
Introduction to Tree (Part 2)
Spanning Tree, Tree Traversal (Suplementary), and Some Applications of Tree

(Suplementary)

MZI

School of Computing
Telkom University

SoC Tel-U

May 2023

MZI (SoC Tel-U) Tree (Part 2) May 2023 1 / 46

Acknowledgements

This slide is composed based on the following materials:

1 Discrete Mathematics and Its Applications, 8th Edition, 2019, by K. H.
Rosen (main).

2 Discrete Mathematics with Applications, 4th Edition, 2018, by S. S. Epp.
3 Mathematics for Computer Science. MIT, 2010, by E. Lehman, F. T.
Leighton, A. R. Meyer.

4 Slide for Matematika Diskret 2 (2012). Fasilkom UI, by B. H. Widjaja.
5 Slide for Matematika Diskret 2 at Fasilkom UI by Team of Lecturers.
6 Slide for Matematika Diskret. Telkom University, by B. Purnama.

Some of the pictures are taken from the above resources. This slide is intended for
academic purpose at FIF Telkom University. If you have any
suggestions/comments/questions related with the material on this slide, send an
email to <pleasedontspam>@telkomuniversity.ac.id.

MZI (SoC Tel-U) Tree (Part 2) May 2023 2 / 46

mailto:arzaki@telkomuniversity.ac.id

Contents

1 Spanning Tree

2 Tree Traversal —Supplementary

3 Parse Tree —Supplementary

4 Decision Tree —Supplementary

5 Infix, Prefix, and Postfix Notation —Supplementary

MZI (SoC Tel-U) Tree (Part 2) May 2023 3 / 46

Contents

1 Spanning Tree

2 Tree Traversal —Supplementary

3 Parse Tree —Supplementary

4 Decision Tree —Supplementary

5 Infix, Prefix, and Postfix Notation —Supplementary

MZI (SoC Tel-U) Tree (Part 2) May 2023 4 / 46

Spanning Tree

Spanning Tree
A spanning tree of a graph G is a spanning subgraph of G in a form of a tree.

This means that T = (VT , ET) is a spanning tree of G = (VG, EG) if T is a tree
and VT = VG. A spanning tree of a graph can be obtained by removing circuit on
the graph.

MZI (SoC Tel-U) Tree (Part 2) May 2023 5 / 46

Original graph:

Tree construction:

MZI (SoC Tel-U) Tree (Part 2) May 2023 6 / 46

Original graph:

Tree construction:

MZI (SoC Tel-U) Tree (Part 2) May 2023 6 / 46

A graph can have more than one spanning tree. Some of spanning trees of K4 are
as follows.

MZI (SoC Tel-U) Tree (Part 2) May 2023 7 / 46

Exercise 1: Finding All Spanning Trees

Exercise
Find all spanning trees of the following graph.

Solution: We have:

MZI (SoC Tel-U) Tree (Part 2) May 2023 8 / 46

Exercise 1: Finding All Spanning Trees

Exercise
Find all spanning trees of the following graph.

Solution: We have:

MZI (SoC Tel-U) Tree (Part 2) May 2023 8 / 46

Spanning Tree Properties of a Graph

Every connected graph has at least one spanning tree.

A disconnected graph with k components has at least k components of
spanning tree called spanning forest.

MZI (SoC Tel-U) Tree (Part 2) May 2023 9 / 46

Minimum Spanning Tree

Minimum Spanning Tree
A connected weighted graph may have more than one spanning tree. A spanning
tree with minimum weight is called as a minimum spanning tree.

a

b
c

d

e

f

g

h

55

5

40

25

45

30

50
20

15

35 10

a

b
c

d

e

f

g

h

5

40

25 30

20

15

10

To determine a minimum spanning tree of a graph, we can use two algorithms,
namely Prim’s algorithm and Kruskal’s algorithm.

MZI (SoC Tel-U) Tree (Part 2) May 2023 10 / 46

Minimum Spanning Tree

Minimum Spanning Tree
A connected weighted graph may have more than one spanning tree. A spanning
tree with minimum weight is called as a minimum spanning tree.

a

b
c

d

e

f

g

h

55

5

40

25

45

30

50
20

15

35 10

a

b
c

d

e

f

g

h

5

40

25 30

20

15

10

To determine a minimum spanning tree of a graph, we can use two algorithms,
namely Prim’s algorithm and Kruskal’s algorithm.

MZI (SoC Tel-U) Tree (Part 2) May 2023 10 / 46

Prim’s Algorithm for Minimum Spanning Tree
Prim’s Algorithm

1 Input: a connected weighted graph G = (VG, EG) and |VG| = n.
2 Initialization: T = (V,E) contains all vertices on G and E = {e}
where e has the minimum weight.

3 for i := 1 to n− 2
4 Choose e = {u, v} as an edge that satisfies all the following criteria:
5 e has minimum weight and
6 e is incident on a vertex in T
7 if T ′ := (V,E ∪ {e}) has no circuit
8 T := (V,E ∪ {e})
9 else

10 T := (V,E)

11 Output: T = (V,E) is a minimum spanning tree.

Prim’s Algorithm is one of the examples of greedy algorithm, i.e., an algorithm
that always take the best choices (edge with the smallest weight) on each of its
iteration.

MZI (SoC Tel-U) Tree (Part 2) May 2023 11 / 46

Illustration of Prim’s Algorithm

Suppose G is the following graph.

MZI (SoC Tel-U) Tree (Part 2) May 2023 12 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge

{b, f} {b, a} {f, j} {a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d} {g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f}

{b, a} {f, j} {a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d} {g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a}

{f, j} {a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d} {g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a} {f, j}

{a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d} {g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a} {f, j} {a, e}

{j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d} {g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a} {f, j} {a, e} {j, i}

{f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d} {g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a} {f, j} {a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge

{g, c} {c, d} {g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a} {f, j} {a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c}

{c, d} {g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a} {f, j} {a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d}

{g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a} {f, j} {a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d} {g, h}

{h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a} {f, j} {a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d} {g, h} {h, l}

{l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Prim’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {b, f} {b, a} {f, j} {a, e} {j, i} {f, g}
Weight 1 2 2 3 3 3

Choice no.- 7 8 9 10 11 Total
Edge {g, c} {c, d} {g, h} {h, l} {l, k}
Weight 2 1 3 3 1 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 13 / 46

Kruskal’s Algorithm for Minimum Spanning Tree

Kruskal’s Algorithm
1 Input: a graph connected weighted graph G = (VG, EG) and |VG| = n.
2 Initialization:

3 T = (V,E) with V = ∅ and E = ∅.
4 sorts the edges in EG based on their weight
5 for i := 1 to n− 1
6 choose e = {u, v} from the sorted EG
7 if T ′ = (V,E ∪ {e}) contains no circuit
8 T = (V,E ∪ {e})
9 else

10 T := (V,E)

11 Output: T = (V,E) is a minimum spanning tree.

Kruskal’s algorithm is one example of greedy algorithms, i.e., an algorithm that
always pick the best choice (edge with the smallest weight) on each of its iteration.

MZI (SoC Tel-U) Tree (Part 2) May 2023 14 / 46

Illustration of Kruskal’s Algorithm

Suppose G is the following graph.

MZI (SoC Tel-U) Tree (Part 2) May 2023 15 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge

{c, d} {b, f} {k, l} {a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c} {g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d}

{b, f} {k, l} {a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c} {g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f}

{k, l} {a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c} {g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f} {k, l}

{a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c} {g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f} {k, l} {a, b}

{c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c} {g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f} {k, l} {a, b} {c, g}

{f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c} {g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f} {k, l} {a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge

{a, e} {b, c} {g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f} {k, l} {a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e}

{b, c} {g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f} {k, l} {a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c}

{g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f} {k, l} {a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c} {g, h}

{i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f} {k, l} {a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c} {g, h} {i, j}

{j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Kruskal’s algorithm works as follows:

Choice no.- 1 2 3 4 5 6
Edge {c, d} {b, f} {k, l} {a, b} {c, g} {f, j}
Weight 1 1 1 2 2 2

Choice no.- 7 8 9 10 11 Total
Edge {a, e} {b, c} {g, h} {i, j} {j, k}
Weight 3 3 3 3 3 24

MZI (SoC Tel-U) Tree (Part 2) May 2023 16 / 46

Contents

1 Spanning Tree

2 Tree Traversal —Supplementary

3 Parse Tree —Supplementary

4 Decision Tree —Supplementary

5 Infix, Prefix, and Postfix Notation —Supplementary

MZI (SoC Tel-U) Tree (Part 2) May 2023 17 / 46

Tree Traversal

We usually use rooted tree to store information. Therefore, we need a method to
visit each vertex on the tree. The visiting process of each vertex is called tree
traversal.

Universal Address System
A tree can be used to store information with universal address system which is
labeling for each vertex on a rooted tree. Labeling can be done recursively as
follows:

Root is labeled with 0, then if on level 1 there are k children, then each child
on level 1 is labeled from left to right with 1, 2, . . . , k.

For every vertex v on level t with label A, if v has n children, then children of
v are labeled from left to right with A.1, A.2, . . . , A.n.

MZI (SoC Tel-U) Tree (Part 2) May 2023 18 / 46

Example of universal address designation.

MZI (SoC Tel-U) Tree (Part 2) May 2023 19 / 46

Preorder Traversal

Preorder traversal can be explained recursively as follows.

Preorder Traversal
1 procedure preorder (T (ordered root tree))

2 r := root of T
3 list r

4 for every child c of r with the order from left to right
5 T (c) := subtree with root c
6 preorder (T (c))

Intuitively, preorder traversal works with the following procedure:

1 visit root,
2 visit left subtree, and
3 visit right subtree.

MZI (SoC Tel-U) Tree (Part 2) May 2023 20 / 46

Example of Preorder Traversal

Suppose the tree whose vertices will be ordered is:

MZI (SoC Tel-U) Tree (Part 2) May 2023 21 / 46

First iteration

MZI (SoC Tel-U) Tree (Part 2) May 2023 22 / 46

Second iteration

MZI (SoC Tel-U) Tree (Part 2) May 2023 23 / 46

Third iteration

Fourth iteration

So the order of the vertices with preorder traversal is
a, b, e, j, k, n, o, p, f, c, d, g, l,m, h, i.

MZI (SoC Tel-U) Tree (Part 2) May 2023 24 / 46

Third iteration

Fourth iteration

So the order of the vertices with preorder traversal is

a, b, e, j, k, n, o, p, f, c, d, g, l,m, h, i.

MZI (SoC Tel-U) Tree (Part 2) May 2023 24 / 46

Third iteration

Fourth iteration

So the order of the vertices with preorder traversal is
a, b, e, j, k, n, o, p, f, c, d, g, l,m, h, i.

MZI (SoC Tel-U) Tree (Part 2) May 2023 24 / 46

Postorder Traversal

Postorder traversal can be explained recursively as follows.

Postorder Traversal
1 procedure postorder (T (ordered root tree))

2 r := root of T
3 for every child c of r with the order from left to right
4 T (c) := subtree with root c
5 postorder (T (c))

6 list r

Intuitively, postorder traversal works with the following procedure:

1 visit subtree from left to right, and
2 visit root.

MZI (SoC Tel-U) Tree (Part 2) May 2023 25 / 46

Example of Postorder Traversal

Suppose the tree whose vertices will be ordered is:

MZI (SoC Tel-U) Tree (Part 2) May 2023 26 / 46

First iteration

MZI (SoC Tel-U) Tree (Part 2) May 2023 27 / 46

Second iteration

MZI (SoC Tel-U) Tree (Part 2) May 2023 28 / 46

Third iteration

Fourth iteration

So the order of vertices with postorder traversal is
j, n, o, p, k, e, f, b, c, l,m, g, h, i, d, a.

MZI (SoC Tel-U) Tree (Part 2) May 2023 29 / 46

Third iteration

Fourth iteration

So the order of vertices with postorder traversal is

j, n, o, p, k, e, f, b, c, l,m, g, h, i, d, a.

MZI (SoC Tel-U) Tree (Part 2) May 2023 29 / 46

Third iteration

Fourth iteration

So the order of vertices with postorder traversal is
j, n, o, p, k, e, f, b, c, l,m, g, h, i, d, a.

MZI (SoC Tel-U) Tree (Part 2) May 2023 29 / 46

Inorder Traversal

Inorder traversal can be explained recursively as follows.

Inorder Traversal
1 procedure inorder (T (ordered root tree))

2 r := root of T
3 if r is a leaf then list r
4 else

5 ` := first child of r from left to right
6 T (`) := subtree with root `
7 inorder (T (`))

8 list r

9 for every child of c from r except ` from left to right
10 T (c) := subtree with root c
11 inorder (T (c))

MZI (SoC Tel-U) Tree (Part 2) May 2023 30 / 46

Intuitively, inorder traversal works with the following procedure:

1 visit the leftmost subtree,
2 visit root, and
3 visit subtree from left to right.

MZI (SoC Tel-U) Tree (Part 2) May 2023 31 / 46

Example of Inorder Traversal

Suppose the tree whose vertices will be ordered is:

MZI (SoC Tel-U) Tree (Part 2) May 2023 32 / 46

First iteration

MZI (SoC Tel-U) Tree (Part 2) May 2023 33 / 46

Second iteration

MZI (SoC Tel-U) Tree (Part 2) May 2023 34 / 46

Third iteration

Fourth iteration

So the order of vertices with inorder traversal is
j, e, n, k, o, p, b, f, a, c, l, g,m, d, h, i.

MZI (SoC Tel-U) Tree (Part 2) May 2023 35 / 46

Third iteration

Fourth iteration

So the order of vertices with inorder traversal is

j, e, n, k, o, p, b, f, a, c, l, g,m, d, h, i.

MZI (SoC Tel-U) Tree (Part 2) May 2023 35 / 46

Third iteration

Fourth iteration

So the order of vertices with inorder traversal is
j, e, n, k, o, p, b, f, a, c, l, g,m, d, h, i.

MZI (SoC Tel-U) Tree (Part 2) May 2023 35 / 46

Contents

1 Spanning Tree

2 Tree Traversal —Supplementary

3 Parse Tree —Supplementary

4 Decision Tree —Supplementary

5 Infix, Prefix, and Postfix Notation —Supplementary

MZI (SoC Tel-U) Tree (Part 2) May 2023 36 / 46

Parse Tree
In Mathematical Logic-A course, we have learned the parse tree for logical
formula. For example, the parse tree for the propositional formula
(¬p ∧ q)→ (p ∧ (q ∨ ¬r)) is

MZI (SoC Tel-U) Tree (Part 2) May 2023 37 / 46

Parse Tree
In Mathematical Logic-A course, we have learned the parse tree for logical
formula. For example, the parse tree for the propositional formula
(¬p ∧ q)→ (p ∧ (q ∨ ¬r)) is

MZI (SoC Tel-U) Tree (Part 2) May 2023 37 / 46

Parse tree can be used to parse mathematical expression as well as sentences in
particular language. This is one of the foundation of natural language processing.
For example, a sentence “a tall boy wears a red hat”can be parsed as follows:

MZI (SoC Tel-U) Tree (Part 2) May 2023 38 / 46

Parse tree can be used to parse mathematical expression as well as sentences in
particular language. This is one of the foundation of natural language processing.
For example, a sentence “a tall boy wears a red hat”can be parsed as follows:

MZI (SoC Tel-U) Tree (Part 2) May 2023 38 / 46

Contents

1 Spanning Tree

2 Tree Traversal —Supplementary

3 Parse Tree —Supplementary

4 Decision Tree —Supplementary

5 Infix, Prefix, and Postfix Notation —Supplementary

MZI (SoC Tel-U) Tree (Part 2) May 2023 39 / 46

Decision Tree

A decision tree is a tree that describes the way to take decision on a particular
algorithm. Suppose we have an array A = 〈A [1] , A [2] , A [3]〉. The algorithm to
order the array elements in ascending order can be described in the following tree.

MZI (SoC Tel-U) Tree (Part 2) May 2023 40 / 46

For example, the illustration of array ordering process with of three elements
〈6, 8, 5〉 is

MZI (SoC Tel-U) Tree (Part 2) May 2023 41 / 46

Contents

1 Spanning Tree

2 Tree Traversal —Supplementary

3 Parse Tree —Supplementary

4 Decision Tree —Supplementary

5 Infix, Prefix, and Postfix Notation —Supplementary

MZI (SoC Tel-U) Tree (Part 2) May 2023 42 / 46

Mathematical Expression

In high school we have already known a complex mathematical expression that
involve more than one operator, such as 2 + 4× 5. Which one of the following
value is right:

1 2 + 4× 5 = 30,
2 2 + 4× 5 = 22.

When being stored in a computer, a mathematical expression can be represented
in at least three ways, namely:

infix notation, (a standard notation that is commonly used in daily life),

prefix notation, using preorder traversal, and

postfix notation, using postorder traversal.

Prefix notation is also known as Polish notation and postfix notation is also known
as reverse Polish notation.

MZI (SoC Tel-U) Tree (Part 2) May 2023 43 / 46

Mathematical Expression

In high school we have already known a complex mathematical expression that
involve more than one operator, such as 2 + 4× 5. Which one of the following
value is right:

1 2 + 4× 5 = 30,
2 2 + 4× 5 = 22.

When being stored in a computer, a mathematical expression can be represented
in at least three ways, namely:

infix notation, (a standard notation that is commonly used in daily life),

prefix notation, using preorder traversal, and

postfix notation, using postorder traversal.

Prefix notation is also known as Polish notation and postfix notation is also known
as reverse Polish notation.

MZI (SoC Tel-U) Tree (Part 2) May 2023 43 / 46

Mathematical Expression

In high school we have already known a complex mathematical expression that
involve more than one operator, such as 2 + 4× 5. Which one of the following
value is right:

1 2 + 4× 5 = 30,
2 2 + 4× 5 = 22.

When being stored in a computer, a mathematical expression can be represented
in at least three ways, namely:

infix notation, (a standard notation that is commonly used in daily life),

prefix notation, using preorder traversal, and

postfix notation, using postorder traversal.

Prefix notation is also known as Polish notation and postfix notation is also known
as reverse Polish notation.

MZI (SoC Tel-U) Tree (Part 2) May 2023 43 / 46

Mathematical Expression

In high school we have already known a complex mathematical expression that
involve more than one operator, such as 2 + 4× 5. Which one of the following
value is right:

1 2 + 4× 5 = 30,
2 2 + 4× 5 = 22.

When being stored in a computer, a mathematical expression can be represented
in at least three ways, namely:

infix notation, (a standard notation that is commonly used in daily life),

prefix notation, using preorder traversal, and

postfix notation, using postorder traversal.

Prefix notation is also known as Polish notation and postfix notation is also known
as reverse Polish notation.

MZI (SoC Tel-U) Tree (Part 2) May 2023 43 / 46

Precedence of Basic Arithmetic Operator

Precedence of arithmetic operators tells us the priority about which operator has
to be executed first on operands.

Precedence table for basic arithmetic operators is as follows.

Operator Precedence
ˆ (power) 1

∗ (multiplication) 2
/ (division) 3
+ (addition) 4
− (subtraction) 5

As we learn in high school, we can use brackets “(”and “)”to clarify which
operation will be executed first.

MZI (SoC Tel-U) Tree (Part 2) May 2023 44 / 46

Precedence of Basic Arithmetic Operator

Precedence of arithmetic operators tells us the priority about which operator has
to be executed first on operands.

Precedence table for basic arithmetic operators is as follows.

Operator Precedence
ˆ (power) 1

∗ (multiplication) 2
/ (division) 3
+ (addition) 4
− (subtraction) 5

As we learn in high school, we can use brackets “(”and “)”to clarify which
operation will be executed first.

MZI (SoC Tel-U) Tree (Part 2) May 2023 44 / 46

Precedence of Basic Arithmetic Operator

Precedence of arithmetic operators tells us the priority about which operator has
to be executed first on operands.

Precedence table for basic arithmetic operators is as follows.

Operator Precedence
ˆ (power) 1

∗ (multiplication) 2
/ (division) 3
+ (addition) 4
− (subtraction) 5

As we learn in high school, we can use brackets “(”and “)”to clarify which
operation will be executed first.

MZI (SoC Tel-U) Tree (Part 2) May 2023 44 / 46

Example
Suppose we have a mathematical expression (a+ b/c) ∗ (d− e ∗ f). The parse
tree for this expression is as follows:

*

+

a / d *

b c e f

The expression (a+ b/c) ∗ (d− e ∗ f) is represented in infix notation. We can
obtain prefix notation and postfix notation of this expression using preorder and
postorder traversal, respectively, so we have:

prefix notation: ∗+ a/bc− d ∗ ef (the result of preorder traversal from the
parse tree);
postfix notation: abc/+ def ∗ −∗ (the result of postorder traversal from the
parse tree).

MZI (SoC Tel-U) Tree (Part 2) May 2023 45 / 46

Example
Suppose we have a mathematical expression (a+ b/c) ∗ (d− e ∗ f). The parse
tree for this expression is as follows:

*

+

a / d *

b c e f

The expression (a+ b/c) ∗ (d− e ∗ f) is represented in infix notation. We can
obtain prefix notation and postfix notation of this expression using preorder and
postorder traversal, respectively, so we have:

prefix notation:

∗+ a/bc− d ∗ ef (the result of preorder traversal from the
parse tree);
postfix notation: abc/+ def ∗ −∗ (the result of postorder traversal from the
parse tree).

MZI (SoC Tel-U) Tree (Part 2) May 2023 45 / 46

Example
Suppose we have a mathematical expression (a+ b/c) ∗ (d− e ∗ f). The parse
tree for this expression is as follows:

*

+

a / d *

b c e f

The expression (a+ b/c) ∗ (d− e ∗ f) is represented in infix notation. We can
obtain prefix notation and postfix notation of this expression using preorder and
postorder traversal, respectively, so we have:

prefix notation: ∗+ a/bc− d ∗ ef (the result of preorder traversal from the
parse tree);
postfix notation:

abc/+ def ∗ −∗ (the result of postorder traversal from the
parse tree).

MZI (SoC Tel-U) Tree (Part 2) May 2023 45 / 46

Example
Suppose we have a mathematical expression (a+ b/c) ∗ (d− e ∗ f). The parse
tree for this expression is as follows:

*

+

a / d *

b c e f

The expression (a+ b/c) ∗ (d− e ∗ f) is represented in infix notation. We can
obtain prefix notation and postfix notation of this expression using preorder and
postorder traversal, respectively, so we have:

prefix notation: ∗+ a/bc− d ∗ ef (the result of preorder traversal from the
parse tree);
postfix notation: abc/+ def ∗ −∗ (the result of postorder traversal from the
parse tree).MZI (SoC Tel-U) Tree (Part 2) May 2023 45 / 46

Advantages of Prefix and Postfix Notation

Although it is quite hard to be read by human, prefix and postfix notation have an
advantage, i.e., both notations do not need brackets to avoid ambiguity.
Therefore, both notation are commonly used in compiler design and development.

MZI (SoC Tel-U) Tree (Part 2) May 2023 46 / 46

	Spanning Tree
	Tree Traversal – Supplementary
	Parse Tree – Supplementary
	Decision Tree – Supplementary
	Infix, Prefix, and Postfix Notation – Supplementary

