
RECURRENT NEURAL NETWORKS
(RNNS)

1

Recurrent Neural Networks

 RNNs can be used when your data is treated as a sequence.

 The most straight‐forward example is a time‐series of numbers, where the task is to
predict the next value given previous values.

 The input to the RNN at every time‐step is the current value as well as a state vector
which represent what the network has “seen” at time‐steps before. This state‐
vector is the encoded memory of the RNN, initially set to zero.

2

Recurrent Neural Networks

 MLP can only map from input to output vectors

 RNN can map from the entire history of previous inputs to each output.

 An RNN with a sufficient number of hidden units can approximate any
measurable sequence‐to‐sequence mapping to arbitrary accuracy
(Hammer, 2000).

 The key point is that the recurrent connections allow a ‘memory’ of
previous inputs to persist in the network’s internal state.

3

Recurrent Neural Networks

 Forward Pass

 The forward pass of an RNN is the same as
that of a MLP with a single hidden layer.

 Except that activations arrive at the hidden
layer from both the current external input
and the hidden layer activations from the
previous timestep.

4

Recurrent Neural Networks

i

 Consider a length T input sequence, x presented to an RNN
with I input units, H hidden units, and K output units.

t
 Let 𝑥 be the value of input i at time t

j
t

 𝑎 be the network input to hidden unit j at time t

j
t

 𝑏 be the activation output of hidden unit j at time t

 For the hidden units we have

5

current external input

hidden layer activations
from the previous timestep

 Nonlinear, differentiable activation functions are then applied
exactly as for an MLP

i𝑥
t

j𝑎
t

j𝑏
t

k𝑎
t

w

Recurrent Neural Networks

j The initial values O are set to zero.

However, other researchers have found that RNN stability and
performance can be improved by using nonzero initial values.

 The network inputs to the output units can be calculated at
the same time as the hidden activations

6

Recurrent Neural Networks

 Backward Pass
 Given the partial derivatives of some differentiable loss function L with

respect to the network outputs,

 The next step is to determine the derivatives with respect to the weights.

 Two well‐known algorithms have been devised to efficiently calculate
weight derivatives for RNNs:
◼ real time recurrent learning (RTRL; Robinson and Fallside, 1987)

◼ and backpropagation through time (BPTT; Williams and Zipser, 1995; Werbos,
1990).

 We focus on BPTT since it is both conceptually simpler and more efficient
in computation time.

7

Recurrent Neural Networks

 Like standard BP, BPTT consists of a repeated application of the chain rule.

 The loss function depends on the activation of the hidden layer not only
through its influence on the output layer, but also through its influence on
the hidden layer at the next timestep

 The complete sequence of δ terms can be calculated by starting at t = T and
recursively applying the above equation, decrementing t at each step.

8

Recurrent Neural Networks

 Finally, bearing in mind that the same weights are reused at every
timestep, we sum over the whole sequence to get the derivatives
with respect to the network weights:

9

Unfolded recurrent network

 A useful way to visualize RNNs is to consider the update graph
formed by ‘unfolding’ the network along the input sequence.

10

hidden layer

t t+1t‐1

Output
layer

Hidden
layer

Input
layer

Unfolded recurrent network
11

• Each node represents a layer of network
units at a single timestep.

• The weighted connections from the
input layer to hidden layer are labelled
w1, those from the hidden layer to itself
(i.e. the recurrent weights) are labelled
w2 and the hidden to output weights
are labelled w3.

• The same weights are reused at every
timestep.

• Bias weights are omitted for clarity.

Access to future context

 For many sequence labelling tasks it is beneficial to have access to
future as well as past context.

 For example, when classifying a particular written letter, it is helpful to
know the letters coming after it as well as those before.

 However, since standard RNNs process sequences in temporal order, they
ignore future context.

12

Bidirectional recurrent neural networks

 Bidirectional recurrent neural networks offer a more elegant solution.

 The basic idea of BRNNs is to present each training sequence
forwards and backwards to two separate recurrent hidden layers,
both of which are connected to the same output layer.

 This structure provides the output layer with complete past and
future context for every point in the input sequence, without
displacing the inputs from the relevant targets.

13

Unfolded bidirectional network
14

Forward pass for the BRNN

 The forward pass for the BRNN hidden layers is the same as for a
unidirectional RNN, except that the input sequence is presented in
opposite directions to the two hidden layers, and the output layer is not
updated until both hidden layers have processed the entire input
sequence:

15

Backward pass for the BRNN

 The backward pass proceeds as for a standard RNN trained with BPTT,
except that all the output layer δ terms are calculated first, then fed
back to the two hidden layers in opposite directions:

16

Truncated Backpropagation
17

 In order to make the learning process tractable, it is common practice
to create an " unfolded" version of the network, which contains a
fixed number (num_steps) of inputs and outputs.

 The model is then trained on this finite approximation of the RNN.

 This can be implemented by feeding inputs of length num_steps at a
time and performing a backward pass after each such input block.

Causality for BRNNs

 One objection to bidirectional networks is that they violate causality.

 Clearly, for tasks such as financial prediction or robot navigation, an
algorithm that requires access to future inputs is unfeasible.

 However, there are many problems for which causality is unnecessary.
Most obviously, if the input sequences are spatial and not temporal
there is no reason to distinguish between past and future inputs.

 This is perhaps why protein structure prediction is the domain where
BRNNs have been most widely adopted.

18

Causality for BRNNs

 However BRNNs can also be applied to temporal tasks, as long as the
network outputs are only needed at the end of some input segment.

 For example, in speech and handwriting recognition, the data is usually
divided up into sentences, lines, or dialogue turns, each of which is
completely processed before the output labelling is required.

 Furthermore, even for online temporal tasks, such as automatic dictation
(聽寫), bidirectional algorithms can be used as long as it is acceptable to

wait for some natural break in the input, such as a pause in speech, before
processing a section of the data.

19

Applications

 Language translation

No need to have input and output for every step.

Output after inputting the entire sentence.

20

21

LSTMS (LONG‐SHORT‐TERM‐
MEMORIES)
PROPOSED BY HOCHREITER AND SCHMIDHUBER, 1997

Problems in RNNs
22

 An important benefit of RNNs is their ability to use contextual
information when mapping between input and output sequences.

 Problems with simple RNN architectures

 Vanishing gradient in training

◼ Sensitivity to an input at time t decreases rapidly

 The main drawback of RNN is that it is very difficult to get them to store
information for long periods of time.

Vanishing gradient problem
23

 Unless weights large, error signal will degrade

for the hidden layersg(v)

)g(v)d

where

for the output layer

x

j

j

jiji

(s)(s)

j

(s)

qh out, j j

(s)

j out,i

−x(s)

 h whj

 ns+1

 h=1

(s+1) (s+1)

(s) (s) (s) (s) (s−1)

=

 = (
w (k +1) = w (k) +

Vanishing gradient problem
24

 The shading of the nodes in the unfolded network indicates their
sensitivity to the inputs at time one (the darker the shade, the
greater the sensitivity).

The sensitivity decays over time as
new inputs overwrite the activations
of the hidden layer, and the network
‘forgets’ the first inputs.

LSTM architecture
25

 The LSTM architecture consists of a set of recurrently connected
subnets, known as memory blocks. (Hochreiter and Schmidhuber,
1997)

 These blocks can be thought of as a differentiable version of the
memory chips in a digital computer.

 Each block contains one or more self‐connected memory cells and
three multiplicative units—the input, output and forget gates—that
provide continuous analogues of write, read and reset operations for
the cells.

Constructing a memory block

 Start point Adding controls

26

Constructing a memory block
27

Forget gate

Cell

Input gate

Network input

 Let the controls be neurons

Output gate

Cell activation

LSTM memory block
28

 The three gates are nonlinear summation units that
collect activations from inside and outside the block,
and control the activation of the cell via
multiplications (small black circles).

 The input and output gates multiply the input and
output of the cell while the forget gate multiplies the
cell’s previous state.

 No activation function is applied within the cell.

 The gate activation function f is usually the logistic
sigmoid, so that the gate activations are between 0
(gate closed) and 1 (gate open).

LSTM memory block
29

 The cell input and output activation functions (g
and h) are usually tanh or logistic sigmoid, though
in some cases h is the identity function.

 The weighted ‘peephole’ connections from the cell
to the gates are shown with dashed lines.

 Peephole connections allow the gates to not only
depend on the previous hidden state, but also on
the previous memory ct‐1, adding an additional
term in the gate equations.

 All other connections within the block are
unweighted (or have a fixed weight of 1.0).

 The only outputs from the block to the rest of the
network emanate from the output gate
multiplication.

LSTM network
30

 The network consists of
four input units, a hidden
layer of two single‐cell
LSTM memory blocks
and five output units.

 Note that each block has
four inputs but only one
output.

Input
gate

Output
gate

forget
gate

LSTM network
31

 An LSTM network is the same as a standard RNN, except that the summation units
in the hidden layer are replaced by memory blocks.

 LSTM blocks can also be mixed with ordinary summation units, although this is
typically not necessary.

 The same output layers can be used for LSTM networks as for standard RNNs.

 The multiplicative gates allow LSTM memory cells to store and access information
over long periods of time, thereby mitigating the vanishing gradient problem.

 For example, as long as the input gate remains closed (i.e. has an activation near 0), the
activation of the cell will not be overwritten by the new inputs arriving in the network,
and can therefore be made available to the net much later in the sequence, by opening
the output gate.

forget

input

output

Preservation of gradient information by LSTM
32

 The black nodes are maximally
sensitive and the white nodes are
entirely insensitive.

 For simplicity, all gates are either
entirely open (‘O’) or closed (‘—’).

 The memory cell remembers the
first input as long as the forget
gate is open and the input gate is
closed.

 The sensitivity of the output layer
can be switched on and off by the
output gate without affecting the
cell.

Gradient Calculation
33

 LSTM is a differentiable function approximator that is typically
trained with gradient descent.

 The original LSTM training algorithm used an approximate error gradient
calculated with a combination of Real Time Recurrent Learning (RTRL) and
Backpropagation Through Time (BPTT).

 Recently, non gradient‐based training methods of LSTM have also been
considered (Wierstra et al., 2005; Schmidhuber et al., 2007)

Gradient Calculation
34

 The BPTT part was truncated after one timestep, because it was felt
that long time dependencies would be dealt with by the memory
blocks, and not by the flow of activation around the recurrent
connections.

 Truncating the gradient has the benefit of making the algorithm
completely online, in the sense that weight updates can be made
after every timestep.

 This is an important property for tasks such as continuous control or
time‐series prediction.

Constructing a memory block
35

hg

g

g

f

green lines are time‐delayed
connections

 The final result

Constructing a memory cell
36

 The final result

green lines are connection
with a fixed weight = 1

Constructing a memory cell
37

 Example

Complete Architecture

Output
layer

Hidden
layer

Input
layer

t‐1 t+1t

Output Layer
39

 The output layer can be any arbitrary output layer

 For text recognition, one output node is associated to each
recognizable label

 The output layer is usually normalized via softmax

Output Layer
40

 An extra node, the blank or ε‐node, in the output layer can be
used as a default output

Real Word Example: Text recognition
41

Letter probabilities as

returned by the neural

network

g

i

n

o

Input

Real Word Example: Text recognition
42

ε‐node

Success of LSTM
43

 Over the past decade, LSTM has proved successful at a range of
synthetic tasks requiring long range memory, including learning
context free languages (Gers and Schmidhuber, 2001), recalling high
precision real numbers over extended noisy sequences (Hochreiter
and Schmidhuber, 1997) and various tasks requiring precise timing
and counting (Gers et al., 2002).

 In particular, it has solved several artificial problems that remain
impossible with any other RNN architecture.

Success of LSTM
44

 Additionally, LSTM has been applied to various real‐world problems,
such as protein secondary structure prediction (Hochreiter et al.,
2007; Chen and Chaudhari, 2005), music generation (Eck and
Schmidhuber, 2002), reinforcement learning (Bakker, 2002), speech
recognition (Graves and Schmidhuber, 2005b; Graves et al., 2006)
and handwriting recog‐ nition (Liwicki et al., 2007; Graves et al.,
2008). As would be expected, its advantages are most pronounced
for problems requiring the use of long range contextual information.

45

GRUS (GATED RECURRENT
UNITS)

Introduction
46

 GRUs, proposed more recently by Cho et al. [2014], are a simpler
variant of LSTMs that share many of the same properties.

 You can essentially treat LSTM (and GRU) units as a black boxes. Given
the current input and previous hidden state, they compute the next
hidden state in some way.

LSTM Gating
47

GRU

 i, f, o are the input, forget and output gates,
respectively.

 c and �̃�denote the memory cell and the new
memory cell content.

LSTM gating

LSTM Gating
48

 Plain RNNs could be considered a special case of LSTMs.

 If you fix the input gate all 1’s, the forget gate to all 0’s (you always
forget the previous memory) and the output gate to all one’s (you
expose the whole memory) you almost get standard RNN.

 By learning the parameters for its gates, the network learns how
its memory should behave.

GRU Gating
49

 r and z are the reset and update gates

 h and ℎ~ are the activation and the candidate activation.

 GRUs have fewer parameters than LSTM, as they lack an output gate.

GRU Gating

GRU vs LSTM
50

 According to empirical evaluations in Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling and An Empirical
Exploration of Recurrent Network Architectures, there isn’t a clear winner.

 In many tasks both architectures yield comparable performance and
tuning hyperparameters like layer size is probably more important than
picking the ideal architecture.

 GRUs have fewer parameters and thus may train a bit faster or need
less data to generalize.

 On the other hand, if you have enough data, the greater expressive power
of LSTMs may lead to better results.

References
51

 Recurrent Neural Networks Tutorial

 Introduction to RNNs

 Implementing a RNN using Python and Theano

 Understanding the Backpropagation Through Time (BPTT) algorithm and
the vanishing gradient problem

 Implementing a GRU/LSTM RNN

 http://www.wildml.com/2015/09/recurrent‐neural‐networks‐tutorial‐part‐
1‐introduction‐to‐rnns/

52

LSTM IMPLEMENTATION USING
TENSORFLOW

http://www.wildml.com/2015/09/recurrent

Language Modeling Example
53

 Language Modeling

 https://www.tensorflow.org/tutorials/recurrent

 Language modeling is key to many interesting problems such as speech
recognition, machine translation, or image captioning.

 The goal of the problem is to fit a probabilistic model which assigns
probabilities to sentences. It does so by predicting next words in a text
given a history of previous words.

 For this purpose we will use the Penn Tree Bank (PTB) dataset, which is a
popular benchmark for measuring the quality of these models.

Download the codes
54

 Find the following programs from models/tutorials/rnn/ptb in the
TensorFlow models repo

◼https://github.com/tensorflow/models

File Purpose

ptb_word_lm.py The code to train a language model on the PTB dataset.

reader.py The code to read the dataset.

http://www.tensorflow.org/tutorials/recurrent
http://www.tensorflow.org/tutorials/recurrent
http://www.tensorflow.org/tutorials/recurrent
http://www.tensorflow.org/tutorials/recurrent

Download and Prepare the Data
55

 The data required for this tutorial is in the data/ directory of the PTB
dataset from Tomas Mikolov's webpage.

 http://www.fit.vutbr.cz/~imikolov/rnnlm/simple‐examples.tgz

 The dataset is already preprocessed and contains overall 10,000
different words, including the end‐of‐sentence marker and a special
symbol (\<unk>) for rare words.

 In reader.py, we convert each word to a unique integer identifier, in
order to make it easy for the neural network to process the data.

LSTM Model
56

 The core of the model consists of an LSTM cell that processes one word at
a time and computes probabilities of the possible values for the next word
in the sentence.

 The memory state of the network is initialized with a vector of zeros and
gets updated after reading each word.

 For computational reasons, we will process data in mini‐batches of size
batch_size.

 In this example, it is important to note that current_batch_of_words does
not correspond to a "sentence" of words.

 Every word in a batch should correspond to a time t.

 TensorFlow will automatically sum the gradients of each batch for you.

http://www.fit.vutbr.cz/~imikolov/rnnlm/simple

LSTM Model
57

 For example:

t=0 t=1 t=2 t=3
[The, brown, fox, is,

t=4
quick]

[The, red, fox, jumped, high]

words_in_dataset[0] = [The, The]
words_in_dataset[1] = [brown, red]
words_in_dataset[2] = [fox, fox]
words_in_dataset[3] = [is, jumped]
words_in_dataset[4] = [quick, high]
batch_size = 2, time_steps = 5

words_in_dataset = tf.placeholder(tf.float32, [time_steps, batch_size,
num_features])

lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)

Initial state of the LSTM memory.
hidden_state = tf.zeros([batch_size, lstm.state_size])
current_state = tf.zeros([batch_size, lstm.state_size])
state = hidden_state, current_state

probabilities = []
loss = 0.0
for current_batch_of_words in words_in_dataset:

The value of state is updated after processing each batch of words.
output, state = lstm(current_batch_of_words, state)

The LSTM output can be used to make next word predictions
logits = tf.matmul(output, softmax_w) + softmax_b
probabilities.append(tf.nn.softmax(logits))
loss += loss_function(probabilities, target_words)

The basic
pseudocode

Truncated Backpropagation
59

 In order to make the learning process tractable, it is common practice
to create an "unrolled" version of the network, which contains a fixed
number (num_steps) of LSTM inputs and outputs.

 The model is then trained on this finite approximation of the RNN.

 This can be implemented by feeding inputs of length num_steps at a
time and performing a backward pass after each such input block.

 Here is a simplified block of code for creating a graph which performs
truncated backpropagation:

Placeholder for the inputs in a given iteration.
words = tf.placeholder(tf.int32, [batch_size, num_steps])

lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size)
Initial state of the LSTM memory.
initial_state = state = tf.zeros([batch_size, lstm.state_size])

for i in range(num_steps):
The value of state is updated after processing each batch of words.
output, state = lstm(words[:, i], state)

The rest of the code.
...

final_state = state

Truncated Backpropagation
61

 And this is how to implement an iteration over the whole dataset:

A numpy array holding the state of LSTM after each batch of words.
numpy_state = initial_state.eval()
total_loss = 0.0
for current_batch_of_words in words_in_dataset:

numpy_state, current_loss = session.run([final_state, loss],
Initialize the LSTM state from the previous iteration.
feed_dict={initial_state: numpy_state, words:

current_batch_of_words})
total_loss += current_loss

Inputs
62

 The word IDs will be embedded into a dense representation (see the
Vector Representations Tutorial) before feeding to the LSTM.

 This allows the model to efficiently represent the knowledge about
particular words. It is also easy to write:

 The embedding matrix will be initialized randomly and the model will
learn to differentiate the meaning of words just by looking at the data.

embedding_matrix is a tensor of shape [vocabulary_size, embedding size]
word_embeddings = tf.nn.embedding_lookup(embedding_matrix, word_ids)

Loss Function
63

 We want to minimize the average negative log probability of the target
words:

 It is not very difficult to implement but the function
sequence_loss_by_example is already available, so we can just use it
here.

 The typical measure reported in the papers is average per‐word
perplexity (often just called perplexity), which is equal to

Stacking multiple LSTMs
64

 To give the model more expressive power, we can add multiple layers
of LSTMs to process the data. The output of the first layer will
become the input of the second and so on.

 We have a class called MultiRNNCell that makes the implementation
seamless:

Stacking multiple LSTMs
65

def lstm_cell():
return tf.contrib.rnn.BasicLSTMCell(lstm_size)

stacked_lstm = tf.contrib.rnn.MultiRNNCell(

[lstm_cell() for _ in range(number_of_layers)])

initial_state = state = stacked_lstm.zero_state(batch_size, tf.float32)
for i in range(num_steps):

The value of state is updated after processing each batch of words.
output, state = stacked_lstm(words[:, i], state)

The rest of the code.
...

final_state = state

Run the Code
66

 Before running the code, download the PTB dataset, as discussed at
the beginning of this tutorial. Then, extract the PTB dataset
underneath your home directory as follows:

 Now, clone the TensorFlow models repo from GitHub. Run the
following commands:

tar xvfz simple‐examples.tgz ‐C $HOME
(Note: On Windows, you may need to use other tools.)

cd models/tutorials/rnn/ptb
python ptb_word_lm.py ‐‐data_path=$HOME/simple‐examples/data/ ‐
‐model=small

Run the Code
67

 There are 3 supported model configurations in the tutorial code:
"small", "medium" and "large".

 The difference between them is in size of the LSTMs and the set of
hyperparameters used for training.

 The larger the model, the better results it should get.

 The small model should be able to reach perplexity below 120 on the
test set and the large one below 80, though it might take several
hours to train.

What Next?
68

 There are several tricks that we haven't mentioned that make the
model better, including:

 decreasing learning rate schedule,

 dropout between the LSTM layers.

 Study the code and modify it to improve the model even further.

