
RECURRENT NEURAL NETWORKS 
(RNNS)
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Recurrent Neural Networks

 RNNs can be used when your data is treated as a sequence.

 The most straight‐forward example is a time‐series of numbers, where the task is to 
predict the next value given previous values.

 The input to the RNN at every time‐step is the current value as well as a state vector 
which represent what the network has “seen” at time‐steps before. This state‐ 
vector is the encoded memory of the RNN, initially set to zero.
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Recurrent Neural Networks

 MLP can only map from input to output vectors

 RNN can map from the entire history of previous inputs to each output.

 An RNN with a sufficient number of hidden units can approximate any 
measurable sequence‐to‐sequence mapping to arbitrary accuracy 
(Hammer, 2000).

 The key point is that the recurrent connections allow a ‘memory’ of 
previous inputs to persist in the network’s internal state.
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Recurrent Neural Networks

 Forward Pass

 The forward pass of an RNN is the same as 
that of a MLP with a single hidden layer.

 Except that activations arrive at the hidden 
layer from both the current external input 
and the hidden layer activations from the 
previous timestep.
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Recurrent Neural Networks

i

 Consider a length T input sequence, x presented to an RNN 
with I input units, H hidden units, and K output units.

t
 Let 𝑥 be the value of input i at time t

j
t

 𝑎 be the network input to hidden unit j at time t

j
t

 𝑏 be the activation output of hidden unit j at time t

 For the hidden units we have
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current external input

hidden layer activations 
from the previous timestep

 Nonlinear, differentiable activation functions are then applied 
exactly as for an MLP
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Recurrent Neural Networks

j The initial values O are set to zero.

However, other researchers have found that RNN stability and 
performance can be improved by using nonzero initial values.

 The network inputs to the output units can be calculated at 
the same time as the hidden activations
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Recurrent Neural Networks

 Backward Pass
 Given the partial derivatives of some differentiable loss function L with 

respect to the network outputs,

 The next step is to determine the derivatives with respect to the weights.

 Two well‐known algorithms have been devised to efficiently calculate 
weight derivatives for RNNs:
◼ real time recurrent learning (RTRL; Robinson and Fallside, 1987)

◼ and backpropagation through time (BPTT; Williams and Zipser, 1995; Werbos, 
1990).

 We focus on BPTT since it is both conceptually simpler and more efficient 
in computation time.
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Recurrent Neural Networks

 Like standard BP, BPTT consists of a repeated application of the chain rule.

 The loss function depends on the activation of the hidden layer not only 
through its influence on the output layer, but also through its influence on 
the hidden layer at the next timestep

 The complete sequence of δ terms can be calculated by starting at t = T and 
recursively applying the above equation, decrementing t at each step.
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Recurrent Neural Networks

 Finally, bearing in mind that the same weights are reused at every
timestep, we sum over the whole sequence to get the derivatives
with respect to the network weights:
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Unfolded recurrent network

 A useful way to visualize RNNs is to consider the update graph 
formed by ‘unfolding’ the network along the input sequence.
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Unfolded recurrent network
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• Each node represents a layer of network 
units at a single timestep.

• The weighted connections from the 
input layer to hidden layer are labelled 
w1, those from the hidden layer to itself 
(i.e. the recurrent weights) are labelled
w2 and the hidden to output weights 
are labelled w3.

• The same weights are reused at every 
timestep.

• Bias weights are omitted for clarity.

Access to future context

 For many sequence labelling tasks it is beneficial to have access to 
future as well as past context.

 For example, when classifying a particular written letter, it is helpful to 
know the letters coming after it as well as those before.

 However, since standard RNNs process sequences in temporal order, they 
ignore future context.
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Bidirectional recurrent neural networks

 Bidirectional recurrent neural networks offer a more elegant solution.

 The basic idea of BRNNs is to present each training sequence 
forwards and backwards to two separate recurrent hidden layers, 
both of which are connected to the same output layer.

 This structure provides the output layer with complete past and 
future context for every point in the input sequence, without 
displacing the inputs from the relevant targets.
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Unfolded bidirectional network
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Forward pass for the BRNN

 The forward pass for the BRNN hidden layers is the same as for a 
unidirectional RNN, except that the input sequence is presented in 
opposite directions to the two hidden layers, and the output layer is not 
updated until both hidden layers have processed the entire input 
sequence:
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Backward pass for the BRNN

 The backward pass proceeds as for a standard RNN trained with BPTT, 
except that all the output layer δ terms are calculated first, then fed 
back to the two hidden layers in opposite directions:
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Truncated Backpropagation
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 In order to make the learning process tractable, it is common practice 
to create an " unfolded" version of the network, which contains a 
fixed number (num_steps) of inputs and outputs.

 The model is then trained on this finite approximation of the RNN.

 This can be implemented by feeding inputs of length num_steps at a 
time and performing a backward pass after each such input block.

Causality for BRNNs

 One objection to bidirectional networks is that they violate causality.

 Clearly, for tasks such as financial prediction or robot navigation, an 
algorithm that requires access to future inputs is unfeasible.

 However, there are many problems for which causality is unnecessary. 
Most obviously, if the input sequences are spatial and not temporal 
there is no reason to distinguish between past and future inputs.

 This is perhaps why protein structure prediction is the domain where 
BRNNs have been most widely adopted.
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Causality for BRNNs

 However BRNNs can also be applied to temporal tasks, as long as the 
network outputs are only needed at the end of some input segment.

 For example, in speech and handwriting recognition, the data is usually 
divided up into sentences, lines, or dialogue turns, each of which is 
completely processed before the output labelling is required.

 Furthermore, even for online temporal tasks, such as automatic dictation 
(聽寫), bidirectional algorithms can be used as long as it is acceptable to

wait for some natural break in the input, such as a pause in speech, before 
processing a section of the data.
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Applications

 Language translation

No need to have input and output for every step.

Output after inputting the entire sentence.
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LSTMS (LONG‐SHORT‐TERM‐ 
MEMORIES)
PROPOSED BY HOCHREITER AND SCHMIDHUBER, 1997

Problems in RNNs
22

 An important benefit of RNNs is their ability to use contextual 
information when mapping between input and output sequences.

 Problems with simple RNN architectures

 Vanishing gradient in training

◼ Sensitivity to an input at time t decreases rapidly

 The main drawback of RNN is that it is very difficult to get them to store 
information for long periods of time.



Vanishing gradient problem
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 Unless weights large, error signal will degrade
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Vanishing gradient problem
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 The shading of the nodes in the unfolded network indicates their 
sensitivity to the inputs at time one (the darker the shade, the 
greater the sensitivity).

The sensitivity decays over time as 
new inputs overwrite the activations 
of the hidden layer, and the network 
‘forgets’ the first inputs.



LSTM architecture
25

 The LSTM architecture consists of a set of recurrently connected 
subnets, known as memory blocks. (Hochreiter and Schmidhuber, 
1997)

 These blocks can be thought of as a differentiable version of the 
memory chips in a digital computer.

 Each block contains one or more self‐connected memory cells and 
three multiplicative units—the input, output and forget gates—that 
provide continuous analogues of write, read and reset operations for 
the cells.

Constructing a memory block

 Start point  Adding controls
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Constructing a memory block
27

Forget gate

Cell

Input gate

Network input

 Let the controls be neurons

Output gate

Cell activation

LSTM memory block
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 The three gates are nonlinear summation units that 
collect activations from inside and outside the block, 
and control the activation of the cell via 
multiplications (small black circles).

 The input and output gates multiply the input and 
output of the cell while the forget gate multiplies the 
cell’s previous state.

 No activation function is applied within the cell.

 The gate activation function f is usually the logistic
sigmoid, so that the gate activations are between 0
(gate closed) and 1 (gate open).



LSTM memory block
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 The cell input and output activation functions (g 
and h) are usually tanh or logistic sigmoid, though 
in some cases h is the identity function.

 The weighted ‘peephole’ connections from the cell 
to the gates are shown with dashed lines.

 Peephole connections allow the gates to not only 
depend on the previous hidden state, but also on 
the previous memory ct‐1, adding an additional 
term in the gate equations.

 All other connections within the block are 
unweighted (or have a fixed weight of 1.0).

 The only outputs from the block to the rest of the 
network emanate from the output gate 
multiplication.

LSTM network
30

 The network consists of 
four input units, a hidden 
layer of two single‐cell 
LSTM memory blocks 
and five output units.

 Note that each block has
four inputs but only one
output.

Input  
gate

Output  
gate

forget  
gate



LSTM network
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 An LSTM network is the same as a standard RNN, except that the summation units 
in the hidden layer are replaced by memory blocks.

 LSTM blocks can also be mixed with ordinary summation units, although this is 
typically not necessary.

 The same output layers can be used for LSTM networks as for standard RNNs.

 The multiplicative gates allow LSTM memory cells to store and access information 
over long periods of time, thereby mitigating the vanishing gradient problem.

 For example, as long as the input gate remains closed (i.e. has an activation near 0), the 
activation of the cell will not be overwritten by the new inputs arriving in the network, 
and can therefore be made available to the net much later in the sequence, by opening 
the output gate.

forget  

input

output

Preservation of gradient information by LSTM
32

 The black nodes are maximally 
sensitive and the white nodes are 
entirely insensitive.

 For simplicity, all gates are either 
entirely open (‘O’) or closed (‘—’).

 The memory cell remembers the 
first input as long as the forget 
gate is open and the input gate is 
closed.

 The sensitivity of the output layer
can be switched on and off by the
output gate without affecting the
cell.



Gradient Calculation
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 LSTM is a differentiable function approximator that is typically 
trained with gradient descent.

 The original LSTM training algorithm used an approximate error gradient 
calculated with a combination of Real Time Recurrent Learning (RTRL) and 
Backpropagation Through Time (BPTT).

 Recently, non gradient‐based training methods of LSTM have also been 
considered (Wierstra et al., 2005; Schmidhuber et al., 2007)

Gradient Calculation
34

 The BPTT part was truncated after one timestep, because it was felt 
that long time dependencies would be dealt with by the memory 
blocks, and not by the flow of activation around the recurrent 
connections.

 Truncating the gradient has the benefit of making the algorithm 
completely online, in the sense that weight updates can be made 
after every timestep.

 This is an important property for tasks such as continuous control or 
time‐series prediction.



Constructing a memory block
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green lines are time‐delayed 
connections

 The final result

Constructing a memory cell
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 The final result

green lines are connection 
with a fixed weight = 1



Constructing a memory cell
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 Example

Complete Architecture

Output  
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layer

Input  
layer

t‐1 t+1t



Output Layer
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 The output layer can be any arbitrary output layer

 For text recognition, one output node is associated to each 
recognizable label

 The output layer is usually normalized via softmax

Output Layer
40

 An extra node, the blank or ε‐node, in the output layer can be 
used as a default output



Real Word Example: Text recognition
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Letter probabilities as

returned by the neural
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Real Word Example: Text recognition
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ε‐node



Success of LSTM
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 Over the past decade, LSTM has proved successful at a range of 
synthetic tasks requiring long range memory, including learning 
context free languages (Gers and Schmidhuber, 2001), recalling high 
precision real numbers over extended noisy sequences (Hochreiter 
and Schmidhuber, 1997) and various tasks requiring precise timing 
and counting (Gers et al., 2002).

 In particular, it has solved several artificial problems that remain 
impossible with any other RNN architecture.

Success of LSTM
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 Additionally, LSTM has been applied to various real‐world problems, 
such as protein secondary structure prediction (Hochreiter et al., 
2007; Chen and Chaudhari, 2005), music generation (Eck and 
Schmidhuber, 2002), reinforcement learning (Bakker, 2002), speech 
recognition (Graves and Schmidhuber, 2005b; Graves et al., 2006) 
and handwriting recog‐ nition (Liwicki et al., 2007; Graves et al., 
2008). As would be expected, its advantages are most pronounced 
for problems requiring the use of long range contextual information.
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GRUS (GATED RECURRENT 
UNITS)

Introduction
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 GRUs, proposed more recently by Cho et al. [2014], are a simpler 
variant of LSTMs that share many of the same properties.

 You can essentially treat LSTM (and GRU) units as a black boxes. Given 
the current input and previous hidden state, they compute the next 
hidden state in some way.



LSTM Gating
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GRU

 i, f, o are the input, forget and output gates, 
respectively.

 c and �̃�denote the memory cell and the new  
memory cell content.

LSTM gating

LSTM Gating
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 Plain RNNs could be considered a special case of LSTMs.

 If you fix the input gate all 1’s, the forget gate to all 0’s (you always
forget the previous memory) and the output gate to all one’s (you
expose the whole memory) you almost get standard RNN.

 By learning the parameters for its gates, the network learns how
its memory should behave.



GRU Gating
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 r and z are the reset and update gates

 h and ℎ~ are the activation and the candidate activation.

 GRUs have fewer parameters than LSTM, as they lack an output gate.

GRU Gating

GRU vs LSTM
50

 According to empirical evaluations in Empirical Evaluation of Gated 
Recurrent Neural Networks on Sequence Modeling and An Empirical 
Exploration of Recurrent Network Architectures, there isn’t a clear winner.

 In many tasks both architectures yield comparable performance and 
tuning hyperparameters like layer size is probably more important than 
picking the ideal architecture.

 GRUs have fewer parameters and thus may train a bit faster or need 
less data to generalize.

 On the other hand, if you have enough data, the greater expressive power 
of LSTMs may lead to better results.
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LSTM IMPLEMENTATION USING 
TENSORFLOW
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Language Modeling Example
53

 Language Modeling

 https://www.tensorflow.org/tutorials/recurrent

 Language modeling is key to many interesting problems such as speech 
recognition, machine translation, or image captioning.

 The goal of the problem is to fit a probabilistic model which assigns 
probabilities to sentences. It does so by predicting next words in a text 
given a history of previous words.

 For this purpose we will use the Penn Tree Bank (PTB) dataset, which is a 
popular benchmark for measuring the quality of these models.

Download the codes
54

 Find the following programs from models/tutorials/rnn/ptb in the 
TensorFlow models repo

◼https://github.com/tensorflow/models

File Purpose

ptb_word_lm.py The code to train a language model on the PTB dataset.

reader.py The code to read the dataset.

http://www.tensorflow.org/tutorials/recurrent
http://www.tensorflow.org/tutorials/recurrent
http://www.tensorflow.org/tutorials/recurrent
http://www.tensorflow.org/tutorials/recurrent


Download and Prepare the Data
55

 The data required for this tutorial is in the data/ directory of the PTB 
dataset from Tomas Mikolov's webpage.

 http://www.fit.vutbr.cz/~imikolov/rnnlm/simple‐examples.tgz

 The dataset is already preprocessed and contains overall 10,000 
different words, including the end‐of‐sentence marker and a special 
symbol (\<unk>) for rare words.

 In reader.py, we convert each word to a unique integer identifier, in 
order to make it easy for the neural network to process the data.

LSTM Model
56

 The core of the model consists of an LSTM cell that processes one word at
a time and computes probabilities of the possible values for the next word
in the sentence.

 The memory state of the network is initialized with a vector of zeros and 
gets updated after reading each word.

 For computational reasons, we will process data in mini‐batches of size 
batch_size.

 In this example, it is important to note that current_batch_of_words does 
not correspond to a "sentence" of words.

 Every word in a batch should correspond to a time t.

 TensorFlow will automatically sum the gradients of each batch for you.

http://www.fit.vutbr.cz/~imikolov/rnnlm/simple


LSTM Model
57

 For example:

t=0 t=1 t=2 t=3
[The, brown, fox, is,

t=4 
quick]

[The, red, fox, jumped, high]

words_in_dataset[0] = [The, The] 
words_in_dataset[1] = [brown, red] 
words_in_dataset[2] = [fox, fox] 
words_in_dataset[3] = [is, jumped] 
words_in_dataset[4] = [quick, high] 
batch_size = 2, time_steps = 5

words_in_dataset = tf.placeholder(tf.float32, [time_steps, batch_size, 
num_features])

lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)

# Initial state of the LSTM memory.
hidden_state = tf.zeros([batch_size, lstm.state_size]) 
current_state = tf.zeros([batch_size, lstm.state_size]) 
state = hidden_state, current_state

probabilities = [] 
loss = 0.0
for current_batch_of_words in words_in_dataset:

# The value of state is updated after processing each batch of words. 
output, state = lstm(current_batch_of_words, state)

# The LSTM output can be used to make next word predictions 
logits = tf.matmul(output, softmax_w) + softmax_b 
probabilities.append(tf.nn.softmax(logits))
loss += loss_function(probabilities, target_words)

The basic 
pseudocode



Truncated Backpropagation
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 In order to make the learning process tractable, it is common practice
to create an "unrolled" version of the network, which contains a fixed
number (num_steps) of LSTM inputs and outputs.

 The model is then trained on this finite approximation of the RNN.

 This can be implemented by feeding inputs of length num_steps at a
time and performing a backward pass after each such input block.

 Here is a simplified block of code for creating a graph which performs
truncated backpropagation:

# Placeholder for the inputs in a given iteration.
words = tf.placeholder(tf.int32, [batch_size, num_steps])

lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size) 
# Initial state of the LSTM memory.
initial_state = state = tf.zeros([batch_size, lstm.state_size])

for i in range(num_steps):
# The value of state is updated after processing each batch of words. 
output, state = lstm(words[:, i], state)

# The rest of the code. 
# ...

final_state = state



Truncated Backpropagation
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 And this is how to implement an iteration over the whole dataset:

# A numpy array holding the state of LSTM after each batch of words. 
numpy_state = initial_state.eval()
total_loss = 0.0
for current_batch_of_words in words_in_dataset:

numpy_state, current_loss = session.run([final_state, loss],
# Initialize the LSTM state from the previous iteration.
feed_dict={initial_state: numpy_state, words:

current_batch_of_words})
total_loss += current_loss

Inputs
62

 The word IDs will be embedded into a dense representation (see the 
Vector Representations Tutorial) before feeding to the LSTM.

 This allows the model to efficiently represent the knowledge about 
particular words. It is also easy to write:

 The embedding matrix will be initialized randomly and the model will 
learn to differentiate the meaning of words just by looking at the data.

# embedding_matrix is a tensor of shape [vocabulary_size, embedding size] 
word_embeddings = tf.nn.embedding_lookup(embedding_matrix, word_ids)



Loss Function
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 We want to minimize the average negative log probability of the target 
words:

 It is not very difficult to implement but the function 
sequence_loss_by_example is already available, so we can just use it 
here.

 The typical measure reported in the papers is average per‐word 
perplexity (often just called perplexity), which is equal to

Stacking multiple LSTMs
64

 To give the model more expressive power, we can add multiple layers 
of LSTMs to process the data. The output of the first layer will 
become the input of the second and so on.

 We have a class called MultiRNNCell that makes the implementation 
seamless:



Stacking multiple LSTMs
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def lstm_cell():
return tf.contrib.rnn.BasicLSTMCell(lstm_size) 

stacked_lstm = tf.contrib.rnn.MultiRNNCell(

[lstm_cell() for _ in range(number_of_layers)])

initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32) 
for i in range(num_steps):

# The value of state is updated after processing each batch of words. 
output, state = stacked_lstm(words[:, i], state)

# The rest of the code. 
# ...

final_state = state

Run the Code
66

 Before running the code, download the PTB dataset, as discussed at 
the beginning of this tutorial. Then, extract the PTB dataset 
underneath your home directory as follows:

 Now, clone the TensorFlow models repo from GitHub. Run the 
following commands:

tar xvfz simple‐examples.tgz ‐C $HOME
(Note: On Windows, you may need to use other tools.)

cd models/tutorials/rnn/ptb
python ptb_word_lm.py ‐‐data_path=$HOME/simple‐examples/data/ ‐
‐model=small



Run the Code
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 There are 3 supported model configurations in the tutorial code: 
"small", "medium" and "large".

 The difference between them is in size of the LSTMs and the set of 
hyperparameters used for training.

 The larger the model, the better results it should get.

 The small model should be able to reach perplexity below 120 on the 
test set and the large one below 80, though it might take several 
hours to train.

What Next?
68

 There are several tricks that we haven't mentioned that make the 
model better, including:

 decreasing learning rate schedule,

 dropout between the LSTM layers.

 Study the code and modify it to improve the model even further.


