
Elementary Number Theory Part 4 (Supplementary)
Modular Exponentiation (Supplementary)

MZI

School of Computing
Telkom University

SoC Tel-U

June 2023

MZI (SoC Tel-U) Number Theory Part 4 June 2023 1 / 26



Acknowledgements

This slide is composed based on the following materials:

1 Discrete Mathematics and Its Applications, 8th Edition, 2019, by K. H.
Rosen (main).

2 Discrete Mathematics with Applications, 5th Edition, 2018, by S. S. Epp.
3 Mathematics for Computer Science. MIT, 2010, by E. Lehman, F. T.
Leighton, A. R. Meyer.

4 Slide for Matematika Diskret 2 (2012). Fasilkom UI, by B. H. Widjaja.
5 Slide for Matematika Diskret 2 at Fasilkom UI by Team of Lecturers.
6 Slide for Matematika Diskret. Telkom University, by B. Purnama.

Some of the pictures are taken from the above resources. This slide is intended for
academic purpose at FIF Telkom University. If you have any
suggestions/comments/questions related to the material on this slide, send an
email to <pleasedontspam>@telkomuniversity.ac.id.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 2 / 26

mailto:arzaki@telkomuniversity.ac.id


Contents

1 Modular Exponentiation Problem

2 First Problem Solving Approach

3 Second Problem Solving Approach

4 Third Problem Solving Approach

5 Finding Inverse Using Modular Exponentiation

MZI (SoC Tel-U) Number Theory Part 4 June 2023 3 / 26



Modular Exponentiation Problem

Contents

1 Modular Exponentiation Problem

2 First Problem Solving Approach

3 Second Problem Solving Approach

4 Third Problem Solving Approach

5 Finding Inverse Using Modular Exponentiation

MZI (SoC Tel-U) Number Theory Part 4 June 2023 4 / 26



Modular Exponentiation Problem

Modular Exponentiation Problem

In cryptography or other subfields of computer science, we often encounter
the calculation bnmodm where b, m, and n are large positive integers.

Obviously it is impractical if we calculate the value of bn first, and then find
the remainder of the division of bn by m.

For example, the calculation of 311mod5 is ineffi cient if it is performed as
follows

311mod5 = 177 147mod 5 = 2.

Another challenge is the calculation of 19452020mod2045. Such calculation
requires enormous memory (storage) if we must obtain the value of 19452020

first, and then find its remainder when it is divided by 2045.

In this slide we restrict our attention to the calculation of bnmodm where
b,m ∈ Z+ and n ∈ Z≥0.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 5 / 26



Modular Exponentiation Problem

Modular Exponentiation Problem

In cryptography or other subfields of computer science, we often encounter
the calculation bnmodm where b, m, and n are large positive integers.

Obviously it is impractical if we calculate the value of bn first, and then find
the remainder of the division of bn by m.

For example, the calculation of 311mod5 is ineffi cient if it is performed as
follows

311mod5 = 177 147mod 5 = 2.

Another challenge is the calculation of 19452020mod2045. Such calculation
requires enormous memory (storage) if we must obtain the value of 19452020

first, and then find its remainder when it is divided by 2045.

In this slide we restrict our attention to the calculation of bnmodm where
b,m ∈ Z+ and n ∈ Z≥0.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 5 / 26



Modular Exponentiation Problem

Modular Exponentiation Problem

In cryptography or other subfields of computer science, we often encounter
the calculation bnmodm where b, m, and n are large positive integers.

Obviously it is impractical if we calculate the value of bn first, and then find
the remainder of the division of bn by m.

For example, the calculation of 311mod5 is ineffi cient if it is performed as
follows

311mod5 = 177 147mod 5 = 2.

Another challenge is the calculation of 19452020mod2045. Such calculation
requires enormous memory (storage) if we must obtain the value of 19452020

first, and then find its remainder when it is divided by 2045.

In this slide we restrict our attention to the calculation of bnmodm where
b,m ∈ Z+ and n ∈ Z≥0.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 5 / 26



First Problem Solving Approach

Contents

1 Modular Exponentiation Problem

2 First Problem Solving Approach

3 Second Problem Solving Approach

4 Third Problem Solving Approach

5 Finding Inverse Using Modular Exponentiation

MZI (SoC Tel-U) Number Theory Part 4 June 2023 6 / 26



First Problem Solving Approach

First Problem Solving Approach

We can compute bnmodm using the property

(a · b)modm = ((amodm) · (bmodm))modm.

As a consequence, for n ≥ 1, we have

bnmodm =
(
b · bn−1

)
modm

=

(
(bmodm) ·

(
bn−1modm

))
modm.

Here, we see that the calculation of bnmodm can be reduced to the
calculation of bn−1modm.

In general, we have

bnmodm =


1, n = 0
bmodm n = 1(
bmodm · bn−1modm

)
modm n ≥ 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 7 / 26



First Problem Solving Approach

First Problem Solving Approach

We can compute bnmodm using the property

(a · b)modm = ((amodm) · (bmodm))modm.

As a consequence, for n ≥ 1, we have

bnmodm =
(
b · bn−1

)
modm

=
(
(bmodm) ·

(
bn−1modm

))
modm.

Here, we see that the calculation of bnmodm can be reduced to the
calculation of bn−1modm.

In general, we have

bnmodm =


1, n = 0
bmodm n = 1(
bmodm · bn−1modm

)
modm n ≥ 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 7 / 26



First Problem Solving Approach

First Problem Solving Approach

We can compute bnmodm using the property

(a · b)modm = ((amodm) · (bmodm))modm.

As a consequence, for n ≥ 1, we have

bnmodm =
(
b · bn−1

)
modm

=
(
(bmodm) ·

(
bn−1modm

))
modm.

Here, we see that the calculation of bnmodm can be reduced to the
calculation of bn−1modm.

In general, we have

bnmodm =


1, n = 0
bmodm n = 1(
bmodm · bn−1modm

)
modm n ≥ 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 7 / 26



First Problem Solving Approach

First Approach - Recursive Version 1

The following algorithm is written in Python-3-like syntax. The procedure
modexp1rec1(b, n,m) computes bnmodm.

First Recursive Version of Modular Exponentiation (1st Approach)
1 def modexp1rec1(b, n,m):

2 if n == 0:

3 return 1

4 else if n == 1:

5 return bmodm

6 else if n > 1:

7 return (bmodm·modexp1rec1(b, n− 1,m))modm

This version is ineffi cient because its recursive calculation requires a lot of stack.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 8 / 26



First Problem Solving Approach

First Approach - Recursive Version 2

The following algorithm is written in Python-3-like syntax. In this version
accumulator is an auxiliary variable for storing the recursive calculation. The
procedure modexp1rec2(b, n,m) computes bnmodm.

Second Recursive Version of Modular Exponentiation (1st Approach)
1 def modexptail(b, n, accumulator,m):

2 if n == 0: return accumulatormodm

3 else:
return modexptail(b, n− 1, (b · accumulator)modm,m)

4 def modexp1rec2(b, n,m): return modexptail(b, n, 1,m)

This version is slightly more effi cient than the previous one because it uses
accumulator for storing the intermediate result of recursive calculation.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 9 / 26



First Problem Solving Approach

First Approach - Iterative Version
The following algorithm is written in Python-3-like syntax. This version is more
effi cient than two previous versions. The procedure
modexp1iter(b, n,m)computes bnmodm.

Iterative Version of Modular Exponentiation (1st Approach)
1 def modexp1iter(b, n,m):

2 if n == 0:

3 return 1

4 else:

5 result = b; exponent = 1

6 while (exponent < n):

7 result = (result · b)modm
8 exponent += 1

9 return result

This version is more effi cient than two previous version, but still takes too much
time to compute 194520202020mod2045.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 10 / 26



Second Problem Solving Approach

Contents

1 Modular Exponentiation Problem

2 First Problem Solving Approach

3 Second Problem Solving Approach

4 Third Problem Solving Approach

5 Finding Inverse Using Modular Exponentiation

MZI (SoC Tel-U) Number Theory Part 4 June 2023 11 / 26



Second Problem Solving Approach

Second Problem Solving Approach

We can find bnmodm effi ciently using following steps.

1 First, write n in its binary representation, let’s say the binary representation
of n is (ak−1ak−2 . . . a1a0)2. Observe that

n = ak−1 · 2k−1 + ak−2 · 2k−2 + · · ·+ a1 · 2 + a0.

2 As a consequence, we have

bn = bak−1·2
k−1+ak−2·2k−2+···+a1·2+a0

= bak−1·2
k−1
· bak−2·2

k−2
· · · · · ba1·2 · ba0 .

3 Since the value of a0, a1, . . . , ak−2, ak−1 are either 0 or 1, then it is suffi cient
to compute the following values

b, b2, b2
2

, . . . , b2
k−2
, b2

k−1
.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 12 / 26



Second Problem Solving Approach

Second Problem Solving Approach

We can find bnmodm effi ciently using following steps.

1 First, write n in its binary representation, let’s say the binary representation
of n is (ak−1ak−2 . . . a1a0)2. Observe that

n = ak−1 · 2k−1 + ak−2 · 2k−2 + · · ·+ a1 · 2 + a0.

2 As a consequence, we have

bn =

bak−1·2
k−1+ak−2·2k−2+···+a1·2+a0

= bak−1·2
k−1
· bak−2·2

k−2
· · · · · ba1·2 · ba0 .

3 Since the value of a0, a1, . . . , ak−2, ak−1 are either 0 or 1, then it is suffi cient
to compute the following values

b, b2, b2
2

, . . . , b2
k−2
, b2

k−1
.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 12 / 26



Second Problem Solving Approach

Second Problem Solving Approach

We can find bnmodm effi ciently using following steps.

1 First, write n in its binary representation, let’s say the binary representation
of n is (ak−1ak−2 . . . a1a0)2. Observe that

n = ak−1 · 2k−1 + ak−2 · 2k−2 + · · ·+ a1 · 2 + a0.

2 As a consequence, we have

bn = bak−1·2
k−1+ak−2·2k−2+···+a1·2+a0

=

bak−1·2
k−1
· bak−2·2

k−2
· · · · · ba1·2 · ba0 .

3 Since the value of a0, a1, . . . , ak−2, ak−1 are either 0 or 1, then it is suffi cient
to compute the following values

b, b2, b2
2

, . . . , b2
k−2
, b2

k−1
.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 12 / 26



Second Problem Solving Approach

Second Problem Solving Approach

We can find bnmodm effi ciently using following steps.

1 First, write n in its binary representation, let’s say the binary representation
of n is (ak−1ak−2 . . . a1a0)2. Observe that

n = ak−1 · 2k−1 + ak−2 · 2k−2 + · · ·+ a1 · 2 + a0.

2 As a consequence, we have

bn = bak−1·2
k−1+ak−2·2k−2+···+a1·2+a0

= bak−1·2
k−1
· bak−2·2

k−2
· · · · · ba1·2 · ba0 .

3 Since the value of a0, a1, . . . , ak−2, ak−1 are either 0 or 1, then it is suffi cient
to compute the following values

b, b2, b2
2

, . . . , b2
k−2
, b2

k−1
.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 12 / 26



Second Problem Solving Approach

Second Problem Solving Approach

We can find bnmodm effi ciently using following steps.

1 First, write n in its binary representation, let’s say the binary representation
of n is (ak−1ak−2 . . . a1a0)2. Observe that

n = ak−1 · 2k−1 + ak−2 · 2k−2 + · · ·+ a1 · 2 + a0.

2 As a consequence, we have

bn = bak−1·2
k−1+ak−2·2k−2+···+a1·2+a0

= bak−1·2
k−1
· bak−2·2

k−2
· · · · · ba1·2 · ba0 .

3 Since the value of a0, a1, . . . , ak−2, ak−1 are either 0 or 1, then it is suffi cient
to compute the following values

b, b2, b2
2

, . . . , b2
k−2
, b2

k−1
.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 12 / 26



Second Problem Solving Approach

A Working Example for Second Problem Solving Approach

If we compute 311mod5, first observe that 11 = (1011)2, thus

311 =

32
3+21+20 = 38 · 32 · 3, so

311mod5 =
(
38 · 32 · 3

)
mod5

Since (ab)modm = ((amodm) (bmodm))modm, then we have

32mod5 = 9mod 5 = 4

34mod5 =
(
32 · 32

)
mod5 = (9 · 9)mod 5 = (4 · 4)mod 5 = 1

38mod5 =
(
34 · 34

)
mod5 = (1 · 1)mod 5 = 1.

Hence, we obtain

311mod5 =
(
38 · 32 · 3

)
mod5 = (1 · 4 · 3)mod 5 = 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 13 / 26



Second Problem Solving Approach

A Working Example for Second Problem Solving Approach

If we compute 311mod5, first observe that 11 = (1011)2, thus

311 = 32
3+21+20 = 38 · 32 · 3, so

311mod5 =

(
38 · 32 · 3

)
mod5

Since (ab)modm = ((amodm) (bmodm))modm, then we have

32mod5 = 9mod 5 = 4

34mod5 =
(
32 · 32

)
mod5 = (9 · 9)mod 5 = (4 · 4)mod 5 = 1

38mod5 =
(
34 · 34

)
mod5 = (1 · 1)mod 5 = 1.

Hence, we obtain

311mod5 =
(
38 · 32 · 3

)
mod5 = (1 · 4 · 3)mod 5 = 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 13 / 26



Second Problem Solving Approach

A Working Example for Second Problem Solving Approach

If we compute 311mod5, first observe that 11 = (1011)2, thus

311 = 32
3+21+20 = 38 · 32 · 3, so

311mod5 =
(
38 · 32 · 3

)
mod5

Since (ab)modm = ((amodm) (bmodm))modm, then we have

32mod5 =

9mod 5 = 4

34mod5 =
(
32 · 32

)
mod5 = (9 · 9)mod 5 = (4 · 4)mod 5 = 1

38mod5 =
(
34 · 34

)
mod5 = (1 · 1)mod 5 = 1.

Hence, we obtain

311mod5 =
(
38 · 32 · 3

)
mod5 = (1 · 4 · 3)mod 5 = 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 13 / 26



Second Problem Solving Approach

A Working Example for Second Problem Solving Approach

If we compute 311mod5, first observe that 11 = (1011)2, thus

311 = 32
3+21+20 = 38 · 32 · 3, so

311mod5 =
(
38 · 32 · 3

)
mod5

Since (ab)modm = ((amodm) (bmodm))modm, then we have

32mod5 = 9mod 5 = 4

34mod5 =

(
32 · 32

)
mod5 = (9 · 9)mod 5 = (4 · 4)mod 5 = 1

38mod5 =
(
34 · 34

)
mod5 = (1 · 1)mod 5 = 1.

Hence, we obtain

311mod5 =
(
38 · 32 · 3

)
mod5 = (1 · 4 · 3)mod 5 = 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 13 / 26



Second Problem Solving Approach

A Working Example for Second Problem Solving Approach

If we compute 311mod5, first observe that 11 = (1011)2, thus

311 = 32
3+21+20 = 38 · 32 · 3, so

311mod5 =
(
38 · 32 · 3

)
mod5

Since (ab)modm = ((amodm) (bmodm))modm, then we have

32mod5 = 9mod 5 = 4

34mod5 =
(
32 · 32

)
mod5 = (9 · 9)mod 5 = (4 · 4)mod 5 = 1

38mod5 =

(
34 · 34

)
mod5 = (1 · 1)mod 5 = 1.

Hence, we obtain

311mod5 =
(
38 · 32 · 3

)
mod5 = (1 · 4 · 3)mod 5 = 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 13 / 26



Second Problem Solving Approach

A Working Example for Second Problem Solving Approach

If we compute 311mod5, first observe that 11 = (1011)2, thus

311 = 32
3+21+20 = 38 · 32 · 3, so

311mod5 =
(
38 · 32 · 3

)
mod5

Since (ab)modm = ((amodm) (bmodm))modm, then we have

32mod5 = 9mod 5 = 4

34mod5 =
(
32 · 32

)
mod5 = (9 · 9)mod 5 = (4 · 4)mod 5 = 1

38mod5 =
(
34 · 34

)
mod5 = (1 · 1)mod 5 = 1.

Hence, we obtain

311mod5 =

(
38 · 32 · 3

)
mod5 = (1 · 4 · 3)mod 5 = 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 13 / 26



Second Problem Solving Approach

A Working Example for Second Problem Solving Approach

If we compute 311mod5, first observe that 11 = (1011)2, thus

311 = 32
3+21+20 = 38 · 32 · 3, so

311mod5 =
(
38 · 32 · 3

)
mod5

Since (ab)modm = ((amodm) (bmodm))modm, then we have

32mod5 = 9mod 5 = 4

34mod5 =
(
32 · 32

)
mod5 = (9 · 9)mod 5 = (4 · 4)mod 5 = 1

38mod5 =
(
34 · 34

)
mod5 = (1 · 1)mod 5 = 1.

Hence, we obtain

311mod5 =
(
38 · 32 · 3

)
mod5 = (1 · 4 · 3)mod 5 = 2.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 13 / 26



Second Problem Solving Approach

Algorithm for Second Problem Solving Approach

Modular Exponentiation Using Binary Representation
modexp2(b, n,m) (where b, n,m ∈ Z+, n = (ak−1ak−1 . . . a1a0)2)

1 x := 1

2 power := bmodm

3 for i := 0 to k − 1
4 if ai = 1 then x := (x · power)modm
5 power :=

(
power2

)
modm

6 return x

MZI (SoC Tel-U) Number Theory Part 4 June 2023 14 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9

i = 1 a1 = 0 x = 1 pow = 92mod645 = 81
i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111
i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66
i = 4 a4 = 0 x = 81 pow = 662mod645 = 486
i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126
i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396
i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81
i = 8 a8 = 0 x = 471 pow = 812mod645 = 111
i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9
i = 1 a1 = 0 x = 1 pow = 92mod645 = 81

i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111
i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66
i = 4 a4 = 0 x = 81 pow = 662mod645 = 486
i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126
i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396
i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81
i = 8 a8 = 0 x = 471 pow = 812mod645 = 111
i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9
i = 1 a1 = 0 x = 1 pow = 92mod645 = 81
i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111

i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66
i = 4 a4 = 0 x = 81 pow = 662mod645 = 486
i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126
i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396
i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81
i = 8 a8 = 0 x = 471 pow = 812mod645 = 111
i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9
i = 1 a1 = 0 x = 1 pow = 92mod645 = 81
i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111
i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66

i = 4 a4 = 0 x = 81 pow = 662mod645 = 486
i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126
i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396
i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81
i = 8 a8 = 0 x = 471 pow = 812mod645 = 111
i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9
i = 1 a1 = 0 x = 1 pow = 92mod645 = 81
i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111
i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66
i = 4 a4 = 0 x = 81 pow = 662mod645 = 486

i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126
i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396
i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81
i = 8 a8 = 0 x = 471 pow = 812mod645 = 111
i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9
i = 1 a1 = 0 x = 1 pow = 92mod645 = 81
i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111
i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66
i = 4 a4 = 0 x = 81 pow = 662mod645 = 486
i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126

i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396
i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81
i = 8 a8 = 0 x = 471 pow = 812mod645 = 111
i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9
i = 1 a1 = 0 x = 1 pow = 92mod645 = 81
i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111
i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66
i = 4 a4 = 0 x = 81 pow = 662mod645 = 486
i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126
i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396

i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81
i = 8 a8 = 0 x = 471 pow = 812mod645 = 111
i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9
i = 1 a1 = 0 x = 1 pow = 92mod645 = 81
i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111
i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66
i = 4 a4 = 0 x = 81 pow = 662mod645 = 486
i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126
i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396
i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81

i = 8 a8 = 0 x = 471 pow = 812mod645 = 111
i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9
i = 1 a1 = 0 x = 1 pow = 92mod645 = 81
i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111
i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66
i = 4 a4 = 0 x = 81 pow = 662mod645 = 486
i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126
i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396
i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81
i = 8 a8 = 0 x = 471 pow = 812mod645 = 111

i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

Exponentiation Using Binary Representation: Working
Example

To compute 3644mod645, we first observe that 644 = (1010000100)2. Initially,
we have x = 1, power = 3mod 645 = 3. For brevity, we write power as pow.
The iterations are performed as follows:
i = 0 a0 = 0 x = 1 pow = 32mod645 = 9
i = 1 a1 = 0 x = 1 pow = 92mod645 = 81
i = 2 a2 = 1 x = (1 · 81)mod 645 = 81 pow = 812mod645 = 111
i = 3 a3 = 0 x = 81 pow = 1112mod645 = 66
i = 4 a4 = 0 x = 81 pow = 662mod645 = 486
i = 5 a5 = 0 x = 81 pow = 4862mod645 = 126
i = 6 a6 = 0 x = 81 pow = 1262mod645 = 396
i = 7 a7 = 1 x = (81 · 396)mod 645 = 471 pow = 3962mod645 = 81
i = 8 a8 = 0 x = 471 pow = 812mod645 = 111
i = 9 a9 = 1 x = (111 · 471)mod 645 = 36 pow = 1112mod645 = 66.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 15 / 26



Second Problem Solving Approach

An Improvement of the Second Approach

Although our second approach is more effi cient the previous one (by means of
the number of iterations), this approach has a drawback since we need to
store the binary expansion of the exponent (the value n in the expression
bnmodm needs to be stored).

Observe that if n = (ak−1ak−1 . . . a1a0)2, then k = log2 (n). This means the
iteration in the procedure modexp2 needs at most log2 (n) iterations.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 16 / 26



Second Problem Solving Approach

By observing the conversion process of a positive integer n to its binary form, we
have following formulations

a0 = nmod2

a1 = (ndiv 2)mod 2

a2 = ((n div 2) div 2)mod 2

a3 = (((ndiv 2) div 2) div 2)mod 2

...

ak−1 = ((((ndiv 2) · · · ) div 2))︸ ︷︷ ︸
k−1 divisions

mod2

Notice that the div operation is performed until we reach
((((ndiv 2) · · · ) div 2)) = 0.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 17 / 26



Second Problem Solving Approach

Improved Algorithm for Second Problem Solving Approach

The following algorithm is written in Python-3-like syntax. The procedure
modexp2(b, n,m) computes bnmodm.

Iterative Version for Modular Exponentiation (2nd Approach)
1 def modexp2(b, n,m):

2 x = 1; power = bmodm; quotient = n

3 while quotient > 0:

4 digit = quotientmod2

5 if digit == 1: x = (x · power)modm
6 power = (power2)modm

7 quotient = quotientdiv 2

8 return x

MZI (SoC Tel-U) Number Theory Part 4 June 2023 18 / 26



Third Problem Solving Approach

Contents

1 Modular Exponentiation Problem

2 First Problem Solving Approach

3 Second Problem Solving Approach

4 Third Problem Solving Approach

5 Finding Inverse Using Modular Exponentiation

MZI (SoC Tel-U) Number Theory Part 4 June 2023 19 / 26



Third Problem Solving Approach

Third Problem Solving Approach

We can construct an effi cient recursive algorithm for computing modular
exponentiation using following observation

if n is even, then n =

n
2
· 2, and

if n is odd, then n− 1 is even, and so n =
(
n−1
2
· 2
)
+ 1.

Consequently, we have the following formulation:

bn =

{ (
bn/2

)2
, if n is even(

b(n−1)/2
)2 · b, if n is odd.

We can create an effi cient procedure to calculate bnmodm using this
approach.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 20 / 26



Third Problem Solving Approach

Third Problem Solving Approach

We can construct an effi cient recursive algorithm for computing modular
exponentiation using following observation

if n is even, then n = n
2
· 2, and

if n is odd, then n− 1 is even, and so n =

(
n−1
2
· 2
)
+ 1.

Consequently, we have the following formulation:

bn =

{ (
bn/2

)2
, if n is even(

b(n−1)/2
)2 · b, if n is odd.

We can create an effi cient procedure to calculate bnmodm using this
approach.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 20 / 26



Third Problem Solving Approach

Third Problem Solving Approach

We can construct an effi cient recursive algorithm for computing modular
exponentiation using following observation

if n is even, then n = n
2
· 2, and

if n is odd, then n− 1 is even, and so n =
(
n−1
2
· 2
)
+ 1.

Consequently, we have the following formulation:

bn =

{ (
bn/2

)2
, if n is even(

b(n−1)/2
)2 · b, if n is odd.

We can create an effi cient procedure to calculate bnmodm using this
approach.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 20 / 26



Third Problem Solving Approach

Third Approach - Recursive Version

The following algorithm is written in Python-3-like syntax. The procedure
modexp3(b, n,m) computes bnmodm.

Recursive Version for Modular Exponentiation (3rd Approach)
1 def modexp3(b, n,m):

2 if n == 0: return 1

3 else if n == 1: return bmodm

4 else if nmod2 == 0:

5 return (modexp3(b, n/2,m)2)modm

6 else: return ((modexp3(b, (n− 1)/2,m)2)·bmodm)modm

MZI (SoC Tel-U) Number Theory Part 4 June 2023 21 / 26



Finding Inverse Using Modular Exponentiation

Contents

1 Modular Exponentiation Problem

2 First Problem Solving Approach

3 Second Problem Solving Approach

4 Third Problem Solving Approach

5 Finding Inverse Using Modular Exponentiation

MZI (SoC Tel-U) Number Theory Part 4 June 2023 22 / 26



Finding Inverse Using Modular Exponentiation

Finding Inverse Using Modular Exponentiation

Recall that an inverse of a modulo m is the solution of the linear congruence
ax ≡ 1 (modm). We usually find x such that 0 ≤ x ≤ m− 1.

The solution of ax ≡ 1 (modm) exists if and only if gcd (a,m) = 1.
One way to find x is using Euclid’s algorithm, nevertheless there is another
way to find such x.

Here we discuss a method to find modular inverse using modular
exponentiation.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 23 / 26



Finding Inverse Using Modular Exponentiation

Finding Inverse Using Modular Exponentiation

Recall that an inverse of a modulo m is the solution of the linear congruence
ax ≡ 1 (modm). We usually find x such that 0 ≤ x ≤ m− 1.
The solution of ax ≡ 1 (modm) exists if and only if gcd (a,m) = 1.

One way to find x is using Euclid’s algorithm, nevertheless there is another
way to find such x.

Here we discuss a method to find modular inverse using modular
exponentiation.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 23 / 26



Finding Inverse Using Modular Exponentiation

Finding Inverse Using Modular Exponentiation

Recall that an inverse of a modulo m is the solution of the linear congruence
ax ≡ 1 (modm). We usually find x such that 0 ≤ x ≤ m− 1.
The solution of ax ≡ 1 (modm) exists if and only if gcd (a,m) = 1.
One way to find x is using Euclid’s algorithm, nevertheless there is another
way to find such x.

Here we discuss a method to find modular inverse using modular
exponentiation.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 23 / 26



Finding Inverse Using Modular Exponentiation

Finding Inverse Using Modular Exponentiation

Recall that an inverse of a modulo m is the solution of the linear congruence
ax ≡ 1 (modm). We usually find x such that 0 ≤ x ≤ m− 1.
The solution of ax ≡ 1 (modm) exists if and only if gcd (a,m) = 1.
One way to find x is using Euclid’s algorithm, nevertheless there is another
way to find such x.

Here we discuss a method to find modular inverse using modular
exponentiation.

MZI (SoC Tel-U) Number Theory Part 4 June 2023 23 / 26



Finding Inverse Using Modular Exponentiation

Fermat’s Little Theorem

Theorem
If p is a prime number and p - a, then ap−1 ≡ 1 (mod p) for all a ∈ Z.

Example
Suppose we have p = 101 and a = 19. Obviously p - a since 101 - 19. Therefore

19101−1 ≡ 1 (mod 101)

19100 ≡ 1 (mod 101) .

MZI (SoC Tel-U) Number Theory Part 4 June 2023 24 / 26



Finding Inverse Using Modular Exponentiation

Fermat’s Little Theorem

Theorem
If p is a prime number and p - a, then ap−1 ≡ 1 (mod p) for all a ∈ Z.

Example
Suppose we have p = 101 and a = 19. Obviously p - a since 101 - 19. Therefore

19101−1 ≡ 1 (mod 101)

19100 ≡ 1 (mod 101) .

MZI (SoC Tel-U) Number Theory Part 4 June 2023 24 / 26



Finding Inverse Using Modular Exponentiation

Fermat’s little theorem can be exploited to find a−1 in Zp.

Theorem
If p is a prime number and a ∈ Zp r {0}, then a−1 ≡ ap−2 (mod p).

Proof.

Since a ∈ Zp r {0}, then 1 ≤ a ≤ p− 1 and thus p - a. According to Fermat’s
little theorem, we have

ap−1 ≡ 1 (mod p) , hence

ap−1 · a−1 ≡ 1 · a−1 (mod p)
ap−2 ≡ a−1 (mod p) .

MZI (SoC Tel-U) Number Theory Part 4 June 2023 25 / 26



Finding Inverse Using Modular Exponentiation

Fermat’s little theorem can be exploited to find a−1 in Zp.

Theorem
If p is a prime number and a ∈ Zp r {0}, then a−1 ≡ ap−2 (mod p).

Proof.
Since a ∈ Zp r {0}, then 1 ≤ a ≤ p− 1 and thus p - a. According to Fermat’s
little theorem, we have

ap−1 ≡ 1 (mod p) , hence

ap−1 · a−1 ≡ 1 · a−1 (mod p)
ap−2 ≡ a−1 (mod p) .

MZI (SoC Tel-U) Number Theory Part 4 June 2023 25 / 26



Finding Inverse Using Modular Exponentiation

An Example of Inverse Calculation Using FLT

Suppose we want to compute 19−1 modulo 101, or to find x such that
19x ≡ 1 (mod 101). Observe that 19 and 101 are prime numbers and
mod (101, 19) = 1. This means that 19 has an inverse modulo 101.
Based on the previous theorem, we have

19−1 ≡

19101−2 (mod 101)

≡ 1999 (mod 101)

≡ 16 (mod 101) .

Notice that 19 · 16 ≡ 304 (mod 101) ≡ 1 (mod 101).

MZI (SoC Tel-U) Number Theory Part 4 June 2023 26 / 26



Finding Inverse Using Modular Exponentiation

An Example of Inverse Calculation Using FLT

Suppose we want to compute 19−1 modulo 101, or to find x such that
19x ≡ 1 (mod 101). Observe that 19 and 101 are prime numbers and
mod (101, 19) = 1. This means that 19 has an inverse modulo 101.
Based on the previous theorem, we have

19−1 ≡ 19101−2 (mod 101)

≡

1999 (mod 101)

≡ 16 (mod 101) .

Notice that 19 · 16 ≡ 304 (mod 101) ≡ 1 (mod 101).

MZI (SoC Tel-U) Number Theory Part 4 June 2023 26 / 26



Finding Inverse Using Modular Exponentiation

An Example of Inverse Calculation Using FLT

Suppose we want to compute 19−1 modulo 101, or to find x such that
19x ≡ 1 (mod 101). Observe that 19 and 101 are prime numbers and
mod (101, 19) = 1. This means that 19 has an inverse modulo 101.
Based on the previous theorem, we have

19−1 ≡ 19101−2 (mod 101)

≡ 1999 (mod 101)

≡

16 (mod 101) .

Notice that 19 · 16 ≡ 304 (mod 101) ≡ 1 (mod 101).

MZI (SoC Tel-U) Number Theory Part 4 June 2023 26 / 26



Finding Inverse Using Modular Exponentiation

An Example of Inverse Calculation Using FLT

Suppose we want to compute 19−1 modulo 101, or to find x such that
19x ≡ 1 (mod 101). Observe that 19 and 101 are prime numbers and
mod (101, 19) = 1. This means that 19 has an inverse modulo 101.
Based on the previous theorem, we have

19−1 ≡ 19101−2 (mod 101)

≡ 1999 (mod 101)

≡ 16 (mod 101) .

Notice that 19 · 16 ≡ 304 (mod 101) ≡ 1 (mod 101).

MZI (SoC Tel-U) Number Theory Part 4 June 2023 26 / 26


	Modular Exponentiation Problem
	First Problem Solving Approach
	Second Problem Solving Approach
	Third Problem Solving Approach
	Finding Inverse Using Modular Exponentiation

