b \Rightarrow a^{2}=b^{2} \Rightarrow$

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have:
$a R_{1} b \Rightarrow a^{2}=b^{2} \Rightarrow b^{2}=a^{2} \Rightarrow$

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have: $a R_{1} b \Rightarrow a^{2}=b^{2} \Rightarrow b^{2}=a^{2} \Rightarrow b R_{1} a$.

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have:
$a R_{1} b \Rightarrow a^{2}=b^{2} \Rightarrow b^{2}=a^{2} \Rightarrow b R_{1} a . R_{1}$ is not antisymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}$ but $2 \neq-2\left(2 R_{1}-2\right.$ and $-2 R_{1} 2$ and $\left.2 \neq-2\right)$.

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have:
$a R_{1} b \Rightarrow a^{2}=b^{2} \Rightarrow b^{2}=a^{2} \Rightarrow b R_{1} a . R_{1}$ is not antisymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}$ but $2 \neq-2\left(2 R_{1}-2\right.$ and $-2 R_{1} 2$ and $\left.2 \neq-2\right)$.
R_{1} is not asymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}\left(2 R_{1}-2\right.$ but $-2 \not R_{1} 2$ is not true).

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have:
$a R_{1} b \Rightarrow a^{2}=b^{2} \Rightarrow b^{2}=a^{2} \Rightarrow b R_{1} a . R_{1}$ is not antisymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}$ but $2 \neq-2\left(2 R_{1}-2\right.$ and $-2 R_{1} 2$ and $\left.2 \neq-2\right)$.
R_{1} is not asymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}\left(2 R_{1}-2\right.$ but $-2 \not R_{1} 2$ is not true).
(2) R_{2} is not symmetric because $0 \leq 1$ but $1 \not \leq 0\left(0 R_{2} 1\right.$ and $\left.1 \not R_{2} 0\right)$.

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have:
$a R_{1} b \Rightarrow a^{2}=b^{2} \Rightarrow b^{2}=a^{2} \Rightarrow b R_{1} a . R_{1}$ is not antisymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}$ but $2 \neq-2\left(2 R_{1}-2\right.$ and $-2 R_{1} 2$ and $\left.2 \neq-2\right)$.
R_{1} is not asymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}\left(2 R_{1}-2\right.$ but $-2 \not R_{1} 2$ is not true).
(2) R_{2} is not symmetric because $0 \leq 1$ but $1 \not \leq 0\left(0 R_{2} 1\right.$ and $\left.1 \not R_{2} 0\right) . R_{2}$ is antisymmetric because if $a \leq b$ and $b \leq a$ then $a=b$.

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
- $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have:
$a R_{1} b \Rightarrow a^{2}=b^{2} \Rightarrow b^{2}=a^{2} \Rightarrow b R_{1} a . R_{1}$ is not antisymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}$ but $2 \neq-2\left(2 R_{1}-2\right.$ and $-2 R_{1} 2$ and $\left.2 \neq-2\right)$.
R_{1} is not asymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}\left(2 R_{1}-2\right.$ but $-2 \not R_{1} 2$ is not true).
(0) R_{2} is not symmetric because $0 \leq 1$ but $1 \not \leq 0\left(0 R_{2} 1\right.$ and $\left.1 \not R_{2} 0\right) . R_{2}$ is antisymmetric because if $a \leq b$ and $b \leq a$ then $a=b . R_{2}$ is not asymmetric because $0 \leq 0$.

Exercise: Symmetry, Antisymmetry, Asymmetry

Exercise

Let \mathbb{Z} be the set of integers, determine whether relations below is symmetric, antisymmetric, asymmetric, or none of them are true.
(1) $a R_{1} b$ iff $a^{2}=b^{2}$.
(2) $a R_{2} b$ iff $a \leq b$.

- $a R_{3} b$ iff $a<b$.
(1) $a R_{4} b$ iff a divides b.

Solution:
(1) R_{1} is symmetric because for every integers a and b we have:
$a R_{1} b \Rightarrow a^{2}=b^{2} \Rightarrow b^{2}=a^{2} \Rightarrow b R_{1} a . R_{1}$ is not antisymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}$ but $2 \neq-2\left(2 R_{1}-2\right.$ and $-2 R_{1} 2$ and $\left.2 \neq-2\right)$.
R_{1} is not asymmetric because $2^{2}=(-2)^{2}$ and $(-2)^{2}=2^{2}\left(2 R_{1}-2\right.$ but $-2 \not R_{1} 2$ is not true).
(3) R_{2} is not symmetric because $0 \leq 1$ but $1 \not \leq 0\left(0 R_{2} 1\right.$ and $\left.1 \not R_{2} 0\right) . R_{2}$ is antisymmetric because if $a \leq b$ and $b \leq a$ then $a=b . R_{2}$ is not asymmetric because $0 \leq 0$. Note that if R_{2} asymmetric, then for every $a, b \in \mathbb{Z}$ we must have: if $a R_{2} b$ then $b R_{2} a$, even if $a=b$.

- R_{3} is not symmetric because $1<2$ but $2 \nless 1\left(1 R_{3} 2\right.$ and $\left.2 \not R_{3} 1\right)$.
- R_{3} is not symmetric because $1<2$ but $2 \nless 1\left(1 R_{3} 2\right.$ and $\left.2 R_{3} 1\right) . R_{3}$ is antisymmetric because there are no integers a and b satisfy both $a<b$ $\left(a R_{3} b\right)$ and $b<a\left(b R_{3} a\right)$.
- R_{3} is not symmetric because $1<2$ but $2 \nless 1\left(1 R_{3} 2\right.$ and $\left.2 R_{3} 1\right) . R_{3}$ is antisymmetric because there are no integers a and b satisfy both $a<b$ $\left(a R_{3} b\right)$ and $b<a\left(b R_{3} a\right) . R_{3}$ is asymmetric because if $a<b\left(a R_{3} b\right)$ then obviously $b \nless a\left(b \not R_{3} a\right)$.
- R_{3} is not symmetric because $1<2$ but $2 \nless 1\left(1 R_{3} 2\right.$ and $\left.2 R_{3} 1\right) . R_{3}$ is antisymmetric because there are no integers a and b satisfy both $a<b$ $\left(a R_{3} b\right)$ and $b<a\left(b R_{3} a\right) . R_{3}$ is asymmetric because if $a<b\left(a R_{3} b\right)$ then obviously $b \nless a\left(b R_{3} a\right)$.
- R_{4} is not symmetric because 1 divides 2 but 2 does not divide $1\left(1 R_{4} 2\right.$ and $2 \not R_{4} 1$).
- R_{3} is not symmetric because $1<2$ but $2 \nless 1\left(1 R_{3} 2\right.$ and $\left.2 \not R_{3} 1\right) . R_{3}$ is antisymmetric because there are no integers a and b satisfy both $a<b$ $\left(a R_{3} b\right)$ and $b<a\left(b R_{3} a\right) . R_{3}$ is asymmetric because if $a<b\left(a R_{3} b\right)$ then obviously $b \nless a\left(b R_{3} a\right)$.
- R_{4} is not symmetric because 1 divides 2 but 2 does not divide $1\left(1 R_{4} 2\right.$ and $2 R_{4} 1$). R_{4} is not antisymmetric because 1 divides -1 and -1 divides 1 but $1 \neq-1\left(1 R_{4}-1\right.$ and $-1 R_{4} 1$ but $\left.1 \neq-1\right)$.
- R_{3} is not symmetric because $1<2$ but $2 \nless 1\left(1 R_{3} 2\right.$ and $\left.2 R_{3} 1\right) . R_{3}$ is antisymmetric because there are no integers a and b satisfy both $a<b$ $\left(a R_{3} b\right)$ and $b<a\left(b R_{3} a\right) . R_{3}$ is asymmetric because if $a<b\left(a R_{3} b\right)$ then obviously $b \nless a\left(b \not R_{3} a\right)$.
- R_{4} is not symmetric because 1 divides 2 but 2 does not divide $1\left(1 R_{4} 2\right.$ and $2 R_{4} 1$). R_{4} is not antisymmetric because 1 divides -1 and -1 divides 1 but $1 \neq-1\left(1 R_{4}-1\right.$ and $-1 R_{4} 1$ but $\left.1 \neq-1\right) . R_{4}$ is not asymmetric because 1 divides -1 and -1 divides $1\left(1 R_{4}-1\right.$ but $-1 R_{4} 1$ is not true).

Theorem

Every asymmetric relation is irreflexive.

Contents

(2) Some Binary Relations with Special Properties

- Reflexive and Irreflexive Relations
- Symmetric, Antisymmetric, and Asymmetric Relations
- Transitive Relations

Transitive Relations

Definition

Let R be a binary relation on A, relation R is transitive, if for every $a, b, c \in A$ we have: if $a R b$ and $b R c$ then $a R c,(\forall a \forall b \forall c(a R b \wedge b R c \rightarrow a R c))$.

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$.
(c) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3),(4,4)\}$.
(-) $R_{4}=\{(1,2),(3,4)\}$
- $R_{5}=\{(4,4)\}$.

We have:

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$.
(c) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3),(4,4)\}$.
(-) $R_{4}=\{(1,2),(3,4)\}$
(-) $R_{5}=\{(4,4)\}$.
We have:
(1) R_{1} is transitive because:

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$.
(c) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3),(4,4)\}$.
(-) $R_{4}=\{(1,2),(3,4)\}$
(-) $R_{5}=\{(4,4)\}$.
We have:
(1) R_{1} is transitive because: $\left(3 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow\left(3 R_{1} 1\right)$ is T

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$.
(c) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3),(4,4)\}$.
(-) $R_{4}=\{(1,2),(3,4)\}$
- $R_{5}=\{(4,4)\}$.

We have:
(1) R_{1} is transitive because:
$\left(3 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow\left(3 R_{1} 1\right)$ is T
$\left(4 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow\left(4 R_{1} 1\right)$ is T

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$.
(2) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3),(4,4)\}$.
(-) $R_{4}=\{(1,2),(3,4)\}$
- $R_{5}=\{(4,4)\}$.

We have:
(1) R_{1} is transitive because:
$\left(3 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow\left(3 R_{1} 1\right)$ is T
$\left(4 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow\left(4 R_{1} 1\right)$ is T
$\left(4 R_{1} 3\right) \wedge\left(3 R_{1} 1\right) \rightarrow\left(4 R_{1} 1\right)$ is T

Examples

Example

Let $A=\{1,2,3,4\}, R_{1}, R_{2}, R_{3}$, and R_{4} be relations on A defined as:
(1) $R_{1}=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$.
(c) $R_{2}=\{(1,1),(2,3),(2,4),(4,2)\}$.

- $R_{3}=\{(1,1),(2,2),(3,3),(4,4)\}$.
- $R_{4}=\{(1,2),(3,4)\}$
- $R_{5}=\{(4,4)\}$.

We have:
(1) R_{1} is transitive because:
$\left(3 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow\left(3 R_{1} 1\right)$ is T
$\left(4 R_{1} 2\right) \wedge\left(2 R_{1} 1\right) \rightarrow\left(4 R_{1} 1\right)$ is T
$\left(4 R_{1} 3\right) \wedge\left(3 R_{1} 1\right) \rightarrow\left(4 R_{1} 1\right)$ is T
$\left(4 R_{1} 3\right) \wedge\left(3 R_{1} 2\right) \rightarrow\left(4 R_{1} 2\right)$ is T .
No a, b, c such that $\left(a R_{1} b\right) \wedge\left(b R_{1} c\right) \rightarrow\left(a R_{1} c\right)$ is F .
(2) R_{2} is not transitive because $\left(4 R_{2} 2\right) \wedge\left(2 R_{2} 3\right) \rightarrow\left(4 R_{2} 2\right)$ is F , we also have another counterexample, $\left(4 R_{2} 2\right) \wedge\left(2 R_{2} 4\right) \rightarrow\left(4 R_{2} 4\right)$ which is F , also for $\left(2 R_{2} 4\right) \wedge\left(4 R_{2} 2\right) \rightarrow\left(2 R_{2} 2\right) \equiv \mathrm{F}$.
(2) R_{2} is not transitive because $\left(4 R_{2} 2\right) \wedge\left(2 R_{2} 3\right) \rightarrow\left(4 R_{2} 2\right)$ is F , we also have another counterexample, $\left(4 R_{2} 2\right) \wedge\left(2 R_{2} 4\right) \rightarrow\left(4 R_{2} 4\right)$ which is F , also for $\left(2 R_{2} 4\right) \wedge\left(4 R_{2} 2\right) \rightarrow\left(2 R_{2} 2\right) \equiv \mathrm{F}$.

- R_{3} transitive because there is no a, b, and c causing $\left(a R_{3} b\right) \wedge\left(b R_{3} c\right) \rightarrow\left(a R_{3} c\right)$ to be F.
(2) R_{2} is not transitive because $\left(4 R_{2} 2\right) \wedge\left(2 R_{2} 3\right) \rightarrow\left(4 R_{2} 2\right)$ is F , we also have another counterexample, $\left(4 R_{2} 2\right) \wedge\left(2 R_{2} 4\right) \rightarrow\left(4 R_{2} 4\right)$ which is F , also for $\left(2 R_{2} 4\right) \wedge\left(4 R_{2} 2\right) \rightarrow\left(2 R_{2} 2\right) \equiv \mathrm{F}$.
- R_{3} transitive because there is no a, b, and c causing $\left(a R_{3} b\right) \wedge\left(b R_{3} c\right) \rightarrow\left(a R_{3} c\right)$ to be F.
- R_{4} transitive because there is no a, b, and c causing $\left(a R_{4} b\right) \wedge\left(b R_{4} c\right) \rightarrow\left(a R_{4} c\right)$ to be F.
(2) R_{2} is not transitive because $\left(4 R_{2} 2\right) \wedge\left(2 R_{2} 3\right) \rightarrow\left(4 R_{2} 2\right)$ is F , we also have another counterexample, $\left(4 R_{2} 2\right) \wedge\left(2 R_{2} 4\right) \rightarrow\left(4 R_{2} 4\right)$ which is F , also for $\left(2 R_{2} 4\right) \wedge\left(4 R_{2} 2\right) \rightarrow\left(2 R_{2} 2\right) \equiv \mathrm{F}$.
- R_{3} transitive because there is no a, b, and c causing $\left(a R_{3} b\right) \wedge\left(b R_{3} c\right) \rightarrow\left(a R_{3} c\right)$ to be F.
- R_{4} transitive because there is no a, b, and c causing $\left(a R_{4} b\right) \wedge\left(b R_{4} c\right) \rightarrow\left(a R_{4} c\right)$ to be F.
- R_{5} transitive because there is no a, b, and c causing $\left(a R_{5} b\right) \wedge\left(b R_{5} c\right) \rightarrow\left(a R_{5} c\right)$ to be F.

Transitive Relation Proof

Definition

Let a and b be two integers with $a \neq 0$, integer a divides b (or b is divisible by a) if there exist an integer k such that $k a=b$.

Example

We have:

- 2 divides 6 ,

Transitive Relation Proof

Definition

Let a and b be two integers with $a \neq 0$, integer a divides b (or b is divisible by a) if there exist an integer k such that $k a=b$.

Example

We have:

- 2 divides 6 , because we have $3 \cdot 2=6$,
- -2 divides 6 ,

Transitive Relation Proof

Definition

Let a and b be two integers with $a \neq 0$, integer a divides b (or b is divisible by a) if there exist an integer k such that $k a=b$.

Example

We have:

- 2 divides 6 , because we have $3 \cdot 2=6$,
- -2 divides 6 , because we have $-3 \cdot-2=6$,
- -7 divides 0 ,

Transitive Relation Proof

Definition

Let a and b be two integers with $a \neq 0$, integer a divides b (or b is divisible by a) if there exist an integer k such that $k a=b$.

Example

We have:

- 2 divides 6 , because we have $3 \cdot 2=6$,
- -2 divides 6 , because we have $-3 \cdot-2=6$,
- -7 divides 0 , because we have $0 \cdot-7=0$,
- 11 divides 11 ,

Transitive Relation Proof

Definition

Let a and b be two integers with $a \neq 0$, integer a divides b (or b is divisible by a) if there exist an integer k such that $k a=b$.

Example

We have:

- 2 divides 6 , because we have $3 \cdot 2=6$,
- -2 divides 6 , because we have $-3 \cdot-2=6$,
- -7 divides 0 , because we have $0 \cdot-7=0$,
- 11 divides 11 , because we have $1 \cdot 11=11$,
- 6 does not divide 3,

Transitive Relation Proof

Definition

Let a and b be two integers with $a \neq 0$, integer a divides b (or b is divisible by a) if there exist an integer k such that $k a=b$.

Example

We have:

- 2 divides 6 , because we have $3 \cdot 2=6$,
- -2 divides 6 , because we have $-3 \cdot-2=6$,
- -7 divides 0 , because we have $0 \cdot-7=0$,
- 11 divides 11 , because we have $1 \cdot 11=11$,
- 6 does not divide 3 , because there is no $k \in \mathbb{Z}$ satisfies $k \cdot 6=3$.

Prove this theorem.

Theorem

Let \mathbb{Z} be the set of integers and R be a relation on \mathbb{Z} with: $a R b$ iff a divides b, for every $a, b \in \mathbb{Z}$. Relation R is transitive.

Proof That Divisibility Is Transitive

Proof

We will prove that

Proof That Divisibility Is Transitive

Proof

We will prove that $a R b \wedge b R c \rightarrow a R c$, or:

Proof That Divisibility Is Transitive

Proof

We will prove that $a R b \wedge b R c \rightarrow a R c$, or: if a divides b and b divides c, then a divides c.
Let a divides b, then

Proof That Divisibility Is Transitive

Proof

We will prove that $a R b \wedge b R c \rightarrow a R c$, or: if a divides b and b divides c, then a divides c.
Let a divides b, then there exists $k \in \mathbb{Z}$ such that $k \cdot a=b$.
Let b divides c, then

Proof That Divisibility Is Transitive

Proof

We will prove that $a R b \wedge b R c \rightarrow a R c$, or: if a divides b and b divides c, then a divides c.
Let a divides b, then there exists $k \in \mathbb{Z}$ such that $k \cdot a=b$.
Let b divides c, then there exists $\ell \in \mathbb{Z}$ such that $\ell \cdot b=c$.
From the two equations above, we have

Proof That Divisibility Is Transitive

Proof

We will prove that $a R b \wedge b R c \rightarrow a R c$, or: if a divides b and b divides c, then a divides c.
Let a divides b, then there exists $k \in \mathbb{Z}$ such that $k \cdot a=b$.
Let b divides c, then there exists $\ell \in \mathbb{Z}$ such that $\ell \cdot b=c$.
From the two equations above, we have

$$
\ell \cdot b=c
$$

Proof That Divisibility Is Transitive

Proof

We will prove that $a R b \wedge b R c \rightarrow a R c$, or: if a divides b and b divides c, then a divides c.
Let a divides b, then there exists $k \in \mathbb{Z}$ such that $k \cdot a=b$.
Let b divides c, then there exists $\ell \in \mathbb{Z}$ such that $\ell \cdot b=c$.
From the two equations above, we have

$$
\begin{aligned}
\ell \cdot b & =c \\
\ell \cdot(k \cdot a) & =c
\end{aligned}
$$

Proof That Divisibility Is Transitive

Proof

We will prove that $a R b \wedge b R c \rightarrow a R c$, or: if a divides b and b divides c, then a divides c.
Let a divides b, then there exists $k \in \mathbb{Z}$ such that $k \cdot a=b$.
Let b divides c, then there exists $\ell \in \mathbb{Z}$ such that $\ell \cdot b=c$.
From the two equations above, we have

$$
\begin{aligned}
\ell \cdot b & =c \\
\ell \cdot(k \cdot a) & =c \\
(\ell k) \cdot a & =c
\end{aligned}
$$

for some $\ell k \in \mathbb{Z}$. So, a divides c.

Exercise: Transitive Relations

Exercise

Let \mathbb{R} be the set of real numbers, determine whether relations below are transitive or not.
(1) $x R_{1} y$ iff $x^{2} \leq y^{2}$.
(2) $x R_{2} y$ iff $x \geq 2 y$.
(3) $x R_{3} y$ iff $x y \geq 0$.
($x R_{4} y$ iff $x \geq y^{2}$.
Solution:

Exercise: Transitive Relations

Exercise

Let \mathbb{R} be the set of real numbers, determine whether relations below are transitive or not.
(1) $x R_{1} y$ iff $x^{2} \leq y^{2}$.
(2) $x R_{2} y$ iff $x \geq 2 y$.
(3) $x R_{3} y$ iff $x y \geq 0$.
($x R_{4} y$ iff $x \geq y^{2}$.
Solution:
(1) Assume $a R_{1} b$ and $b R_{1} c$,

Exercise: Transitive Relations

Exercise

Let \mathbb{R} be the set of real numbers, determine whether relations below are transitive or not.
(1) $x R_{1} y$ iff $x^{2} \leq y^{2}$.
(2) $x R_{2} y$ iff $x \geq 2 y$.
(3) $x R_{3} y$ iff $x y \geq 0$.
($x R_{4} y$ iff $x \geq y^{2}$.
Solution:
(1) Assume $a R_{1} b$ and $b R_{1} c$, then we have $a^{2} \leq b^{2}$ and $b^{2} \leq c^{2}$.

Exercise: Transitive Relations

Exercise

Let \mathbb{R} be the set of real numbers, determine whether relations below are transitive or not.
(1) $x R_{1} y$ iff $x^{2} \leq y^{2}$.
(2) $x R_{2} y$ iff $x \geq 2 y$.
(3) $x R_{3} y$ iff $x y \geq 0$.
($x R_{4} y$ iff $x \geq y^{2}$.
Solution:
(1) Assume $a R_{1} b$ and $b R_{1} c$, then we have $a^{2} \leq b^{2}$ and $b^{2} \leq c^{2}$. So, $a^{2} \leq b^{2} \leq c^{2}$,

Exercise: Transitive Relations

Exercise

Let \mathbb{R} be the set of real numbers, determine whether relations below are transitive or not.
(1) $x R_{1} y$ iff $x^{2} \leq y^{2}$.
(2) $x R_{2} y$ iff $x \geq 2 y$.
(3) $x R_{3} y$ iff $x y \geq 0$.
($x R_{4} y$ iff $x \geq y^{2}$.
Solution:
(1) Assume $a R_{1} b$ and $b R_{1} c$, then we have $a^{2} \leq b^{2}$ and $b^{2} \leq c^{2}$. So, $a^{2} \leq b^{2} \leq c^{2}$, or $a^{2} \leq c^{2}$.

Exercise: Transitive Relations

Exercise

Let \mathbb{R} be the set of real numbers, determine whether relations below are transitive or not.
(1) $x R_{1} y$ iff $x^{2} \leq y^{2}$.
(2) $x R_{2} y$ iff $x \geq 2 y$.
(3) $x R_{3} y$ iff $x y \geq 0$.
($x R_{4} y$ iff $x \geq y^{2}$.
Solution:
(1) Assume $a R_{1} b$ and $b R_{1} c$, then we have $a^{2} \leq b^{2}$ and $b^{2} \leq c^{2}$. So, $a^{2} \leq b^{2} \leq c^{2}$, or $a^{2} \leq c^{2}$. Then $a R_{1} c$.

Exercise: Transitive Relations

Exercise

Let \mathbb{R} be the set of real numbers, determine whether relations below are transitive or not.
(1) $x R_{1} y$ iff $x^{2} \leq y^{2}$.
(2) $x R_{2} y$ iff $x \geq 2 y$.
(3) $x R_{3} y$ iff $x y \geq 0$.
($x R_{4} y$ iff $x \geq y^{2}$.
Solution:
(1) Assume $a R_{1} b$ and $b R_{1} c$, then we have $a^{2} \leq b^{2}$ and $b^{2} \leq c^{2}$. So, $a^{2} \leq b^{2} \leq c^{2}$, or $a^{2} \leq c^{2}$. Then $a R_{1} c$. So R_{1} is transitive.

Exercise: Transitive Relations

Exercise

Let \mathbb{R} be the set of real numbers, determine whether relations below are transitive or not.
(1) $x R_{1} y$ iff $x^{2} \leq y^{2}$.
(2) $x R_{2} y$ iff $x \geq 2 y$.
(3) $x R_{3} y$ iff $x y \geq 0$.
(9) $x R_{4} y$ iff $x \geq y^{2}$.

Solution:
(1) Assume $a R_{1} b$ and $b R_{1} c$, then we have $a^{2} \leq b^{2}$ and $b^{2} \leq c^{2}$. So, $a^{2} \leq b^{2} \leq c^{2}$, or $a^{2} \leq c^{2}$. Then $a R_{1} c$. So R_{1} is transitive.
(c) We see that $-4 R_{2}-2$ (because $-4 \geq 2(-2)$ or $\left.-4 \geq-4\right)$ and $-2 R_{2}-1$ (because $-2 \geq 2(-1)$ or $-2 \geq-2)$.

Exercise: Transitive Relations

Exercise

Let \mathbb{R} be the set of real numbers, determine whether relations below are transitive or not.
(1) $x R_{1} y$ iff $x^{2} \leq y^{2}$.
(2) $x R_{2} y$ iff $x \geq 2 y$.
(3) $x R_{3} y$ iff $x y \geq 0$.
(9) $x R_{4} y$ iff $x \geq y^{2}$.

Solution:
(1) Assume $a R_{1} b$ and $b R_{1} c$, then we have $a^{2} \leq b^{2}$ and $b^{2} \leq c^{2}$. So, $a^{2} \leq b^{2} \leq c^{2}$, or $a^{2} \leq c^{2}$. Then $a R_{1} c$. So R_{1} is transitive.
(0) We see that $-4 R_{2}-2$ (because $-4 \geq 2(-2)$ or $\left.-4 \geq-4\right)$ and $-2 R_{2}-1$ (because $-2 \geq 2(-1)$ or $-2 \geq-2)$. But $-4 \not R_{2}-1$ because ($-4 \not \geq 2(-1)$ or $-4 \nsupseteq-2$). So R_{2} is not transitive.

- We see that $-2 R_{3} 0$ (because $-2 \cdot 0 \geq 0$) and $0 R_{3} 3$ (because $0 \cdot 3 \geq 0$).
- We see that $-2 R_{3} 0$ (because $-2 \cdot 0 \geq 0$) and $0 R_{3} 3$ (because $0 \cdot 3 \geq 0$). But $-2 \not R_{3} 3$ because $-2 \cdot 3 \nsupseteq 0$.
- We see that $-2 R_{3} 0$ (because $-2 \cdot 0 \geq 0$) and $0 R_{3} 3$ (because $0 \cdot 3 \geq 0$). But $-2 \not R_{3} 3$ because $-2 \cdot 3 \nsupseteq 0$. So R_{3} is not transitive.
- We see that $-2 R_{3} 0$ (because $-2 \cdot 0 \geq 0$) and $0 R_{3} 3$ (because $0 \cdot 3 \geq 0$). But $-2 \not R_{3} 3$ because $-2 \cdot 3 \nsupseteq 0$. So R_{3} is not transitive.
(- We see that $\frac{1}{4} R_{4} \frac{1}{2}$ (because $\frac{1}{4} \geq\left(\frac{1}{2}\right)^{2}$) and $\frac{1}{2} R_{4} \frac{1}{\sqrt{3}}$ (because $\frac{1}{2} \geq\left(\frac{1}{\sqrt{3}}\right)^{2}$).
- We see that $-2 R_{3} 0$ (because $-2 \cdot 0 \geq 0$) and $0 R_{3} 3$ (because $0 \cdot 3 \geq 0$). But $-2 \not R_{3} 3$ because $-2 \cdot 3 \nsupseteq 0$. So R_{3} is not transitive.
- We see that $\frac{1}{4} R_{4} \frac{1}{2}$ (because $\frac{1}{4} \geq\left(\frac{1}{2}\right)^{2}$) and $\frac{1}{2} R_{4} \frac{1}{\sqrt{3}}$ (because $\frac{1}{2} \geq\left(\frac{1}{\sqrt{3}}\right)^{2}$). But $\frac{1}{4} \not R_{4} \frac{1}{\sqrt{3}}$ (because $\frac{1}{4} \nsupseteq\left(\frac{1}{\sqrt{3}}\right)^{2}$).
- We see that $-2 R_{3} 0$ (because $-2 \cdot 0 \geq 0$) and $0 R_{3} 3$ (because $0 \cdot 3 \geq 0$). But $-2 \not R_{3} 3$ because $-2 \cdot 3 \nsupseteq 0$. So R_{3} is not transitive.
- We see that $\frac{1}{4} R_{4} \frac{1}{2}$ (because $\frac{1}{4} \geq\left(\frac{1}{2}\right)^{2}$) and $\frac{1}{2} R_{4} \frac{1}{\sqrt{3}}$ (because $\frac{1}{2} \geq\left(\frac{1}{\sqrt{3}}\right)^{2}$). But $\frac{1}{4} \not R_{4} \frac{1}{\sqrt{3}}$ (because $\frac{1}{4} \nsupseteq\left(\frac{1}{\sqrt{3}}\right)^{2}$). So R_{4} is not transitive.

Challenging Problem

Let p and q be two integers with $q \neq 0, p$ is divisible by q if q divides p (there exists $k \in \mathbb{Z}$ such that $k q=p$).

Challenging Problem

Check whether these relations are transitive or not:
(1) R is a relation on \mathbb{Z} defined as: $a R b$ iff $a-b$ is divisible by 2 , for every $a, b \in \mathbb{Z}$.
(2) R is a relation on \mathbb{Z} defined as: $a R b$ iff $a-b$ is not divisible by 2 , for every $a, b \in \mathbb{Z}$.
(0) R is a relation on \mathbb{Z} defined as: $a R b$ iff $a b$ is divisible by 3 , for every $a, b \in \mathbb{Z}$.

Contents

(1) Operations on Representation Matrices of Relations
2) Some Binary Relations with Special Properties

- Reflexive and Irreflexive Relations
- Symmetric, Antisymmetric, and Asymmetric Relations
- Transitive Relations
(3) Relation Properties from Its Representation Matrix

4 Relation Properties from Its Digraph
(5) Relation Composition (Relation Product)

Properties of Relation from Its Representation Matrices I

Let A be a set with n elements and R be a relation on A. If \mathbf{M}_{R} is a representation matrix for R, then \mathbf{M}_{R} will have properties that reflect the properties of relation R.
(1) If R is reflexive, then

$$
\mathbf{M}_{R}=\left[\begin{array}{llll}
1 & & & * \\
& 1 & & \\
& & \ddots & \\
* & & & 1
\end{array}\right]
$$

(c) If R is irreflexive, then

$$
\mathbf{M}_{R}=\left[\begin{array}{cccc}
0 & & & * \\
& 0 & & \\
& & \ddots & \\
* & & & 0
\end{array}\right] .
$$

Properties of Relation from Its Representation Matrices II

(3) If R is symmetric, then $\mathbf{M}_{R}=\left(\mathbf{M}_{R}\right)^{T}$, or \mathbf{M}_{R} is a symmetric matrix.
(0) If R is antisymmetric and $\mathbf{M}_{R}=\left[m_{i j}\right]$, then for every $i, j \in\{1,2, \ldots, n\}$ we have: if $i \neq j$, then $m_{i j}=0$ or $m_{j i}=0$.
(0) If R is asymmetric and $\mathbf{M}_{R}=\left[m_{i j}\right]$, then for every $i, j \in\{1,2, \ldots, n\}$ we have: if $m_{i j}=1$ then $m_{j i}=0$.
(0) If R transitive and $\mathbf{M}_{R}=\left[m_{i j}\right]$, then for every $i, j, k \in\{1,2, \ldots, n\}$ we have: if $m_{i j}=1$ and $m_{j k}=1$ then $m_{i k}=1$.

Exercise: Properties of Relation from Its Matrix

Exercise

Let R be a relation on set A with three elements. Suppose \mathbf{M}_{R} is a representation matrix of R :

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Check whether
(1) R is reflexive? R is irreflexive?
(2) R is symmetric? R is antisymmetric? R is asymmetric?

- R is transitive?

Solution

(0) Every diagonal entry of \mathbf{M}_{R} is 1 , then R is reflexive.

Solution

(1) Every diagonal entry of \mathbf{M}_{R} is 1 , then R is reflexive. It is obvious that R is not irreflexive because not all diagonal entry of \mathbf{M}_{R} is 0 .

Solution

(1) Every diagonal entry of \mathbf{M}_{R} is 1 , then R is reflexive. It is obvious that R is not irreflexive because not all diagonal entry of \mathbf{M}_{R} is 0 .
(2) Because $\left(\mathbf{M}_{R}\right)^{T}=\mathbf{M}_{R}$, then R is symmetric.

Solution

(1) Every diagonal entry of \mathbf{M}_{R} is 1 , then R is reflexive. It is obvious that R is not irreflexive because not all diagonal entry of \mathbf{M}_{R} is 0 .
(2) Because $\left(\mathbf{M}_{R}\right)^{T}=\mathbf{M}_{R}$, then R is symmetric. Relation R is not antisymmetric because $m_{12}=1$ and $m_{21}=1$.

Solution

(1) Every diagonal entry of \mathbf{M}_{R} is 1 , then R is reflexive. It is obvious that R is not irreflexive because not all diagonal entry of \mathbf{M}_{R} is 0 .
(2) Because $\left(\mathbf{M}_{R}\right)^{T}=\mathbf{M}_{R}$, then R is symmetric. Relation R is not antisymmetric because $m_{12}=1$ and $m_{21}=1$. Relation R is not asymmetric because $m_{12}=1$ but $m_{21} \neq 0$.

Solution

(1) Every diagonal entry of \mathbf{M}_{R} is 1 , then R is reflexive. It is obvious that R is not irreflexive because not all diagonal entry of \mathbf{M}_{R} is 0 .
(2) Because $\left(\mathbf{M}_{R}\right)^{T}=\mathbf{M}_{R}$, then R is symmetric. Relation R is not antisymmetric because $m_{12}=1$ and $m_{21}=1$. Relation R is not asymmetric because $m_{12}=1$ but $m_{21} \neq 0$.
(0) R is not transitive because $m_{12}=1$ and $m_{23}=1$ but $m_{13}=0$.

Exercise

Exercise

Find a representation matrix for relation R whose digraph is

Is R reflexive? irreflexive? symmetric? antisymmetric? asymmetric? transitive?

Solution

Let \mathbf{M}_{R} be a representation matrix of R, then $\mathbf{M}_{R}=$

Solution

Let \mathbf{M}_{R} be a representation matrix of R, then $\mathbf{M}_{R}=\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right]$.

Solution

Let \mathbf{M}_{R} be a representation matrix of R, then $\mathbf{M}_{R}=\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right] . R$ is not reflexive (because $m_{11}=0$) and

Solution

Let \mathbf{M}_{R} be a representation matrix of R, then $\mathbf{M}_{R}=\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right] . R$ is not reflexive (because $m_{11}=0$) and not irreflexive (because $m_{22}=1$).

Solution

Let \mathbf{M}_{R} be a representation matrix of R, then $\mathbf{M}_{R}=\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right] . R$ is not reflexive (because $m_{11}=0$) and not irreflexive (because $m_{22}=1$). R is not symmetric (because $m_{21}=1$ but $m_{12}=0$),

Solution

Let \mathbf{M}_{R} be a representation matrix of R, then $\mathbf{M}_{R}=\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right] . R$ is not reflexive (because $m_{11}=0$) and not irreflexive (because $m_{22}=1$). R is not symmetric (because $m_{21}=1$ but $m_{12}=0$), R is not antisymmetric (because $m_{13}=m_{31}=1$ and $\left.1 \neq 3\right)$,

Solution

Let \mathbf{M}_{R} be a representation matrix of R, then $\mathbf{M}_{R}=\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right] . R$ is not reflexive (because $m_{11}=0$) and not irreflexive (because $m_{22}=1$). R is not symmetric (because $m_{21}=1$ but $m_{12}=0$), R is not antisymmetric (because $m_{13}=m_{31}=1$ and $1 \neq 3$), R is not asymmetric (because $m_{13}=1$ and $m_{31}=1$).

Solution

Let \mathbf{M}_{R} be a representation matrix of R, then $\mathbf{M}_{R}=\left[\begin{array}{llll}0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right] . R$ is not reflexive (because $m_{11}=0$) and not irreflexive (because $m_{22}=1$). R is not symmetric (because $m_{21}=1$ but $m_{12}=0$), R is not antisymmetric (because $m_{13}=m_{31}=1$ and $1 \neq 3$), R is not asymmetric (because $m_{13}=1$ and $m_{31}=1$). R is not transitive (because $m_{14}=1$ and $m_{41}=1$ but $m_{11}=0$).

Contents

(1) Operations on Representation Matrices of Relations
(2) Some Binary Relations with Special Properties

- Reflexive and Irreflexive Relations
- Symmetric, Antisymmetric, and Asymmetric Relations
- Transitive Relations

3 Relation Properties from Its Representation Matrix
4. Relation Properties from Its Digraph
(5) Relation Composition (Relation Product)

Relation Properties from Its Digraph

If R is a relation on a finite set A, then some properties of R can be seen from its digraph.
(1) R is reflexive iff there exists a loop in every vertex of digraph representation of R.
(2) R is irreflexive iff there is no loop in every vertex of digraph representation of R.
(0) R is symmetric iff every two vertices in digraph representation of R that have an edge connecting them also have another edge connecting them with opposite direction.

- R is antisymmetric iff there is no two different vertices connected by two edges with opposing direction in digraph representation of R..
- R is asymmetric iff there is no two vertices connected by two edges with opposing direction and there is no loop in every vertex of digraph representation of R.
(0) R is transitive iff for every $a, b, c \in V$ we have: if there exists an edge from a to b and from b to c then there exists an edge from a to c.

Exercise

Exercise

Check whether the relation S whose digraph representation denoted below

Digraph for S.
is reflexive; irreflexive; symmetric; antisymmetric; asymmetric; transitive.

Solution to Exercise

Solution: Observe that in digraph representation of S, there are 3 vertices, named a, b, c.

Solution to Exercise

Solution: Observe that in digraph representation of S, there are 3 vertices, named a, b, c.

- S is reflexive because there is a loop in vertices a, b, and c.

Solution to Exercise

Solution: Observe that in digraph representation of S, there are 3 vertices, named a, b, c.

- S is reflexive because there is a loop in vertices a, b, and c. Obviously, S is not irreflexive.

Solution to Exercise

Solution: Observe that in digraph representation of S, there are 3 vertices, named a, b, c.

- S is reflexive because there is a loop in vertices a, b, and c. Obviously, S is not irreflexive.
- S is not symmetric because there is only 1 edge connecting a and b.

Solution to Exercise

Solution: Observe that in digraph representation of S, there are 3 vertices, named a, b, c.

- S is reflexive because there is a loop in vertices a, b, and c. Obviously, S is not irreflexive.
- S is not symmetric because there is only 1 edge connecting a and b. Relation S is not antisymmetric because b is connected to c with two opposing edges.

Solution to Exercise

Solution: Observe that in digraph representation of S, there are 3 vertices, named a, b, c.

- S is reflexive because there is a loop in vertices a, b, and c. Obviously, S is not irreflexive.
- S is not symmetric because there is only 1 edge connecting a and b. Relation S is not antisymmetric because b is connected to c with two opposing edges. Relation S is not asymmetric because the digraph representation of S contains loops.

Solution to Exercise

Solution: Observe that in digraph representation of S, there are 3 vertices, named a, b, c.

- S is reflexive because there is a loop in vertices a, b, and c. Obviously, S is not irreflexive.
- S is not symmetric because there is only 1 edge connecting a and b. Relation S is not antisymmetric because b is connected to c with two opposing edges. Relation S is not asymmetric because the digraph representation of S contains loops.
- Relation S is not transitive because there exists an edge from b to $c(b \rightarrow c)$ and from c to $a(c \rightarrow a)$ but there is no edge from b to $a(b \rightarrow a)$,

Contents

(1) Operations on Representation Matrices of Relations

2 Some Binary Relations with Special Properties

- Reflexive and Irreflexive Relations
- Symmetric, Antisymmetric, and Asymmetric Relations
- Transitive Relations

3 Relation Properties from Its Representation Matrix

4 Relation Properties from Its Digraph
(5) Relation Composition (Relation Product)

Relation Composition (Relation Product)

Definition

Let R be a relation from set A to set B and S be a relation from set B to set C. Composition or product of relations R and S is written as $S \circ R$ and defined as

$$
S \circ R=\left\{\begin{array}{l}
(a, c) \mid a \in A, c \in C, \\
\text { there exists } b \in B \text { that satisfies }(a, b) \in R \text { and }(b, c) \in S
\end{array}\right\} .
$$

So $S \circ R$ is a relation from A to C.

Relation Composition Using Arrow Diagram

Relation composition $S \circ R$ can be determined using arrow diagram.

Example

Let $A=\{1,2,3\}, B=\{2,4,6,8\}$, and $C=\{s, t, u\}$. Let R be a relation from A to B with $R=\{(1,2),(1,6),(2,4),(3,4),(3,6),(3,8)\}$ and S be a relation from B to C with $S=\{(2, u),(4, s),(4, t),(6, t),(8, u)\}$. Arrow diagram representation of $S \circ R$ is

Relation Composition Using Arrow Diagram

Relation composition $S \circ R$ can be determined using arrow diagram.

Example

Let $A=\{1,2,3\}, B=\{2,4,6,8\}$, and $C=\{s, t, u\}$. Let R be a relation from A to B with $R=\{(1,2),(1,6),(2,4),(3,4),(3,6),(3,8)\}$ and S be a relation from B to C with $S=\{(2, u),(4, s),(4, t),(6, t),(8, u)\}$. Arrow diagram representation of $S \circ R$ is

We have $S \circ R=$

Relation Composition Using Arrow Diagram

Relation composition $S \circ R$ can be determined using arrow diagram.

Example

Let $A=\{1,2,3\}, B=\{2,4,6,8\}$, and $C=\{s, t, u\}$. Let R be a relation from A to B with $R=\{(1,2),(1,6),(2,4),(3,4),(3,6),(3,8)\}$ and S be a relation from B to C with $S=\{(2, u),(4, s),(4, t),(6, t),(8, u)\}$. Arrow diagram representation of $S \circ R$ is

We have $S \circ R=\{(1, u),(1, t),(2, s),(2, t),(3, s),(3, t),(3, u)\}$.

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution:

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$.

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$.

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(1,0) \in S \circ R$ and $(1,1) \in S \circ R$.

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(1,0) \in S \circ R$ and $(1,1) \in S \circ R$.
- for $a=2$, we have $2 R 3$.

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(1,0) \in S \circ R$ and $(1,1) \in S \circ R$.
- for $a=2$, we have $2 R 3$. Because $3 S 1$ and $3 S 2$, then

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(1,0) \in S \circ R$ and $(1,1) \in S \circ R$.
- for $a=2$, we have $2 R 3$. Because $3 S 1$ and $3 S 2$, then $(2,1) \in S \circ R$ and $(2,2) \in S \circ R$.

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(1,0) \in S \circ R$ and $(1,1) \in S \circ R$.
- for $a=2$, we have $2 R 3$. Because $3 S 1$ and $3 S 2$, then $(2,1) \in S \circ R$ and $(2,2) \in S \circ R$.
- for $a=3$, we have $3 R b$ for $b \in\{1,4\}$.

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(1,0) \in S \circ R$ and $(1,1) \in S \circ R$.
- for $a=2$, we have $2 R 3$. Because $3 S 1$ and $3 S 2$, then $(2,1) \in S \circ R$ and $(2,2) \in S \circ R$.
- for $a=3$, we have $3 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(1,0) \in S \circ R$ and $(1,1) \in S \circ R$.
- for $a=2$, we have $2 R 3$. Because $3 S 1$ and $3 S 2$, then $(2,1) \in S \circ R$ and $(2,2) \in S \circ R$.
- for $a=3$, we have $3 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(3,0) \in S \circ R$ and $(3,1) \in S \circ R$.

So, $S \circ R=$

Exercise: Relation Composition

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find $S \circ R$, a relation from $\{1,2,3\}$ to $\{0,1,2\}$.

Solution: Elements of $S \circ R$ are all ordered pair (a, c), satisfying $a \in\{1,2,3\}$, $c \in\{0,1,2\}$, and there exists $b \in\{1,2,3,4\}$ such that $a R b$ and $b S c$. We see that

- for $a=1$, we have $1 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(1,0) \in S \circ R$ and $(1,1) \in S \circ R$.
- for $a=2$, we have $2 R 3$. Because $3 S 1$ and $3 S 2$, then $(2,1) \in S \circ R$ and $(2,2) \in S \circ R$.
- for $a=3$, we have $3 R b$ for $b \in\{1,4\}$. Because $1 S 0$ and $4 S 1$, then $(3,0) \in S \circ R$ and $(3,1) \in S \circ R$.

So, $S \circ R=\{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\}$.

Exercise

Let R and S be relations on $A=\{1,2,3,4\}$ defined as: for every $a, b \in A$,
(1) $a R b$ iff $b=5-a$,
(2) $a S b$ iff $a<b$.

Find $S \circ R$.
Solution: Observe that:

Exercise

Let R and S be relations on $A=\{1,2,3,4\}$ defined as: for every $a, b \in A$,
(1) $a R b$ iff $b=5-a$,
(2) $a S b$ iff $a<b$.

Find $S \circ R$.
Solution: Observe that:

- R relates $a \in A$ and $(5-a) \in A$.

Exercise

Let R and S be relations on $A=\{1,2,3,4\}$ defined as: for every $a, b \in A$,
(1) $a R b$ iff $b=5-a$,
(2) $a S b$ iff $a<b$.

Find $S \circ R$.
Solution: Observe that:

- R relates $a \in A$ and $(5-a) \in A$.
- Next, $(5-a) \in A$ is related by S to elements in A greater than $(5-a)$.

Exercise

Let R and S be relations on $A=\{1,2,3,4\}$ defined as: for every $a, b \in A$,
(1) $a R b$ iff $b=5-a$,
(2) $a S b$ iff $a<b$.

Find $S \circ R$.
Solution: Observe that:

- R relates $a \in A$ and $(5-a) \in A$.
- Next, $(5-a) \in A$ is related by S to elements in A greater than $(5-a)$.
- In other words, $S \circ R$ consists of all ordered pair (a, b) with property $b>5-a$, or $a+b>5$, so we have $S \circ R=\{(a, b) \mid a, b \in A$ and

Exercise

Let R and S be relations on $A=\{1,2,3,4\}$ defined as: for every $a, b \in A$,
(1) $a R b$ iff $b=5-a$,
(2) $a S b$ iff $a<b$.

Find $S \circ R$.
Solution: Observe that:

- R relates $a \in A$ and $(5-a) \in A$.
- Next, $(5-a) \in A$ is related by S to elements in A greater than $(5-a)$.
- In other words, $S \circ R$ consists of all ordered pair (a, b) with property $b>5-a$, or $a+b>5$, so we have $S \circ R=\{(a, b) \mid a, b \in A$ and $a+b>5\}$.
Then $S \circ R=\{(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)\}$.

Associative Property of Relation Composition

Theorem
Relation composition is associative, which means if A, B, C, D are four sets, and

- R is a relation from A to B,
- S is a relation from B to C,
- T is a relation from C to D,
then we have

$$
T \circ(S \circ R)=(T \circ S) \circ R .
$$

Relation Composition Using Matrix Representation

Definition (Boolean Product)

Let \mathbf{A} be a $0-1$ matrix with size $m \times n$ and \mathbf{B} be a $0-1$ matrix with size $n \times p$. Boolean product of \mathbf{A} and \mathbf{B}, denoted by $\mathbf{A} \odot \mathbf{B}$, is defined as an $m \times p$ matrix whose entry in i-th row and j-th column is

$$
\mathbf{A} \odot \mathbf{B}[i, j]=\bigvee_{k=1}^{n} \mathbf{A}[i, k] \wedge \mathbf{B}[k, j]
$$

Boolean product of two matrices is essentially the same with the usual matrix product, with the operation + and \cdot defined as follows:

+	\cdot
$1+1=1$	$1 \cdot 1=1$
$1+0=1$	$1 \cdot 0=0$
$0+1=1$	$0 \cdot 1=0$
$0+0=0$	$0 \cdot 0=0$

Representation Matrix of $S \circ R$

Theorem

Let A, B, C be three finite sets and R be a relation from A to B and S be a relation from B to C. Let \mathbf{M}_{R} and \mathbf{M}_{S} be representation matrices for R and S, respectively. If $S \circ R$ is a relation from A to C and $\mathbf{M}_{S \circ R}$ is a representation matrix for $S \circ R$, then

$$
\mathbf{M}_{S \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{S}
$$

Exercise

Exercise

Find a representation matrix of $S \circ R$ if the representation matrices for R and S are

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right], \mathbf{M}_{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Solution: Let $\mathbf{M}_{S \circ R}$ be a matrix representation for $S \circ R$, then

$$
\mathbf{M}_{S \circ R}=
$$

Solution: Let $\mathrm{M}_{S \circ R}$ be a matrix representation for $S \circ R$, then

$$
\mathbf{M}_{S \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{S}
$$

$$
=
$$

Solution: Let $\mathbf{M}_{S \circ R}$ be a matrix representation for $S \circ R$, then

$$
\begin{aligned}
\mathbf{M}_{S \circ R} & =\mathbf{M}_{R} \odot \mathbf{M}_{S} \\
& =\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \odot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \\
& =
\end{aligned}
$$

Solution: Let $\mathbf{M}_{S \circ R}$ be a matrix representation for $S \circ R$, then

$$
\begin{aligned}
\mathbf{M}_{S \circ R} & =\mathbf{M}_{R} \odot \mathbf{M}_{S} \\
& =\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \odot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0+0+1 & 1+0+0 & 0+0+1 \\
0+0+0 & 1+0+0 & 0+1+0 \\
0+0+0 & 0+0+0 & 0+0+0
\end{array}\right] \\
& =
\end{aligned}
$$

Solution: Let $\mathrm{M}_{S \circ R}$ be a matrix representation for $S \circ R$, then

$$
\begin{aligned}
\mathbf{M}_{S \circ R} & =\mathbf{M}_{R} \odot \mathbf{M}_{S} \\
& =\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \odot\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0+0+1 & 1+0+0 & 0+0+1 \\
0+0+0 & 1+0+0 & 0+1+0 \\
0+0+0 & 0+0+0 & 0+0+0
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Exercise

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ defined as $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find a matrix representation for relation $S \circ R$.

Solution: $\mathbf{M}_{R}=$

Exercise

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ defined as $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find a matrix representation for relation $S \circ R$.

Solution: $\mathbf{M}_{R}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right], \mathbf{M}_{S}=$

Exercise

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ defined as $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find a matrix representation for relation $S \circ R$.
Solution: $\mathbf{M}_{R}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right], \mathbf{M}_{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$,
$\mathbf{M}_{S \circ R}=$

Exercise

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ defined as $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find a matrix representation for relation $S \circ R$.
Solution: $\mathbf{M}_{R}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right], \mathbf{M}_{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$,
$\mathbf{M}_{S \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{S}=$

Exercise

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with
$R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ defined as $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find a matrix representation for relation $S \circ R$.
Solution: $\mathbf{M}_{R}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right], \mathbf{M}_{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$,
$\mathbf{M}_{S \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{S}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right] \odot\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]=$

Exercise

Exercise

Let R be a relation from $\{1,2,3\}$ to $\{1,2,3,4\}$ with $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$. Let S be a relation from $\{1,2,3,4\}$ to $\{0,1,2\}$ defined as $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$. Find a matrix representation for relation $S \circ R$.
Solution: $\mathbf{M}_{R}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right], \mathbf{M}_{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$,
$\mathbf{M}_{S \circ R}=\mathbf{M}_{R} \odot \mathbf{M}_{S}=\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right] \odot\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$.

