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gcd, lcm, and Euclidean Algorithm gcd

Greatest Common Divisor, gcd

The greatest integer that divides two numbers (not both zero) is called as the
greatest common divisor of these two numbers.

Definition
Suppose a, b ∈ Z and not both of them are zero. The greatest integer d that
satisfies d|a and d|b is called as the greatest common divisor of a and b. Here, we
can write d as gcd (a, b).

We have a property that d is equal to gcd (a, b) if it satisfies the two following
requirements:

1 d|a and d|b,
2 if there is c ∈ Z with properties c|a and c|b, then c|d.
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Exercise
Determine the gcd of

1 24 and 36
2 17 and 22
3 120 and 500
4 −3 and −9
5 −3 and 0

Solution: Notice that

1 Positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24, then positive divisors of 36 are
1, 2, 3, 4, 6, 9, 12, 18, 36. Therefore, gcd (24, 36) = 12.

2 Positive divisors of 17 are 1 and 17, positive divisors of 22 are 1, 2, 11, 22.
Therefore gcd (17, 22) = 1.

3 We have 120 = 23 · 3 · 5 and 500 = 22 · 53, so
gcd (120, 500) = 2min(3,2) · 3min(1,0) · 5min(1,3) = 22 · 51 = 20.

4 The numbers that divides −3 are ±1 and ±3, the numbers that divides −9
are ±1, ±3, and ±9, therefore gcd (−3,−9) = 3.

5 The numbers that divides −3 are ±1 and ±3, then because 0 is divisible by
3, then gcd (−3, 0) = 3.
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gcd, lcm, and Euclidean Algorithm gcd

Theorem
If a and b are nonzero integers, with the following prime factorization

a = (±1) · pa11 · p
a2
2 · · · · · pann and

b = (±1) · pb11 · p
b2
2 · · · · · pbnn ,

where pi is a (positive) prime number, ai and bi are nonnegative integers for every
i = 1, 2, . . . , n, then gcd (a, b) = pmin(a1,b1)1 · pmin(a2,b2)2 · · · · · pmin(an,bn)n . The
notation min (a, b) means the minimum number between a and b.

Example
To calculate gcd (36, 45), we have 36 =

22 · 32 and 45 = 32 · 5, so

36 = 22 · 32 · 50 and 45 = 20 · 32 · 51,

hence gcd (36, 45) = 2min(2,0) · 3min(2,2) · 5min(0,1) = 20 · 32 · 50 = 9.
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Example
To calculate gcd (36, 45), we have 36 = 22 · 32 and 45 = 32 · 5, so

36 = 22 · 32 · 50 and 45 = 20 · 32 · 51,

hence gcd (36, 45) = 2min(2,0) · 3min(2,2) · 5min(0,1) = 20 · 32 · 50 = 9.
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Relatively Prime and Pairwise Relatively Prime

Definition
Two integers a and b are called relatively prime if gcd (a, b) = 1.

Definition
Integers a1, a2, . . . , an are called pairwise relatively prime if gcd (ai, aj) = 1 for
every i 6= j, i, j ∈ {1, 2, . . . , n}.
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Exercise
Check whether the following integers are pairwise relatively prime.

1 10, 17, 21
2 10, 19, 24

Notice that:

1 gcd (10, 17) = 1, gcd (10, 21) = 1, gcd (17, 21) = 1; therefore 10, 17, and 21
are pairwise relatively prime;

2 gcd (10, 19) = 1, gcd (10, 24) = 2, gcd (19, 24) = 1; therefore 10, 19, and 24
are not pairwise relatively prime.
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Important Theorem on gcd
Some properties of gcd are explained in the following theorems.

Theorem
Suppose a and b are two integers, not both zero, then

1 each common factor of a and b divides gcd (a, b);
2 for every k > 0 we have gcd (ka, kb) = k · gcd (a, b);
3 if gcd (a, b) = 1 and gcd (a, c) = 1, then gcd (a, bc) = 1;
4 if a|bc and gcd (a, b) = 1, then a|c;
5 gcd (a, b) = gcd (b, amod b).

To find gcd from three numbers, e.g.: a, b, and c, we can use the following
theorem.

Theorem
If a, b, and c are three numbers, not all of them are zero, then

gcd (gcd (a, b) , c) = gcd (a, gcd (b, c)) = gcd (gcd (a, c) , b) .

Thus, the gcd of the three numbers a, b, and c can be written as gcd (a, b, c).
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Least Common Multiple, lcm

The smallest integer that is a multiple of two positive numbers is called as the
least common multiple of the two numbers.

Definition
Suppose a, b ∈ Z+. The smallest integer c that is the smallest multiple of a and b
is called as the least common multiple of a and b. Here, we can write c as
lcm (a, b).

We have properties that c is equal to lcm (a, b) if it satisfies the two following
requirements:

1 a|c and b|c,
2 if there is d ∈ Z with properties a|d and b|d, then c|d.
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Exercise
Determine the lcm of

1 24 and 36,
2 7 and 3,
3 120 and 500,

Solution: Notice that

1 Multiples of 24 are 24, 48, 72, 96, . . ., multiples of 36 are 36, 72, 108, . . .,
therefore we obtain lcm (24, 36) = 72.

2 Multiples of 7 are 7, 14, 21, . . ., multiples of 3 are 3, 9, 12, 15, 18, 21, . . .,
therefore we obtain lcm (7, 3) = 21.

3 We have 120 = 23 · 3 · 5 and 500 = 22 · 53, hence
lcm (120, 500) = 2max(3,2) · 3max(1,0) · 5max(1,3) = 23 · 3 · 53 = 3000.
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Theorem
If a and b are positive integers with the following prime factorization

a = pa11 · p
a2
2 · · · · · pann and

b = pb11 · p
b2
2 · · · · · pbnn ,

where pi is a (positive) prime number, ai and bi are nonnegative integers for every
i = 1, 2, . . . , n, then lcm (a, b) = pmax(a1,b1)1 · pmax(a2,b2)2 · · · · · pmax(an,bn)n . The
notation max (a, b) means the maximum number between a and b.

Example
To calculate lcm (36, 45), we have 36 =

22 · 32 and 45 = 32 · 5, so

36 = 22 · 32 · 50 and 45 = 20 · 32 · 51,

hence lcm (36, 45) = 2max(2,0) · 3max(2,2) · 5max(0,1) = 22 · 32 · 51 = 180.

MZI (SoC Tel-U) Number Theory Part 2 June 2023 15 / 62



gcd, lcm, and Euclidean Algorithm lcm

Theorem
If a and b are positive integers with the following prime factorization

a = pa11 · p
a2
2 · · · · · pann and

b = pb11 · p
b2
2 · · · · · pbnn ,

where pi is a (positive) prime number, ai and bi are nonnegative integers for every
i = 1, 2, . . . , n, then lcm (a, b) = pmax(a1,b1)1 · pmax(a2,b2)2 · · · · · pmax(an,bn)n . The
notation max (a, b) means the maximum number between a and b.

Example
To calculate lcm (36, 45), we have 36 = 22 · 32 and 45 =

32 · 5, so

36 = 22 · 32 · 50 and 45 = 20 · 32 · 51,

hence lcm (36, 45) = 2max(2,0) · 3max(2,2) · 5max(0,1) = 22 · 32 · 51 = 180.

MZI (SoC Tel-U) Number Theory Part 2 June 2023 15 / 62



gcd, lcm, and Euclidean Algorithm lcm

Theorem
If a and b are positive integers with the following prime factorization

a = pa11 · p
a2
2 · · · · · pann and

b = pb11 · p
b2
2 · · · · · pbnn ,

where pi is a (positive) prime number, ai and bi are nonnegative integers for every
i = 1, 2, . . . , n, then lcm (a, b) = pmax(a1,b1)1 · pmax(a2,b2)2 · · · · · pmax(an,bn)n . The
notation max (a, b) means the maximum number between a and b.

Example
To calculate lcm (36, 45), we have 36 = 22 · 32 and 45 = 32 · 5, so

36 = 22 · 32 · 50 and 45 = 20 · 32 · 51,

hence lcm (36, 45) =

2max(2,0) · 3max(2,2) · 5max(0,1) = 22 · 32 · 51 = 180.

MZI (SoC Tel-U) Number Theory Part 2 June 2023 15 / 62



gcd, lcm, and Euclidean Algorithm lcm

Theorem
If a and b are positive integers with the following prime factorization

a = pa11 · p
a2
2 · · · · · pann and

b = pb11 · p
b2
2 · · · · · pbnn ,

where pi is a (positive) prime number, ai and bi are nonnegative integers for every
i = 1, 2, . . . , n, then lcm (a, b) = pmax(a1,b1)1 · pmax(a2,b2)2 · · · · · pmax(an,bn)n . The
notation max (a, b) means the maximum number between a and b.

Example
To calculate lcm (36, 45), we have 36 = 22 · 32 and 45 = 32 · 5, so

36 = 22 · 32 · 50 and 45 = 20 · 32 · 51,

hence lcm (36, 45) = 2max(2,0) · 3max(2,2) · 5max(0,1) = 22 · 32 · 51 = 180.

MZI (SoC Tel-U) Number Theory Part 2 June 2023 15 / 62



gcd, lcm, and Euclidean Algorithm Euclidean Algorithm

Contents

1 gcd, lcm, and Euclidean Algorithm
gcd
lcm
Euclidean Algorithm
gcd as Linear Combination
Some Important Theorems and Challenging Problems

MZI (SoC Tel-U) Number Theory Part 2 June 2023 16 / 62



gcd, lcm, and Euclidean Algorithm Euclidean Algorithm

Euclid’s Algorithm —Motivation

To find the gcd from two large numbers, we can use Euclidean algorithm.
The gcd of 91 and 287 can be obtained using the following steps:

287 = 91 · 3 + 14

a divisor of 91 and 287 is also a divisor of 287− 91 · 3 = 14
a divisor of 91 and 14 is also a divisor of 91 · 3 + 14 = 287

91 = 14 · 6 + 7 finding gcd (91, 287) is reduced into finding gcd (14, 91)
14 = 7 · 2 + 0 finding gcd (14, 91) is reduced into finding gcd (7, 14)

Since 14 = 7 · 2, then gcd (14, 7) = 7. Consequently, since
gcd (287, 91) = gcd (91, 14) = gcd (14, 7) = 7, then our search for the gcd of 91
and 287 has finished and we have gcd (287, 91) = 7.
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gcd (287, 91) = gcd (91, 14) = gcd (14, 7) =

7, then our search for the gcd of 91
and 287 has finished and we have gcd (287, 91) = 7.
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Euclid’s Algorithm —Theorem

Theorem
If a = bq + r where a, b, q, r ∈ Z, then gcd (a, b) = gcd (b, r).

Theorem
For a, b ∈ Z, then gcd (a, b) = gcd (b, amod b).

The proof can be read on the textbook.
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Euclid’s Algorithm —Iterative Version

Euclid’s Algorithm —Iterative Version
function gcd (a, b) // a, b ∈ Z+

1 x := a
2 y := b
3 while y 6= 0
4 r := xmod y
5 x := y
6 y := r
7 return x // gcd (a, b) = x
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Euclid’s Algorithm —Recursive Version

Euclid’s Algorithm —Recursive Version
function gcd (a, b) // a, b ∈ Z+

1 if b = 0
2 return a
3 else
4 return gcd (b, amod b)

// gcd (a, b) = gcd (b, amod b)
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Exercise
Determine the gcd of 414 and 662 using Euclid’s algorithm.

Solution: Notice that

662 =

414 · 1 + 248
414 = 248 · 1 + 166
248 = 166 · 1 + 82
166 = 82 · 2 + 2
82 = 2 · 41 + 0

Therefore, gcd (414, 662) = 2.
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Exercise
Determine the gcd of 1147 and 899 using Euclid’s algorithm.

Solution: Notice that

gcd (1147, 899) =

gcd(899, 1147mod 899︸ ︷︷ ︸
=248

)

= gcd(248, 899mod 248︸ ︷︷ ︸
155

)

= gcd(155, 248mod 155︸ ︷︷ ︸
93

)

= gcd(93, 155mod 93︸ ︷︷ ︸
62

)

= gcd(62, 93mod 62︸ ︷︷ ︸
31

)

= gcd(31, 62mod 31︸ ︷︷ ︸
=0

) = gcd (31, 0) = 31.
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gcd as Linear Combinations —Bézout’s Theorem
If a, b ∈ Z are not both zero, then gcd (a, b) |a and gcd (a, b) |b. Furthermore, we
have gcd (a, b) |sa+ tb, for every s, t ∈ Z.

Theorem (Bézout’s Theorem)
If a, b ∈ Z, then there are s, t ∈ Z that satisfy gcd (a, b) = sa+ tb.

On the above theorem, the equation gcd (a, b) = sa+ tb is called as Bézout’s
identity, the numbers s and t are called Bézout’s coeffi cients. For example, we
have gcd (6, 14) = 2 = (−2) · 6 + (1) · 14. Bézout’s coeffi cient is not unique, for
example, we have

...

gcd (6, 14) = 2 =

(−2) · 6 + (1) · 14
= (5) · 6 + (−2) · 14
= (12) · 6 + (−5) · 14

...
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To find s, t ∈ Z that satisfy gcd (a, b) = sa+ tb, we can exploit the steps in
Euclid’s algorithm.

Exercise
Express gcd (252, 198) as a linear combination of 252 and 198.

Solution: Firstly, we will find gcd (252, 198) through Euclid’s algorithm

252 =

1 · 198 + 54 (1)

198 = 3 · 54 + 36 (2)

54 = 1 · 36 + 18 (3)

36 = 2 · 18 + 0, (4)

therefore gcd (252, 198) = 18. By doing the “reverse process”, observe that

18 = 54− 1 · 36 (from (3))

= 54− 1 · (198− 3 · 54) = 54− 1 · 198 + 3 · 54 (from (2))

= 4 · 54− 1 · 198
= 4 · (252− 1 · 198)− 1 · 198 = 4 · 252− 4 · 198− 1 · 198 (from (1))

= 4 · 252− 5 · 198.
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Exercise
Express gcd (312, 70) as a linear combination of 312 and 70.

Solution: Firstly, we will find gcd (312, 70) through Euclid’s algorithm

312 =

4 · 70 + 32 (5)

70 = 2 · 32 + 6 (6)

32 = 5 · 6 + 2 (7)

6 = 3 · 2 + 0 (8)

Thus, gcd (312, 70) = 2 and we also have

2 = 32− 5 · 6 (from (7))

= 32− 5 · (70− 2 · 32) = 32− 5 · 70 + 10 · 32 (from (6))

= 11 · 32− 5 · 70
= 11 · (312− 4 · 70)− 5 · 70 = 11 · 312− 44 · 70− 5 · 70 (from (5))

= 11 · 312− 49 · 70.
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gcd, lcm, and Euclidean Algorithm Some Important Theorems and Challenging Problems
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gcd, lcm, and Euclidean Algorithm Some Important Theorems and Challenging Problems

Important Theorems Pertaining to gcd and lcm

Theorem
If a and b are two positive integers, then we have

a · b = gcd (a, b) · lcm (a, b) .

Proof
The proof is left to the reader as one of the challenging problems.

Theorem
If a, b, and c are three positive numbers, then

lcm (lcm (a, b) , c) = lcm (a, lcm (b, c)) = lcm (lcm (a, c) , b) .

Consequently the lcm of the three numbers a, b, and c can be written as
lcm (a, b, c).
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CP 1
CP 1
Alice and Bob are sibling and each of them have a bakery. Alice’s bakery produces
A pieces of chocolate breads a day while Bob’s bakery yields B pieces of cheese
breads a day. To make an effi cient selling, they plan to sell the chocolate and
cheese breads within the same packages. Your task is to determine the maximum
number of possible packages with the requirement: all of bread must be in the
packages. The number of chocolate breads and cheese breads can be different in
one package. However, the number of chocolate breads as well as cheese breads
between one package to another must be the same.

Your task is to develop a program in C, C++, Java, or Python to solve this
problem. Suppose A and B are the number of chocolate breads and cheese breads
that have been produced, respectively, N is the maximum number of possible
packages, while C and K are the number of chocolate breads and cheese breads
per package, respectively. For example:

Suppose A = 720, B = 900 (the amount of breads produced).

Then we have N = 180 (the possible maximum number of packages).

Hence, C = 4 and K = 5 (4 chocolate breads and 5 cheese breads per
package).



CP 1 —I/O

CP 1
input and output format of your program are as follows.
input: the value of A and B
output: the value of N , C, and K

Example:
input: 720, 900
output: 180, 4, 5

input: 30, 120
output: 30, 1, 4

input: 31, 33
output: 1, 31, 33

Notes: the value of A and B satisfy 1 ≤ A,B ≤ 104.



CP 2

CP 2
Alice and Bob are sibling and each of them have a bakery. Once every several
days they are closed to maintain the kitchen tools. Alice’s bakery is closed every
A days, while Bob’s is closed every B days. When both of Alice’s and Bob’s
bakery are closed at the same day, the coffee shop owned by Carlos, their nephew,
will sell the bread that usually produced by them.

Your task is to determine the period (cycle) when both of Alice’s and Bob’s
bakery are closed. This is needed by Carlos to prepare the bread selling.

Your task is to develop a program in C, C++, Java, or Python to solve this
problem. Suppose A and B are the period when Alice’s and Bob’s bakery are
closed, respectively and P is the period when both of the store are closed.

Suppose A = 14, B = 21 (Alice’s bakery closed every 14 days, Bob’s bakery
closed every 21 days).

Then we have P = 42 (both bakeries are closed at the same time every 42
days).



CP 2 —I/O

CP 2
input and output format of your program are as follows.
input: the value of A and B
output: the value of P

Example:
input: 14, 21
output: 42

input: 30, 10
output: 30

input: 7, 15
output: 105

Notes: the value of A and B satisfy 1 ≤ A,B ≤ 365.



Modular Arithmetic and the Ring Zm
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Modular Arithmetic and the Ring Zm

Congruence Modulo m

Remember that if a ∈ Z and m ∈ Z+, then amodm is the remainder of a divided
by m.

The value of amodm is in the set {0, 1, 2, . . . ,m− 1}. Furthermore, the value of
m in the expression amodm is called modulus.

Definition
If a, b ∈ Z and m ∈ Z+, then a is congruent to b modulo m , denoted as
a ≡ b (modm), iff m|a− b. Then the notation a 6≡ b (modm) denotes a is not
congruent to b modulo m.
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Modular Arithmetic and the Ring Zm

Exercise
Check whether

1 17 ≡ 5 (mod 6)
2 −17 ≡ 5 (mod 6)
3 17 ≡ 2 (mod 7)
4 −17 ≡ 2 (mod 7)
5 8 ≡ 4 (mod 4)
6 −8 ≡ 4 (mod 4)

Solution: Notice that

1 6|17− 5 (because 6|12), therefore 17 ≡ 5 (mod 6),
2 6 - −17− 5 (because 6 - −22), therefore −17 6≡ 5 (mod 6).
3 7 - 17− 2 (because 7 - 15), therefore 17 6≡ 2 (mod 7).
4 7 - −17− 2 (because 7 - −19), therefore −17 6≡ 2 (mod 7),
5 4|8− 4 (because 4|4), therefore 8 ≡ 4 (mod 4),
6 4| − 8− 4 (because 4| − 12), therefore −8 ≡ 4 (mod 4).
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Modular Arithmetic and the Ring Zm

Theorem
If m ∈ Z+, then a ≡ b (modm) iff there is k ∈ Z that satisfies a = b+ km.

Proof

Notice that a ≡ b (modm)⇔ m| (a− b)⇔ km = a− b for a k ∈ Z.

Theorem
If a, b ∈ Z and m ∈ Z+, then

a ≡ b (modm) iff amodm = bmodm.
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Modular Arithmetic and the Ring Zm

Example
We have:

1 23mod 5 =

3mod 5 = 3, therefore 23 ≡ 3 (mod 5),
2 27mod 3 = 3mod 3 = 0, therefore 27 ≡ 3 (mod 3),
3 6mod 8 = 6, therefore 6 ≡ 6 (mod 8),
4 0mod 12 = 0, therefore 0 ≡ 0 (mod 12),
5 −41mod 9 = 4mod 9 = 4, therefore −41 ≡ 4 (mod 9),
6 −39mod 13 = 0mod 13 = 0, therefore −39 ≡ 0 (mod 13).
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Modular Arithmetic and the Ring Zm

Theorems about Modular Arithmetic (Challenging
Problems)

Theorem
Suppose m ∈ Z+. If a ≡ b (modm) and c ≡ d (modm), then

1 a+ c ≡ b+ d (modm)
2 ac ≡ bd (modm)
3 ar ≡ br (modm) for every nonnegative integer r

Proof
The proof of the theorem is left as challenging problems for the reader.

Example
We have 7 ≡ 2 (mod 5) and 11 ≡ 1 (mod 5), therefore, we obtain

1 (7 + 11) ≡

2 + 1 (mod 5), or 18 ≡ 3 (mod 5);
2 (7 · 11) ≡ 2 · 1 (mod 5), or 77 ≡ 2 (mod 5);
3 7r ≡ 2r (mod 5) and 11r ≡ 1r (mod 5) ≡ 1 (mod 5), for every nonnegative
integer r.
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We have 7 ≡ 2 (mod 5) and 11 ≡ 1 (mod 5), therefore, we obtain

1 (7 + 11) ≡ 2 + 1 (mod 5), or 18 ≡ 3 (mod 5);
2 (7 · 11) ≡ 2 · 1 (mod 5), or 77 ≡ 2 (mod 5);

3 7r ≡ 2r (mod 5) and 11r ≡ 1r (mod 5) ≡ 1 (mod 5), for every nonnegative
integer r.
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Modular Arithmetic and the Ring Zm

Arithmetic on Zm
We denote a set of all nonnegative integers that is less than m using Zm,
namely Zm = {0, 1, 2, . . . ,m− 1}.
We respectively denote the operators +m and ·m as addition and
multiplication operators on Zm that are defined as follows: for every
a, b ∈ Zm, then

a+m b = (a+ b)modm,

a ·m b = (ab)modm.

If m is obvious, then the subscript m can be omitted.

Exercise
Determine 7 +11 9 and 7 ·11 9.

Solution: Notice that

1 7 +11 9 =

(7 + 9)mod 11 = 16mod 11 = 5.
2 7 ·11 9 = (7 · 9)mod 11 = 63mod 11 = 8.
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Modular Arithmetic and the Ring Zm

The Ring Zm

The Ring Zm
For every set Zm with m ≥ 2, operators +m and ·m satisfy the following
properties:

Closure For every a, b ∈ Zm, then

a+m b ∈ Zm and a ·m b ∈ Zm.
Associative For every a, b, c ∈ Zm we have (a+m b) +m c = a+m (b+m c)

and (a ·m b) ·m c = a ·m (b ·m c)
Commutative For every a, b ∈ Zm we have a+m b = b+m a and a ·m b = b ·m a
Existence of 0 There is 0 ∈ Zm with the property a+m 0 = 0 +m a = a for every

a ∈ Zm.
Existence of 1 There is 1 ∈ Zm with the property a ·m 1 = 1 ·m a = a for every

a ∈ Zm.
Additive Inverse For every a ∈ Zm, there is (m− a) ∈ Zm with properties

a+m (m− a) = (m− a) +m a = 0.
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Modular Arithmetic and the Ring Zm

We can construct the addition and multiplication table on Zm. For Z2 both tables
are explained as follows:

+2 0 1
0 0 1
1 1 0

·2 0 1
0 0 0
1 0 1

Exercise
Construct the addition and multiplication tables for:

1 Z3
2 Z4
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Modular Arithmetic and the Ring Zm

For Z3 we have the following tables:

+3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

·3 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Then for Z4 we have the following tables:

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

·4 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1
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Linear Congruence and Its Solution

Linear Congruence

We discuss linear congruence of one variable and its solution.

Definition (linear congruence of one variable)

Suppose m ∈ Z+, a, b ∈ Z, and x is a variable. A linear congruence (of one
variable) is an expression of the form ax ≡ b (modm).

Example
The examples of linear congruence are 3x ≡ 9 (mod 7), 2x ≡ 1 (mod 4), and
5x ≡ 0 (mod 7).
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Linear Congruence and Its Solution

Problem
Given a linear congruence ax ≡ b (modm). What are the requirements to obtain
the value of x (integer) that satisfies this linear congruence?

Finding the solution of ax ≡ b (modm) can be done using brute-force/ exhaustive
search. Since the value of x is in the set {0, 1, . . . ,m− 1}, then we can find the
solution to ax ≡ b (modm) by substituting the value of x = 0, 1, . . . ,m− 1.
However, this is not an effi cient way.
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Linear Congruence and Its Solution

Exercise
Check whether there is the value of x such that 2x ≡ 1 (mod 4)

Solution:

Brute-force version.
The possible value of x is x = 0, 1, 2, 3. Notice that 2 · 0 ≡ 0 (mod 4),
2 · 1 ≡ 2 (mod 4), 2 · 2 = 0 (mod 4), 2 · 3 ≡ 2 (mod 4). So there is no x that
satisfies 2x ≡ 1 (mod 4).

Analytical version:

1 Suppose 2x ≡ 1 (mod 4) has a solution, then we obtain 4| (2x− 1), or
4k = 2x− 1, for a k ∈ Z.

2 Therefore, 2x = 4k + 1, for a k ∈ Z.
3 This gives x = (4k+1)

2 , but since 4k + 1 is always odd for every k ∈ Z, then
x = (4k+1)

2 6∈ Z.
4 So, it is impossible to have a value x that satisfies the requirement.
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Linear Congruence and Its Solution

Multiplicative Inverse Modulo m

In high school, we have learned the way to find a solution of ax = b for a 6= 0, the
solution of ax = b can be obtained using the following steps

ax = b

a−1 · ax = a−1 · b (multiplying both sides by a−1)
x = a−1b.

To find a solution of a modular congruence in Zm firstly we need to define the
multiplicative inverse in Zm.

Definition
Suppose a ∈ Z, the number a−1 ∈ Z is called as inverse of a modulo m (or
inverse of a in modulo m) if a−1 · a = a · a−1 ≡ 1 (modm).
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Linear Congruence and Its Solution

Exercise
Check whether

1 2 has an inverse in modulo 4, if yes then determine the inverse,
2 2 has an inverse in modulo 5, if yes then determine the inverse,
3 3 has an inverse in modulo 7, if yes then determine the inverse,
4 3 has an inverse in modulo 6, if yes then determine the inverse,
5 5 has an inverse in modulo 8, if yes then determine the inverse.

Solution:

1 2 has no inverse in modulo 4, because there is no x that satisfies
2x ≡ 1 (mod 4), this has been explained in the previous argument,

2 2 · 3 ≡ 1 (mod 5), therefore, 3 is the inverse of 2 in modulo 5.
3 3 · 5 ≡ 1 (mod 7), therefore, 5 is the inverse of 3 in modulo 7.
4 3 has no inverse in modulo 6, because there is no x that satisfies
3x ≡ 1 (mod 6). Notice the following argument:

If 3x ≡ 1 (mod 6), then the possible value of x is x = 0, 1, 2, 3, 4, 5.
If x = 0, 2, 4, then we obtain 3x ≡ 0 (mod 6).
If x = 1, 3, 5, then we obtain 3x ≡ 3 (mod 6).

5 5 · 5 ≡ 1 (mod 8), therefore, 5 is an inverse of 5 in modulo 8.
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Linear Congruence and Its Solution

A Systematic Methods to Find Multiplicative Inverse
We have already seen that the way to determine a−1 in Zm can be determined
using the brute-force way, however, this way is not effi cient. To find the effi cient
way, first we need to see the following theorem.

Theorem
Suppose a ∈ Z, m ∈ Z+, then a−1 exists in Zm ⇔ gcd (a,m) = 1.

Proof (Proof of a−1 exists ⇒ gcd (a,m) = 1)

1 Since a−1 exist, then a · a−1 ≡ 1 (modm). To make it easier, we write
a−1 = t.

2 Since at ≡ 1 (modm), then m|at− 1, therefore, km = at− 1 for a k ∈ Z.
Hence at− km = 1.

3 Since gcd (a,m) |a and gcd (a,m) |m, then gcd (a,m) |at− km, therefore,
gcd (a,m) |1.

4 Since an integer that can divide 1 are only −1 and 1, then we obtain
gcd (a,m) = 1.
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Linear Congruence and Its Solution

Proof (Proof of gcd (a,m) = 1⇒ a−1 exists)

1 Since gcd (a,m) = 1, based on Bézout’s theorem 1 = sa+ tm = as+mt.
2 Therefore, m (−t) = as− 1, this means m|as− 1.
3 Thus, as ≡ 1 (modm), so we have s = a−1.

Proof of the theorem also say that the multiplicative inverse can be found using
Euclid’s Algorithm.
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Linear Congruence and Its Solution

Exercise
Determine (if any) the inverse of

1 3 in modulo 7, or a solution to 3x ≡ 1 (mod 7)
2 4 in modulo 8, or a solution to 4x ≡ 1 (mod 8)
3 4 in modulo 9, or a solution to 4x ≡ 1 (mod 9)
4 7 in modulo 17, or a solution to 7x ≡ 1 (mod 17)
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Linear Congruence and Its Solution

Solution no. 1:

Approach 1: brute-force version
Since gcd (3, 7) = 1, then 3−1 exists in modulo 7. By trying the value of x in set
{0, 1, 2, . . . , 6}, we obtain 3 · 5 = 15 ≡ 1 (mod 7). Therefore, 3−1 ≡ 5 (mod 7).

Approach 2: Euclid’s algorithm version
Notice that

7 = 2 · 3 + 1, so 1 = 7− 2 · 3
3 = 1 · 3 + 0,

therefore, 1 =

3 (−2) + 7. This gives the fact that −2 is an inverse of 3 in modulo
7. Since −2 ≡ 5 (mod 7), then we obtain 3−1 ≡ 5 (mod 7).
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Linear Congruence and Its Solution

Solution no. 2: Since gcd (4, 8) = 4 6= 1, then there is no value of x that satisfies
4x ≡ 1 (mod 8).

Solution no. 3:

brute-force version:
Since gcd (4, 9) = 1, then 4−1 exist in modulo 9. By trying the value of x in set
{0, 1, 2, . . . , 8} we obtain 4 · 7 = 28 ≡ 1 (mod 9). Therefore, 4−1 ≡ 7 (mod 9).

Euclid’s algorithm version:
Notice that

9 = 2 · 4 + 1, so 1 = 9− 2 · 4
4 = 4 · 1 + 0,

therefore, 1 = 4 (−2) + 9. This gives the fact that −2 is an inverse of 4 in modulo
9. Since −2 ≡ 7 (mod 9), then we obtain 4−1 ≡ 7 (mod 9).
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Solution no. 4:

Approach 1: brute-force version
Since gcd (7, 17) = 1, then 7−1 exist in modulo 17. By trying the value of x in set
{0, 1, 2, . . . , 16}, we obtain 7 · 5 = 35 ≡ 1 (mod 17). Therefore, 7−1 ≡ 5 (mod 17).

Approach 2: Euclid’s algorithm version
Notice that

17 = 2 · 7 + 3, so 3 = 17− 2 · 7
7 = 2 · 3 + 1, so 1 = 7− 2 · 3
3 = 3 · 1 + 0,

therefore,

1 = 7− 2 · 3
= 7− 2 · (17− 2 · 7) = 7− 2 · 17 + 4 · 7
= 5 · 7− 2 · 17

This gives the result that 5 is an inverse of 7 in modulo 17. Then we obtain
7−1 ≡ 5 (mod 17).
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Linear Congruence and Its Solution

Determining Inverse —Another Method

To find the inverse of 4 in modulo 9, i.e., the value of x that satisfies
4x ≡ 1 (mod 9), we can do the following steps.

Notice that if 4x ≡ 1 (mod 9), then 9|4x− 1, such that 9k = 4x− 1 for a
k ∈ Z.
Therefore, x = 9k+1

4 , with k ∈ Z. The value of x must be an integer as well.
We will find the value of x by substitute the value of k = 0, 1, 2 . . ..

1 if k = 0, then x = 1
4
6∈ Z

2 if k = 1, then x = 10
4
6∈ Z

3 if k = 2, then x = 19
4
6∈ Z

4 if k = 3, then x = 28
4
= 7 ∈ Z.

So we obtain 4−1 = x ≡ 7 (mod 9).
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1 if k = 0, then x = 1
4
6∈ Z

2 if k = 1, then x = 10
4
6∈ Z

3 if k = 2, then x = 19
4
6∈ Z

4 if k = 3, then x = 28
4
= 7 ∈ Z.

So we obtain 4−1 = x ≡ 7 (mod 9).
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Linear Congruence and Its Solution

Exercise: Finding The Solution of Linear Congruence

Exercise
Determine the solution of linear congruence

1 3x ≡ 4 (mod 7).
2 12x ≡ 3 (mod 15).
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Linear Congruence and Its Solution

Solution no. 1:

Initially we have 3−1 ≡ 5 (mod 7) because 3 · 5 ≡ 1 (mod 7). Then notice that

3x ≡ 4 (mod 7) , by multiplying both of sides with 5, we obtain

x ≡ 20 (mod 7) , because 6 ≡ 20 (mod 7) , then we obtain
x ≡ 6 (mod 7) .

So the solution of linear congruence 3x ≡ 4 (mod 7) is x ≡ 6 (mod 7).
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Linear Congruence and Its Solution

Solution no. 2:
From 12x ≡ 3 (mod 15) we obtain 15| (12x− 3), or 15k = 12x− 3, for a k ∈ Z.
Notice that

15k = 12x− 3 iff 5k = 4x− 1,

so we obtain 5| (4x− 1), or the linear congruence 4x ≡ 1 (mod 5). We have
4−1 ≡ 4 (mod 5) because 4 · 4 ≡ 1 (mod 5), therefore, x ≡ 4 (mod 5). Since the
initial congruence requires in modulo 15, then the value of x must satisfy

x ≡ 4 (mod 15) , x ≡ 9 (mod 15) , and x ≡ 14 (mod 15) .

Observe that
12 · 4 = 48 ≡ 3 (mod 15)
12 · 9 = 108 ≡ 3 (mod 15)
12 · 14 = 158 ≡ 3 (mod 15)

So the solution of the linear congruence 12x ≡ 3 (mod 15) is any integer x that
satisfies one of the following congruence

x ≡ 4 (mod 15) , x ≡ 9 (mod 15) , x ≡ 14 (mod 15) .
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Linear Congruence and Ring Zm

Linear Congruence and The Ring Zm
A linear congruence can be viewed as a linear equation whose solution is in the
ring Zm. Notice some of the following linear congruence.

Exercise
Determine the value of x (if any) that satisfies the following linear congruences:

1 3x ≡ 2 (mod 4)
2 x+ 2 ≡ 1 (mod 4)
3 3x+ 3 ≡ 1 (mod 4)
4 2x+ 3 ≡ 2 (mod 4)

To find x that is a solution of the congruences, we can create addition and
multiplication table for Z4 first.

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

·4 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Afterwards, we will find the value of x by arithmetic rule for Z4.
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Linear Congruence and Ring Zm

Solution no. 1:

3x ≡ 2 (mod 4)

3−1 · 3x ≡ 3−1 · 2 (mod 4) [Multiplying both sides by 3−1]
x ≡ 3 · 2 (mod 4) [Since 3−1 = 3 in Z4]
x ≡ 6 (mod 4) ≡ 2 (mod 4)

Solution no. 2:

x+ 2 ≡ 1 (mod 4)

x+ 2− 2 ≡ (1− 2) (mod 4) [Adding both sides with − 2]
x+ 0 ≡ −1 (mod 4)

x ≡ 3 (mod 4) [Because − 1 = 3 in Z4]
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Linear Congruence and Ring Zm

Solution no. 3:

3x+ 3 ≡ 1 (mod 4)

3x ≡ −2 (mod 4) [Adding both of sides by − 3]
3x ≡ 2 (mod 4) [Because − 2 = 2 in Z4]
x ≡ 3−1 · 2 (mod 4) [Multiplying both of sides by 3−1]
x ≡ 3 · 2 (mod 4) ≡ 6 (mod 4) [Because 3−1 = 3 in Z4]
x ≡ 2 (mod 4) .

Solution no. 4:

2x+ 3 ≡ 2 (mod 4)

2x ≡ −1 (mod 4) [Adding both of sides by − 3]
2x ≡ 3 (mod 4) [Because − 1 = 3 in Z4]

From the multiplication table, 2 has no multiplicative inverse in Z4, therefore, 2−1
does not exist in Z4, and so 2x ≡ 3 (mod 4) has no solution (furthermore,
gcd (2, 4) = 2 6= 1).
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