Deep Learning with Python

Chapter 4: Fundamentals of machine
learning

4.1.1

4.1.2

4.1.3

4.1.4

Supervised learning

Unsupervised learning

Self-supervised learning

Reinforcement learning

example 1

Content_image

Style_image

mixed_image

4.2 Evaluating machine-learning models

4.2.1 Training, validation, and test sets

Listing 4.1 Hold-out validation

num_validation_samples = 10000 Shufﬂing the data is

: \ usually appropriate.
np.random.shuffle(data) Y approp Defines the
validation_data = data[:num _validation_samples] QJ validation set
data = data[num_validation_samples: ..

Lo —=amP : Defines the training set

training _data = datal:]
model = get_model () Trains a model on the training
model . train(training data) data, and evaluates it on the
validation score = model.evaluate(validation_ data) validation data

At this point you can tune your model,
retrain it, evaluate it, tune it again...

model = get_model () Once you’ve tuned your

model.train(np.concatenate([training data, hYF_'Ef'ParamEterss it's common to
validation datal])) train your final model from scratch

test_score = model.evaluate(test_data) on all non-test data available.

K-FOLD VALIDATION

Fold 1

Fold 2

Fold 3

Data split into 3 partitions

N
Validation Training Training
Validation Validation Training
Validation Training Validation

Figure 4.2 Three-fold validation

Validation)

score #1

Validation
score #2

Validation
score #3

S

Final score:
average

Listing 4.2 K-fold cross-validation

k=4

num_validation_samples = len(data) // k

np.random.shuffle(data)

Selects the validation-
data partition

validation_ scores = []
for fold in range(k):
validation _data =

num _validation_samples *
training data =

(fold + 1)]

data[num validation samples * (fold + 1) :]

model = get_model () <

data[num_validation_samples * fold:

model . train(training data)
validation score = model.evaluate(validation_ data)
validation_scores.append(validation_score)

validation_score = np.average(validation_scores) <

F

Uses the remainder of the data
as training data. Note that the

+ operator is list concatenation,
not summation.

data[:num validation_samples * fold] +
<

Creates a brand-new instance
of the model (untrained)

model = get_model ()
model . train(data)
test_score = model.evaluate(test_data)

Trains the final
model on all non-
test data available

Validation score:
average of the
validation scores
of the k folds

HANDLING MISSING VALUES

You may sometimes have missing values in your data. For instance, in the house-price
example, the first feature (the column of index 0 in the data) was the per capita crime
rate. What if this feature wasn’t available for all samples? You'd then have missing val-
ues in the training or test data.

In general, with neural networks, it's safe to input missing values as 0, with the con-
dition that 0 isn’t already a meaningful value. The network will learn from exposure to
the data that the value 0 means missing data and will start ignoring the value.

Feature engineering

\\\\"“lll’”ff// \\\Q\“ “”f,f//
Raw data: = = = =
ixel grid = = = =
’/fmhn‘\“ %Hllm‘t\\
Better {x1: 0.7, {x1: 0.0,
features: y1: 0.7} y2: 1.0}
clock hands’ {x2: 0.5, {x2: -0.38,
coordinates y2: 0.0} 2: 0.32}
Even better theta1: 45 theta1: 90
features: theta2: 0 theta2: 140
angles of
clock hands

Figure 4.3 Feature engineering for reading the time on
a clock

Fortunately, modern deep learning removes the need for most feature engineer-
ing, because neural networks are capable of automatically extracting useful features
from raw data. Does this mean you don’t have to worry about feature engineering as
long as you're using deep neural networks? No, for two reasons:

= Good features still allow you to solve problems more elegantly while using fewer
resources. For instance, it would be ridiculous to solve the problem of reading a
clock face using a convolutional neural network.

= Good features let you solve a problem with far less data. The ability of deep-
learning models to learn features on their own relies on having lots of training
data available; if you have only a few samples, then the information value in
their features becomes critical.

Overfitting and underfitting

The fundamental issue in machine learning is the tension between optimization
and generalization. Optimization refers to the process of adjusting a model to get the
best performance possible on the training data (the learning in machine learning),
whereas generalization refers to how well the trained model performs on data it has
never seen before. The goal of the game is to get good generalization, of course, but
you don’t control generalization; you can only adjust the model based on its training
data.

The processing of fighting overfitting this way is called regularization. Let’s review
some of the most common regularization techniques and apply them in practice to
improve the movie-classification model from section 3.4.

Reducing the network’s size

Let’s try this on the movie-review classification network. The original network is

shown next.

Listing 4.3 Original model

from keras import models
from keras import layers

model = models.Sequential ()

model .add(layers.Dense (16, activation='relu', input_shape=(10000,)))
model .add(layers.Dense(l6, activation='relu'))

model .add(layers.Dense(l, activation='sigmoid'))

Now let’s try to replace it with this smaller network.

Listing 4.4 Verslon of the model with lower capaclty

model = models.Sequentiall()

model .add(layers.Dense (4, activation='relu', input_shape=(10000,)))
model .add(layers.Dense (4, activation='relu'))

model .add(layers.Dense(l, activation='sigmoid'))

+ Original model ”
® Smaller model 4
0.7 - +
% 0.6 -
2 +
c
o +
® J v
3 0.5 ° .
° +
- + + ..'.
0.4 - - + " °
*«
+ o + ° ®
" + »
0.3 ‘e g o ® o ®
2.5 5.0 A 100 125 150 175 20.0

Epochs

Figure 4.4 Effect of model
capacity on validation loss: trying
a smaller model

Listing 4.5 Verslon of the model with higher capacity

model = models.Sequentiall()

model.add(layers.Dense (512, activation='relu', input_shape=(10000,)))
model .add(layers.Dense (512, activation='relu'))

model .add(layers.Dense(l, activation='sigmoid'))

Validation loss

0.9 1

+ Original model . W
® Bigger model
0.8 1 " -
© : +
0.7 4 _ P g ° -
El
0.6 +
&
0.5 - * .
4 © - ¢
0.4 + %
+ .
0.3‘1 ‘ + + +
2.5 5.0 y A 10.0 12.5 150 175 20.0

Epochs

Figure 4.5 Effect of model
capacity on validation loss:
trying a bigger model

+ Original model
® Bigger model

0.4 1
0.3-
+
021 €@+
+
B
0.1 - é
[4+
s pe &+ 9 " o
i T
0.0 - s » o @
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Epochs

Figure 4.6 Effect of model
capacity on training loss:
trying a bigger model

The processing of fighting overfitting this way is called regularization. Let’s review
some of the most common regularization techniques and apply them in practice to
improve the movie-classification model from section 3.4.

Reducing the network’s size

Adding weight regularization

A simple model in this context is a model where the distribution of parameter values
has less entropy (or a model with fewer parameters, as you saw in the previous sec-
tion). Thus a common way to mitigate overfitting is to put constraints on the complex-
ity of a network by forcing its weights to take only small values, which makes the
distribution of weight values more regular. This is called weight regularization, and it’s
done by adding to the loss function of the network a cost associated with having large
weights. This cost comes in two flavors:

= L1 regularization—The cost added is proportional to the absolute value of the
weight coefficients (the L1 norm of the weights).

= L2 regularization—The cost added is proportional to the square of the value of the
weight coefficients (the L2 norm of the weights). L2 regularization is also called
weight decay in the context of neural networks. Don’t let the different name con-
fuse you: weight decay is mathematically the same as L2 regularization.

Listing 4.6 Adding L2 welght regularization to the model

from keras import regularizers

model = models.Sequential ()

model .add(layers.Dense(l6, kernel_ regularizer=regularizers.12(0.001),
activation='relu', input_shape=(10000,)))

model.add(layers.Dense (16, kernel_regularizer=regularizers.12(0.001),
activation='relu'))

model.add (layers.Dense(l, activation='sigmoid'))

12(0.001) means every coefficient in the weight matrix of the layer will add 0.001 *
weight coefficient wvalue to the total loss of the network. Note that because this
penalty is only added at training time, the loss for this network will be much higher at
training than at test time.

Validation loss

+ Onginal model

® L2-regularized model +
0.7" +
+
0.6 1
+
+
+
0.5 A v
v
+ + ° g el i @
. X e
® g ® +
0.3+ 4 9 v
2.5 5.0 7.5 100 125 150 175 20.0

Epochs

Figure 4.7 Effect of L2 weight
regularization on validation loss

Listing 4.7 Different welght regularizers avallable In Keras

from keras import regularizers

regularizers.11(0.001) <— LI regularization Simultaneous LI and

regularizers.11_12(11=0.001, 12=0.001) L2 regularization

The processing of fighting overfitting this way is called regularization. Let’s review
some of the most common regularization techniques and apply them in practice to
improve the movie-classification model from section 3.4.

Reducing the network’s size
Adding weight regularization

Adding dropout

Dropout is one of the most effective and most commonly used regularization tech-
niques for neural networks, developed by Geoff Hinton and his students at the Uni-
versity of Toronto. Dropout, applied to a layer, consists of randomly dropping out
(setting to zero) a number of output features of the layer during training. Let’s say a
given layer would normally return a vector [0.2, 0.5, 1.3, 0.8, 1.1] for a given input
sample during training. After applying dropout, this vector will have a few zero entries
distributed at random: for example, [0, 0.5, 1.3, 0, 1.1]. The dropout rate is the fraction
of the features that are zeroed out; it's usually set between 0.2 and 0.5. At test time, no
units are dropped out; instead, the layer’s output values are scaled down by a factor
equal to the dropout rate, to balance for the fact that more units are active than at

training time.

layer_output *= np.random.randint (0, high=2,
layer_output /= 0.5 <«

size=layer_output.shape)
Note that we’re scaling up rather At training time \

scaling down in this case.

0302|1500 0002|1500
50%

06[01|00[03| dropout |06|0.1[00]03

021903 |12 001903 |00

0705|1000 0.7 1000000

S

Figure 4.8 Dropout applied to an
activation matrix at training time,
with rescaling happening during
training. At test time, the activation
matrix is unchanged.

Listing 4.8 Adding dropout to the IMDB network

model

model.
model.
model.

model

model.

= models.Sequential ()
add(layers.Dense (16,
add (layers.Dropout (0.5))
add(layers.Dense (16,

add(layers.Dense (1,

activation="'relu',

activation="'relu'))
.add(layers.Dropout(0.5))
activation='sigmoid'))

+ Original model +
® Dropout-regularized model +
0.7 4 .
» 0.6 -
8 +
.g + @
® 05 ¥ ©
% b T
~ +
+ + P
0.4 4 . .
® @
+ 2 " ° .
+
0.3 + , ‘ PP &
25 50 75 100 125 150 175 20.0

Epochs

input_shape=(10000,)))

Figure 4.9 Effect of dropout
on validation loss

Table 4.1 Choosing the right last-layer activation and loss function for your model

Problem type

Last-layer activation

Loss function

Binary classification

Multiclass, single-label classification
Multiclass, multilabel classification
Regression to arbitrary values

Regression to values between O and 1

sigmoid
softmax
sigmoid
None

sigmoid

binary crossentropy
categorical_crossentropy
binary crossentropy

mse

mse or binary crossentropy

