
WORD EMBEDDING
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Typical RNN Models
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 In Natural Language Processing (NLP), we often map words into 
vectors that contains numeric values so that machine can understand 
it.
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Traditional Approach
3

 The traditional Approach to turn text into numbers is one‐hot 
encoding.

• Assume we have a dictionary of 2000 
words. When using one‐hot encoding, 
each word will be represented by a 
vector containing 2000 integers (2000‐D).

• And 1999 of these integers are zeros. In a 
big dataset this approach is not 
computationally efficient.

One‐hot encoding
4

 There are several issues for one‐hot encoding.

You cannot infer any relationship between two words given 
their one‐hot representation.

◼For instance, the word “endure” and “tolerate”, although have 
similar meaning, their targets “1” are far from each other.

One‐hot encoded vectors are high‐dimensional and sparse.

◼There are numerous redundant “0” in the vectors, wasting a lot of 
space.



Word Embedding
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 The Big Idea of Word Embedding is to turn text into vector of real 
numbers.

 Word Embedding aims to create a vector representation with a much 
lower dimensional space. These are called Word Vectors.

 This vector representation has two important and advantageous 
properties:

 Dimensionality Reduction — it is a more efficient representation

 Contextual Similarity — it is a more expressive representation

Word Embedding
6

 Word Vectors are used for semantic parsing, to extract meaning from text 
to enable natural language understanding.

 For a language model to be able to predict the meaning of text, it needs to 
be aware of the contextual similarity of words.

 For instance, that we tend to find fruit words (like apple or orange) in 
sentences where they’re grown, picked, eaten and juiced, but wouldn’t 
expect to find those same concepts in such close proximity to, say, the 
word airplane.

 The vectors created by Word Embedding preserve these similarities, so 
words that regularly occur nearby in text will also be in close proximity in 
vector space.



Word2Vec
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 What is word embedding?” is: it’s a means of building a low‐ 
dimensional vector representation from corpus of text, which 
preserves the contextual similarity of words.

 And this is the approach used by one of the best known algorithms 
for producing word embeddings: word2vec.

 There are actually two ways to implement word2vec

 CBOW (Continuous Bag‐Of‐Words) and Skip‐gram.

Word2Vec
8

 CBOW
 In CBOW we have a window around some target word and then consider 

the words around it (its context).

 We supply those words as input into our network and then use it to try to 
predict the target word.

 Skip‐gram
 Skip‐gram does the opposite, you have a target word, and you try to 

predict the words that are in the window around that word, i.e. predict the 
context around a word.



The Skip‐Gram Model
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 The input words are passed in as one‐hot encoded vectors.

 This will go into a hidden layer of linear units, then into a softmax layer 
to make a prediction.

• The idea here is to train the 
hidden layer weight matrix to find 
efficient representations for our 
words.

• This weight matrix is usually 
called the embedding matrix, and 
can be queried as a look‐up table.

The Skip‐Gram Model
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 The embedding matrix has a size of the number of words by the 
number of neurons in the hidden layer (the embed size).

 So, if you have 10,000 words and 300 hidden units, the matrix will 
have size 10,000×300 (as we’re using one‐hot encoded vectors for 
our inputs). Once computed, getting the word vector is a speedy O(1) 
lookup of corresponding row of the results matrix:

So, for the word that’s the 4th entry in 
the vocabulary, its vector is (10,12,19).

each word has an associated vector, hence the 
name: word2vec.



Embed size
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 The embed size, which is the size of the hidden layer and thus the 
number of features that represent similarities between words, tends 
to be much smaller than the total number of unique words in the 
vocabulary, (hundreds rather than tens of thousands).

 The embed size used is a trade‐off: more features mean extra 
computational complexity, and so longer run‐times, but also allow 
more subtle representations, and potentially better models.

Contextual similarities
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 Word Embeddings are similarities based on context, which 
might be gender, tense, geography or something else entirely.

 The classic example is subtracting the ‘notion’ of “King” from 
“Man” and adding the notion of “Woman”. The answer will 
depend on your training set, but you’re likely to see one of the 
top results being the word “Queen”.



Contextual similarities
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The lines shown are just mathematical vectors, so see how you could move ‘across’ in 
embedding space from “Man” to “Queen” by subtracting “King” and adding “Woman”.

class torch.nn.Embedding
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 A simple lookup table that stores embeddings of a fixed dictionary and 
size.

 This module is often used to store word embeddings and retrieve them 
using indices.

 Parameters:

 num_embeddings (int) – size of the dictionary of embeddings

 embedding_dim (int) – the size of each embedding vector

 padding_idx (int, optional) – If given, pads the output with the embedding vector 
at padding_idx (initialized to zeros) whenever it encounters the index.



class torch.nn.Embedding
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 Parameters:

 max_norm (float, optional) – If given, will renormalize the embedding vectors to 
have a norm lesser than this before extracting.

 norm_type (float, optional) – The p of the p‐norm to compute for the max_norm 
option. Default 2.

 scale_grad_by_freq (boolean, optional) – if given, this will scale gradients by the 
inverse of frequency of the words in the mini‐batch. Default False.

 sparse (bool, optional) – if True, gradient w.r.t. weight matrix will be a sparse 
tensor. See Notes for more details regarding sparse gradients.

 Variables:

 weight (Tensor) – the learnable weights of the module of shape 
(num_embeddings, embedding_dim)

class torch.nn.Embedding
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 The input to the module is a list of indices, and the output is the 
corresponding word embeddings.

 Shape:

 Input: LongTensor of arbitrary shape containing the indices to extract

 Output: (*, embedding_dim), where * is the input shape



class torch.nn.Embedding
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 Note
 Keep in mind that only a limited number of optimizers support sparse 

gradients: currently it’s optim.SGD (CUDA and CPU), optim.SparseAdam 
(CUDA and CPU) and optim.Adagrad (CPU)

 With padding_idx set, the embedding vector at padding_idx is initialized to 
all zeros. However, note that this vector can be modified afterwards, e.g., 
using a customized initialization method, and thus changing the vector 
used to pad the output. The gradient for this vector from Embedding is 
always zero.

Example #1, Embedding
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>>> # an Embedding module containing 10 tensors of size 3
>>> embedding = nn.Embedding(10, 3)
>>> # a batch of 2 samples of 4 indices each
>>> input = torch.LongTensor([[1,2,4,5],[4,3,2,9]])
>>> embedding(input)
tensor([[[‐0.0251, ‐1.6902, 0.7172],

[‐0.6431, 0.0748, 0.6969], • Input: LongTensor of arbitrary shape

[ 1.4970, 1.3448, ‐0.9685], containing the indices to extract
[‐0.3677, ‐2.7265, ‐0.1685]], • Output: (*, embedding_dim), where *

is the input shape
[[ 1.4970, 1.3448, ‐0.9685],
[ 0.4362, ‐0.4004, 0.9400],
[‐0.6431, 0.0748, 0.6969],
[ 0.9124, ‐2.3616, 1.1151]]])



Example #2, padding_idx
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>>> # example with padding_idx
>>> embedding = nn.Embedding(10, 3, padding_idx=0)
>>> input = torch.LongTensor([[0,2,0,5]])
>>> embedding(input)
tensor([[[ 0.0000, 0.0000, 0.0000],

[ 0.1535, ‐2.0309, 0.9315],
[ 0.0000, 0.0000, 0.0000],
[‐0.1655, 0.9897, 0.0635]]])

• padding_idx (int, optional) – If given, pads the output with the embedding vector at 
padding_idx (initialized to zeros) whenever it encounters the index.

• Input: LongTensor of arbitrary shape containing the indices to extract
• Output: (*, embedding_dim), where * is the input shape

遇到這個index值，
embedding vector就給0

Example #3, Embedding ‘hello’
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import torch
import torch.nn as nn
import torch.nn.functional as F 
from torch.autograd import Variable

word_to_ix = {'hello': 0, 'world': 1} 
embeds = nn.Embedding(2, 5)

hello_idx = torch.LongTensor([word_to_ix['hello']]) 
hello_embed = embeds(hello_idx)
print(hello_embed)

Out:
tensor([[ 0.2862, ‐0.7988, ‐1.3012, ‐2.0746, ‐0.4283]],
grad_fn=<EmbeddingBackward>)



RNN Classification
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Name Classification: Dataset
22

Softmax output (18 countries)

[ z h o g i n ]

We’ll train on a few thousand surnames from 18 languages of 
origin, and predict which language a name is from based on the 
spelling.
https://github.com/hunkim/PyTorchZeroToAll 
https://github.com/ngarneau/understanding‐pytorch‐batching‐lstm



Input representation
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[a d y l o v]

Convert characters to 
ASCII code numbers, 
and regard as indices to 
retrieve embedding 
vectors.

Use an embedding vector to 
represent a character. Use a 
matrix to represent the word. 
embedding_dim =6

Input representation
24

Softmax output  
(18 countries)



Data preparation
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def str2ascii_arr(name):

arr = [ord(c) for c in name] 

return arr, len(arr)

self.embedding = 

nn.Embedding(input_voc_size, 

rnn_input_size)

...

embedded = self.embedding(input)

ord() takes a character and returns its ASCII/UTF‐8 

integer value

One character,
one word embedding vector

Typical RNN Models
26

 In Natural Language Processing (NLP), we often map words into 
vectors that contains numeric values so that machine can understand 
it.

P(y=0)
P(y=1)
… 
P(y=n)

Linear

Loss

With CrossEntropy

Embedding 
(lookup table)



class torch.nn.Linear
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 Applies a linear transformation to the incoming data: y=xAT+b

 Parameters:
 in_features – size of each input sample

 out_features – size of each output sample

 bias – If set to False, the layer will not learn an additive bias. Default: True

 Shape
 Input: (N,∗,in_features) where ∗ means any number of additional 

dimensions

 Output: (N,∗,out_features) where all but the last dimension are the same 
shape as the input.

class torch.nn.GRU
28

 Parameters
 input_size – The number of expected features in the input x
 hidden_size – The number of features in the hidden state h

 num_layers – Number of recurrent layers. E.g., setting num_layers=2 would 
mean stacking two GRUs together to form a stacked GRU, with the second GRU 
taking in outputs of the first GRU and computing the final results. Default: 1

 bias – If False, then the layer does not use bias weights b_ih and b_hh. Default: 
True

 batch_first – If True, then the input and output tensors are provided as (batch, 
seq, feature). Default: False

 dropout – If non‐zero, introduces a Dropout layer on the outputs of each GRU 
layer except the last layer, with dropout probability equal to dropout. Default: 0

 bidirectional – If True, becomes a bidirectional GRU. Default: False



class torch.nn.GRU
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 Inputs: input, h_0

 input of shape (seq_len, batch, input_size): tensor containing the features 
of the input sequence. (seq_len = time_step, input_size = features)

 The input can also be a packed variable length sequence. See 
torch.nn.utils.rnn.pack_padded_sequence() for details.

 h_0 of shape (num_layers * num_directions, batch, hidden_size): tensor 
containing the initial hidden state for each element in the batch. Defaults 
to zero if not provided.

class torch.nn.GRU
30

 Outputs: output, h_n

 output of shape (seq_len, batch, num_directions * hidden_size): tensor 
containing the output features (h_t) from the last layer of the GRU, for each
t. If a torch.nn.utils.rnn.PackedSequence has been given as the input, the 
output will also be a packed sequence.

 h_n of shape (num_layers * num_directions, batch, hidden_size): tensor 
containing the hidden state for t = seq_len.

 Like output, the layers can be separated using h_n.view(num_layers, 
num_directions, batch, hidden_size) and similarly for c_n.



class torch.nn.GRU
31

 Examples:

>>> rnn = nn.GRU(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> output, hn = rnn(input, h0)

super(RNNClassifier, self). init ()  

self.hidden_size = hidden_size # 100 

self.n_layers = n_layers

1. class RNNClassifier(nn.Module):

2.def init (self, input_size, hidden_size, output_size, n_layers=1): 3.

4.

5.

6.

7.

8.

9.

self.embedding = nn.Embedding(input_size, hidden_size) # 128x100 

# GRU (input_size, hidden_size, num_layers)

self.gru = nn.GRU(hidden_size, hidden_size, n_layers) 

self.fc = nn.Linear(hidden_size, output_size) # 100x18

def forward(self, input):

# Note: we run this all at once (over the whole input sequence)

# input = B x S . size(0) = B

batch_size = input.size(0)

‐‐ (transpose) ‐‐> S x B

10.

11.

12.

13.

14.

15.

16.

# input: B x S 

input = input.t() 

print(input)

HIDDEN_SIZE = 100 

N_CHARS = 128 # ASCII 

N_CLASSES = 18

embedding_dim= 
RNN_input_size= 100



# Embedding S x B ‐> S x B x I (embedding size)17.

18.

19.

20.

print(" input", input.size()) 

embedded = self.embedding(input) 

print(" embedding", embedded.size())

# Make a hidden

hidden = self._init_hidden(batch_size)

# GRU: input of shape (seq_len, batch, input_size) 

output, hidden = self.gru(embedded, hidden)

print(" gru hidden output", hidden.size())

# Use the last layer output as FC's input

# No need to unpack, since we are going to use hidden

fc_output = self.fc(hidden)

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
print(" fc output", fc_output.size())

return fc_output

31.

32.

33.

def _init_hidden(self, batch_size):

hidden = torch.zeros(self.n_layers, batch_size, self.hidden_size)

return Variable(hidden)

Out:
input torch.Size([6, 1])
embedding torch.Size([6, 1, 100])
gru hidden output torch.Size([1, 1, 100])
fc output torch.Size([1, 1, 18])

34. # Parameters and DataLoaders

35. HIDDEN_SIZE = 100

36. N_CHARS = 128 # ASCII

37. N_CLASSES = 18

38.def str2ascii_arr(msg):

39.

40.

arr = [ord(c) for c in msg] 

return arr, len(arr)

41.if name == ' main ':

42.

43.

classifier = RNNClassifier(N_CHARS,

HIDDEN_SIZE, N_CLASSES)

44.

45.

46.

47.

arr, _ = str2ascii_arr('adylov')

inp = Variable(torch.LongTensor([arr])) 

out = classifier(inp)

print("in", inp.size(), "out", out.size())

Out:
input torch.Size([6, 1])
embedding torch.Size([6, 1, 100])
gru hidden output torch.Size([1, 1, 100])
fc output torch.Size([1, 1, 18])

in torch.Size([1, 6]) out torch.Size([1, 1, 18])

HIDDEN_SIZE = 100



Batch?

?
?

?
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if name == ' main ':
names = ['adylov', 'solan', 'hard', 'san'] 
classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE,

N_CLASSES)

for name in names:
arr, _ = str2ascii_arr(name)
inp = Variable(torch.LongTensor([arr])) 
out = classifier(inp)
print("in", inp.size(), "out", out.size())

# in torch.Size([1, 6]) out torch.Size([1, 1, 18])
# in torch.Size([1, 5]) out torch.Size([1, 1, 18])
# ...

Zero padding
36

def pad_sequences(vectorized_seqs, seq_lengths):

seq_tensor = torch.zeros((len(vectorized_seqs), seq_lengths.max())).long()
for idx, (seq, seq_len) in enumerate(zip(vectorized_seqs, seq_lengths)):

seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
return seq_tensor



Embedding
37

a s h 
s

d l a 
a

y o r 
n

l a b 

o n  

v   

# Embedding S x B ‐> S x B x I (embedding size)
embedded = self.embedding(input)

1. # pad sequences and sort the tensor
2. def pad_sequences(vectorized_seqs, seq_lengths):

3. seq_tensor = torch.zeros((len(vectorized_seqs), 

seq_lengths.max())).long()
4.
5.
6.

for idx, (seq, seq_len) in enumerate(zip(vectorized_seqs, seq_lengths)): 
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)

return seq_tensor

7. # Create necessary variables, lengths, and target
8. def make_variables(names):
9. sequence_and_length = [str2ascii_arr(name) for name in names]
10. vectorized_seqs = [sl[0] for sl in sequence_and_length]
11. seq_lengths = torch.LongTensor([sl[1] for sl in sequence_and_length])
12. return pad_sequences(vectorized_seqs, seq_lengths)

Use the same class 
RNNClassifier

Full implementation
https://github.com/hunkim/PyTorchZeroToAll/blob/master/13_1_rnn_classification_basics.py



13.if name == ' main ':
14.
15.
16.
17.
18.
19.

names = ['adylov', 'solan', 'hard', 'san']
classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_CLASSES) 
inputs = make_variables(names)
print(inputs)
out = classifier(inputs)
print("batch in", inputs.size(), "batch out", out.size())

Full implementation
https://github.com/hunkim/PyTorchZeroToAll/blob/master/13_1_rnn_classification_basics.py

Out:
tensor([[ 97, 100, 121, 108, 111, 118],

[115, 111, 108, 97, 110, 0],
[104, 97, 114, 100, 0, 0],
[115, 97, 110, 0, 0, 0]])

tensor([[ 97, 115, 104, 115],
[100, 111, 97, 97],
[121, 108, 114, 110],
[108, 97, 100, 0],
[111, 110, 0, 0],
[118, 0, 0, 0]])

input torch.Size([6, 4])
embedding torch.Size([6, 4, 100])
gru hidden output torch.Size([1, 4, 100])
fc output torch.Size([1, 4, 18]) 

batch in torch.Size([4, 6]) batch out 
torch.Size([1, 4, 18])



class torch.nn.utils.rnn.PackedSequence
41

 Holds the data and list of batch_sizes of a packed sequence.

 All RNN modules accept packed sequences as inputs.

 Variables:
 data (Tensor) – Tensor containing packed sequence

 batch_sizes (Tensor) – Tensor of integers holding information about the batch 
size at each sequence step

 Note
 Instances of this class should never be created manually. They are meant to be 

instantiated by functions like pack_padded_sequence().
 Batch sizes represent the number elements at each sequence step in the batch, 

not the varying sequence lengths passed to pack_padded_sequence(). For 
instance, given data abc and x the PackedSequence would contain data axbc with 
batch_sizes=[2,1,1].

torch.nn.utils.rnn.pack_padded_sequence
42

 Packs a Tensor containing padded sequences of variable length.

 Input can be of size T x B x * where T is the length of the longest 
sequence (equal to lengths[0]), B is the batch size, and * is any 
number of dimensions (including 0). If batch_first is True B x T x * 
inputs are expected.

 The sequences should be sorted by length in a decreasing order, i.e. 
input[:,0] should be the longest sequence, and input[:,B‐1] the 
shortest one.



torch.nn.utils.rnn.pack_padded_sequence
43

 Parameters:
 input (Tensor) – padded batch of variable length sequences.
 lengths (Tensor) – list of sequences lengths of each batch element.
 batch_first (bool, optional) – if True, the input is expected in B x T x * format.

 Returns:
 a PackedSequence object

 Note
 This function accepts any input that has at least two dimensions. You can apply it

to pack the labels, and use the output of the RNN with them to compute the loss
directly.

 A Tensor can be retrieved from a PackedSequence object by accessing its .data
attribute.

Ordered batch 
(by length)

https://github.com/hunkim/PyTorchZeroToAll/blob/master/13_4_pack_pad.py
Matrix visualization from Nicolas, https://github.com/ngarneau

Efficiently handling batched sequences with 
variable lengths: pack_padded_sequence

RNN



Efficiently handling batched sequences with 
variable lengths: pack_padded_sequence

RNN Out

Efficiently handling batched sequences with 
variable lengths: pack_padded_sequence

(a) With packing and unpacking

(b) Without packing and unpacking



https://github.com/hunkim/PyTorchZeroToAll/blob/master/13_2_rnn_classification.py

1. def forward(self, input, seq_lengths):
2. # Note: we run this all at once (over the whole input sequence)
3. # input shape: B x S (input size), transpose to make S x B
4. input = input.t()
5. batch_size = input.size(1)
6. # Make a hidden
7. hidden = self._init_hidden(batch_size)
8. # Embedding S x B ‐> S x B x I (embedding size)
9. embedded = self.embedding(input)
10. # Pack them up nicely
11. gru_input = pack_padded_sequence(embedded, seq_lengths.data.cpu().numpy())

12.
13.
14.

# To compact weights again call flatten_parameters(). 
self.gru.flatten_parameters()
output, hidden = self.gru(gru_input, hidden)

15.
16.
17.
18.

# Use the last layer output as FC's input
# No need to unpack, since we are going to use hidden 
fc_output = self.fc(hidden[‐1])
return fc_output

Homework 14
48

 Implement the name classification

Use PyTorch

Use pad‐pack

 Compare RNN, LSTM, GRU, and different HIDDEN_SIZEs

 Reference code

 https://github.com/hunkim/PyTorchZeroToAll/blob/master/13_2_rnn
_classification.py



49

TRANSLATION WITH A 
SEQUENCE TO SEQUENCE 
NETWORK AND ATTENTION

Sequence to Sequence models
50

 A vanilla sequence to sequence model presented in 
https://arxiv.org/abs/1409.3215, https://arxiv.org/abs/1406.1078 
consists of using a RNN such as an LSTM or GRU to encode a sequence 
of words or characters in a source language into a fixed length vector 
representation and then decoding from that representation using 
another RNN in the target language.

⚫ Sequence to Sequence Learning with Neural Networks: https://arxiv.org/abs/1409.3215

⚫ Learning Phrase Representations using RNN Encoder‐Decoder for Statistical Machine Translation: 
https://arxiv.org/abs/1406.1078



Sequence to Sequence models
51

encoder

decoder

fixed 
length  
vector

French to English

1. class EncoderRNN(nn.Module):
def init (self, input_size, hidden_size): 

super(EncoderRNN, self). init () 
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size) 
self.gru = nn.GRU(hidden_size, hidden_size)

7.
8.
9.
10.
11.

def forward(self, input, hidden):
embedded = self.embedding(input).view(1, 1, ‐1) 
output = embedded
output, hidden = self.gru(output, hidden) 
return output, hidden

12.
13.

def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)

2.
3.
4.

552.

6.

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html



1. class DecoderRNN(nn.Module):
2.
3.
4.

def init (self, hidden_size, output_size): 
super(DecoderRNN, self). init () 
self.hidden_size = hidden_size

5.
6.
7.
8.

self.embedding = nn.Embedding(output_size, hidden_size) 
self.gru = nn.GRU(hidden_size, hidden_size)

self.out = nn.Linear(hidden_size, output_size) 
self.softmax = nn.LogSoftmax(dim=1)

9.
10.
11.
12.
13.
14.

def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, ‐1) 
output = F.relu(output)
output, hidden = self.gru(output, hidden) 
output = self.softmax(self.out(output[0])) 
return output, hidden

15.
16.

def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)

decoder.zero_grad() 
loss.backward() 
optimizer.step()
return loss.data[0] / len(target_var)

1. def train(src, target):
2. …
3. encoder_hidden = encoder.init_hidden()
4. encoder_outputs, encoder_hidden = encoder(src_var, encoder_hidden)
5. hidden = encoder_hidden
6. loss = 0
7. for c in range(len(target_var)):
8. token = target_var[c ‐ 1] if c else str2tensor(SOS_token)
9. output, hidden = decoder(token, hidden)
10. loss += criterion(output, target_var[c])
11.encoder.zero_grad() 12.
13.
14.
15.
16.

17. encoder = sm.EncoderRNN(N_CHARS, HIDDEN_SIZE, N_LAYERS)
18. decoder = sm.DecoderRNN(HIDDEN_SIZE, N_CHARS, N_LAYERS)
19. for epoch in range(1, N_EPOCH + 1):
20. for i, (srcs, targets) in enumerate(train_loader):
21. train_loss = train(srcs[0], targets[0]) # Batch is 1

Full implementation: 
https://github.com/hunkim/PyTorchZeroToAll/  
blob/master/14_1_seq2seq.py



Sequence to Sequence models
55

 In the picture above, “Le”, “chat” and “bleu” words are fed into an encoder, 
and after a special signal (not shown) the decoder starts producing a 
translated sentence.

 The decoder keeps generating words until a special end of sentence token is 
produced. Here, the h vectors represent the internal state of the encoder.

 If you look closely, you can see that the decoder is supposed to generate a 
translation solely based on the last hidden state (h2 above) from the 
encoder.

 This h2 vector must encode everything we need to know about the source 
sentence. It must fully capture its meaning.

Sequence to Sequence models
56

 It seems unreasonable to assume that we can encode all information about a
potentially very long sentence into a single vector and then have the decoder
produce a good translation based on only that.

 With an attention mechanism we no longer try encode the full source sentence
into a fixed‐length vector. Rather, we allow the decoder to “attend” to different
parts of the source sentence at each step of the output generation.

 Importantly, we let the model learn what to attend to based on the input 
sentence and what it has produced so far. So, in languages that are pretty well 
aligned (like English and German) the decoder would probably choose to attend 
to things sequentially.

 Attending to the first word when producing the first English word, and so on.



Attention mechanism
57

 An extension of sequence to sequence models that incorporate an 
attention mechanism was presented in https://arxiv.org/abs/1409.0473 
that uses information from the RNN hidden states in the source 
language at each time step in the decoder RNN.

 This attention mechanism significantly improves performance on tasks 
like machine translation.

 A few variants of the attention model for the task of machine 
translation have been presented in https://arxiv.org/abs/1508.04025.

⚫ Neural Machine Translation by Jointly Learning to Align and Translate: https://arxiv.org/abs/1409.0473

⚫ Effective Approaches to Attention‐based Neural Machine Translation: 
https://arxiv.org/abs/1508.04025

Attention mechanism
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weights



Attention mechanism

 Here, The y‘s are our translated words 
produced by the decoder, and the x‘s are our 
source sentence words.

 The illustration uses a bidirectional RNN, but
that’s not important and you can just ignore
the inverse direction.

 The important part is that each decoder 
output word yt now depends on a weighted 
combination of all the input states, not just the 
last state.
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Attention mechanism

 The a‘s are weights that define in how much of
each input state should be considered for each
output.

 So, if a3,2 is a large number, this would mean 
that the decoder pays a lot of attention to the 
second state in the source sentence while 
producing the third word of the target 
sentence.

 The a's are typically normalized to sum to 1.
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Attention mechanism

 A big advantage of attention is that 
it gives us the ability to interpret and 
visualize what the model is doing.

 For example, by visualizing the 
attention weight matrix a when a 
sentence is translated, we can 
understand how the model is 
translating.
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Teacher Forcing
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 Teacher forcing is a training technique 
that is applicable to RNNs that have 
connections from their output to their 
hidden states at the next time step.

 (Left)At train time, we feed the correct 
(target) output y(t) drawn from the train 
set as input to h(t+1).

 (Right)When the model is deployed, the 
true output is generally not known. In 
this case, we approximate the correct 
output y(t) with the model’s output o(t), 
and feed the output back into the model.

Train time Test time

y: target
L: loss function
o: network output



1. class AttnDecoderRNN(nn.Module):
2. def init (self, hidden_size, output_size, dropout_p=0.1,

3.
4.
5.
6.
7.

max_length=MAX_LENGTH):

super(AttnDecoderRNN, self). init ()  
self.hidden_size = hidden_size 
self.output_size = output_size
self.dropout_p = dropout_p 
self.max_length = max_length

8.
9.
10.
11.
12.
13.

self.embedding = nn.Embedding(self.output_size, self.hidden_size) 
self.attn = nn.Linear(self.hidden_size * 2, self.max_length) 
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size) 
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size) 
self.out = nn.Linear(self.hidden_size, self.output_size)

14.
15.
16.

def forward(self, input, hidden, encoder_outputs): 
embedded = self.embedding(input).view(1, 1, ‐1) 
embedded = self.dropout(embedded)

17.
18.
19.
20.

attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1) 

attn_applied = torch.bmm(attn_weights.unsqueeze(0),

encoder_outputs.unsqueeze(0))

21.
22.

output = torch.cat((embedded[0], attn_applied[0]), 1) 
output = self.attn_combine(output).unsqueeze(0)

23.
24.

output = F.relu(output)
output, hidden = self.gru(output, hidden)

25.
26.

output = F.log_softmax(self.out(output[0]), dim=1) 
return output, hidden, attn_weights



27.
28.

def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)

29.hidden_size = 256
30.encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device) 
31.attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words,

dropout_p=0.1).to(device)

32.trainIters(encoder1, attn_decoder1, 75000, print_every=5000)

Full implementation: 
https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

bmm performs a batch matrix‐matrix product
If batch1 is a (b×n×m), batch2 is a (b×m×p), out will be a (b×n×p) tensor.

B1nxm x B2mxp = Outnxp



def train(...)
...
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False 
if use_teacher_forcing:

# Teacher forcing: Feed the target as the next input 
for di in range(target_length):

decoder_output, decoder_hidden, decoder_attention = decoder( 
decoder_input, decoder_hidden, encoder_outputs)

loss += criterion(decoder_output, target_tensor[di]) 
decoder_input = target_tensor[di] # Teacher forcing

else:
# Without teacher forcing: use its own predictions as the next input 
for di in range(target_length):

decoder_output, decoder_hidden, decoder_attention = decoder( 
decoder_input, decoder_hidden, encoder_outputs)

topv, topi = decoder_output.topk(1)
decoder_input = topi.squeeze().detach() # detach from history as input

loss += criterion(decoder_output, target_tensor[di]) 
if decoder_input.item() == EOS_token:

break
...

Without teacher forcing
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yt

yt‐1

ht

y1

x = y2 11x = 0

No Teacher Forcing 
(more natural)

def train(line):
input = str2tensor(line[:‐1]) 
target = str2tensor(line[1:])

hidden = decoder.init_hidden() 
decoder_in = input[0]

loss = 0

for c in range(len(input)):

output, hidden = decoder(decoder_in, hidden) 
loss += criterion(output, target[c]) 
decoder_in = output.max(1)[1]

decoder.zero_grad() 
loss.backward() 
decoder_optimizer.step()

return loss.data[0] / len(input)



Attention beyond Machine Translation
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 The same attention mechanism from above can be applied to any 
recurrent model.
 Show, Attend and Tell: Neural Image Caption Generation with Visual 

Attention, https://arxiv.org/abs/1502.03044

 The authors apply attention mechanisms to the problem of generating 
image descriptions. They use a Convolutional Neural Network to “encode” 
the image, and a Recurrent Neural Network with attention mechanisms to 
generate a description.

 By visualizing the attention weights (just like in the translation example), 
we interpret what the model is looking at while generating a word:



Reference
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 Attention and Memory in Deep Learning and NLP

 http://www.wildml.com/2016/01/attention‐and‐memory‐in‐deep‐ 
learning‐and‐nlp/

 Code

 Translation with a Sequence to Sequence Network and Attention

◼ https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

 Sequence to Sequence models:

◼ https://github.com/MaximumEntropy/Seq2Seq‐PyTorch

http://www.wildml.com/2016/01/attention

