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Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

How do we proof above theorem?

The above statement cannot be proven using
direct proof nor indirect proof by contraposition.
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Indirect Proofs by Contradiction

Suppose we want to prove that a statement p is true. An indirect proof by
contradiction can be used to prove the truth of p in following way:

1 first, assume that ¬p is true
2 construct subsequent statements using rules of inference until. . .
3 we obtain statement r and statement ¬r
4 as a result, using conjunction rule, we have r ∧ ¬r which is a contradiction
5 consequently, we infer that ¬p→ (r ∧ ¬r) is true
6 because ¬p→ (r ∧ ¬r) is true, and (r ∧ ¬r) is false, we infer that ¬p is
false; since ¬p is false, we conclude that p is true.

MZI (SoC Tel-U) Proof Methods December 2022 6 / 24



Indirect Proofs by Contradiction
Suppose we want to prove that a statement p is true. An indirect proof by
contradiction can be used to prove the truth of p in following way:

1 first, assume that ¬p is true
2 construct subsequent statements using rules of inference until. . .
3 we obtain statement r and statement ¬r
4 as a result, using conjunction rule, we have r ∧ ¬r which is a contradiction
5 consequently, we infer that ¬p→ (r ∧ ¬r) is true
6 because ¬p→ (r ∧ ¬r) is true, and (r ∧ ¬r) is false, we infer that ¬p is
false; since ¬p is false, we conclude that p is true.

MZI (SoC Tel-U) Proof Methods December 2022 6 / 24



Indirect Proofs by Contradiction
Suppose we want to prove that a statement p is true. An indirect proof by
contradiction can be used to prove the truth of p in following way:

1 first, assume that ¬p is true

2 construct subsequent statements using rules of inference until. . .
3 we obtain statement r and statement ¬r
4 as a result, using conjunction rule, we have r ∧ ¬r which is a contradiction
5 consequently, we infer that ¬p→ (r ∧ ¬r) is true
6 because ¬p→ (r ∧ ¬r) is true, and (r ∧ ¬r) is false, we infer that ¬p is
false; since ¬p is false, we conclude that p is true.

MZI (SoC Tel-U) Proof Methods December 2022 6 / 24



Indirect Proofs by Contradiction
Suppose we want to prove that a statement p is true. An indirect proof by
contradiction can be used to prove the truth of p in following way:

1 first, assume that ¬p is true
2 construct subsequent statements using rules of inference until. . .

3 we obtain statement r and statement ¬r
4 as a result, using conjunction rule, we have r ∧ ¬r which is a contradiction
5 consequently, we infer that ¬p→ (r ∧ ¬r) is true
6 because ¬p→ (r ∧ ¬r) is true, and (r ∧ ¬r) is false, we infer that ¬p is
false; since ¬p is false, we conclude that p is true.

MZI (SoC Tel-U) Proof Methods December 2022 6 / 24



Indirect Proofs by Contradiction
Suppose we want to prove that a statement p is true. An indirect proof by
contradiction can be used to prove the truth of p in following way:

1 first, assume that ¬p is true
2 construct subsequent statements using rules of inference until. . .
3 we obtain statement r and statement ¬r

4 as a result, using conjunction rule, we have r ∧ ¬r which is a contradiction
5 consequently, we infer that ¬p→ (r ∧ ¬r) is true
6 because ¬p→ (r ∧ ¬r) is true, and (r ∧ ¬r) is false, we infer that ¬p is
false; since ¬p is false, we conclude that p is true.

MZI (SoC Tel-U) Proof Methods December 2022 6 / 24



Indirect Proofs by Contradiction
Suppose we want to prove that a statement p is true. An indirect proof by
contradiction can be used to prove the truth of p in following way:

1 first, assume that ¬p is true
2 construct subsequent statements using rules of inference until. . .
3 we obtain statement r and statement ¬r
4 as a result, using conjunction rule, we have r ∧ ¬r which is a contradiction

5 consequently, we infer that ¬p→ (r ∧ ¬r) is true
6 because ¬p→ (r ∧ ¬r) is true, and (r ∧ ¬r) is false, we infer that ¬p is
false; since ¬p is false, we conclude that p is true.

MZI (SoC Tel-U) Proof Methods December 2022 6 / 24



Indirect Proofs by Contradiction
Suppose we want to prove that a statement p is true. An indirect proof by
contradiction can be used to prove the truth of p in following way:

1 first, assume that ¬p is true
2 construct subsequent statements using rules of inference until. . .
3 we obtain statement r and statement ¬r
4 as a result, using conjunction rule, we have r ∧ ¬r which is a contradiction
5 consequently, we infer that ¬p→ (r ∧ ¬r) is true

6 because ¬p→ (r ∧ ¬r) is true, and (r ∧ ¬r) is false, we infer that ¬p is
false; since ¬p is false, we conclude that p is true.

MZI (SoC Tel-U) Proof Methods December 2022 6 / 24



Indirect Proofs by Contradiction
Suppose we want to prove that a statement p is true. An indirect proof by
contradiction can be used to prove the truth of p in following way:

1 first, assume that ¬p is true
2 construct subsequent statements using rules of inference until. . .
3 we obtain statement r and statement ¬r
4 as a result, using conjunction rule, we have r ∧ ¬r which is a contradiction
5 consequently, we infer that ¬p→ (r ∧ ¬r) is true
6 because ¬p→ (r ∧ ¬r) is true, and (r ∧ ¬r) is false, we infer that

¬p is
false; since ¬p is false, we conclude that p is true.

MZI (SoC Tel-U) Proof Methods December 2022 6 / 24



Indirect Proofs by Contradiction
Suppose we want to prove that a statement p is true. An indirect proof by
contradiction can be used to prove the truth of p in following way:

1 first, assume that ¬p is true
2 construct subsequent statements using rules of inference until. . .
3 we obtain statement r and statement ¬r
4 as a result, using conjunction rule, we have r ∧ ¬r which is a contradiction
5 consequently, we infer that ¬p→ (r ∧ ¬r) is true
6 because ¬p→ (r ∧ ¬r) is true, and (r ∧ ¬r) is false, we infer that ¬p is
false; since ¬p is false, we conclude that p is true.

MZI (SoC Tel-U) Proof Methods December 2022 6 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)

1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1, N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .

2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1, N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.

3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1, N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1,

N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1, N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1, N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof

Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1, N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M .

Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1, N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n.

Let N =M + 1, N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1,

N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1, N is an integer and N > M .

This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Examples of Indirect Proofs by Contradiction

Theorem
There exists no largest integer.

Proof (Sketch)
1 Suppose there exists a largest integer, let’s denote this integer by M .
2 Since M is the largest integer, then M ≥ n for all integers n.
3 Let N =M + 1, N is an integer (because M and 1 are both integers and the
set of integers is closed under addition) and N > M .

4 This contradicts to our supposition that M is the largest integer (number
1).

Proof
Suppose there exists a largest integer M . Since M is the largest integer, then
M ≥ n for all integers n. Let N =M + 1, N is an integer and N > M . This
contradicts to our supposition that M is the largest integer. Therefore, there
exists no largest integer.

MZI (SoC Tel-U) Proof Methods December 2022 7 / 24



Exercise 4

Theorem (Theorem 4.1)
Among 37 people in one group, at least four of them born in the same month.

Theorem (Theorem 4.2)
There is no integer which is even and odd simultaneously.
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Proof (Proof of Theorem 4.1)
We have 12 months in a year.

Suppose the statement that at least four people in
the group of 37 people born in the same month is false, then we have at most
three people in the group of 37 people born in the same month. Consequently, the
number of people in the group is at most 3 · 12 = 36, which contradicts to the
fact that there are 37 people in the group. Therefore, among 37 people in one
group, at least four of them born in the same month.

Proof (Proof of Theorem 4.2)
Suppose m is an integer which is even and odd simultaneously, then there exists
integers k and ` such that m = 2k = 2`+ 1. Hence, we have 2 (k − `) = 1, or
k − ` = 1

2 . This cannot be happened because the set of integers is closed under
subtraction. Therefore, there is no integer which is even and odd
simultaneously.
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Exercise 5

Theorem (Theorem 5)
There is no smallest odd integer.

Proof (Proof of Theorem 5)

Suppose there exists a smallest odd integer M . Then M = 2k + 1 for some
integer k and M ≤ n for all odd integers n. Let
N =M − 2 = 2k − 1 = 2 (k − 1) + 1, N is odd and N < M . This means N is
an odd integer smaller than M , and this contradicts to the assumption that M is
the smallest odd integer. Therefore, there is no smallest odd integer.
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√
2 is irrational

Theorem
√
2 is irrational.

The above theorem means that
√
2 cannot be expressed in the form of ab where a

and b are integers and b 6= 0.
To prove above theorem, we first consider following definition and lemmas.

Definition
Suppose a and b are integers, not both zero. The greatest common divisor of a
and b, denoted by gcd (a, b), is defined as the largest integer that divides both a
and b.

Remark
In Bahasa Indonesia, you may familiar with the terminology FPB (faktor
persekutuan terbesar).

For example, we have: gcd (8, 4) = 4, gcd (12, 9) = 3, gcd (−3,−6) = 3, and
gcd (3, 0) = 3.
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Lemma (Lemma 6)
If r is a rational number, then r can be expressed in the form of ab with
gcd (a, b) = 1.

For example, 8
18 can be expressed as

4
9 , observe that gcd (4, 9) = 1. The rational

number ab where gcd (a, b) = 1 is called the simplest form of such number .

Lemma (Lemma 7)

Let n be an integer, if n2 is even, then n is even.

Proof
Left as an exercise.
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The proof that
√
2 is irrational

Proof (Proof that
√
2 is irrational)

Suppose
√
2 is not irrational, then

√
2 is rational. Therefore (according to Lemma

6) there exists integers a and b with b 6= 0 and gcd (a, b) = 1 such that ab =
√
2.

By squaring both sides of this equation, we have a2

b2 = 2, or equivalently a
2 = 2b2.

Observe that a2 is even. According to Lemma 7, a is also even, so a = 2c, for
some integer c. By substituting this value to our previous fact, we have
(2c)

2
= 2b2, or 4c2 = 2b2, and by dividing both sides by 2 we have b2 = 2c2.

Observe that b2 is even. Based on Lemma 7, b is also even, so b = 2d, for some
integer d. As a result, we have gcd (a, b) = gcd (2c, 2d) ≥ 2, which contradicts to
our previous assumption that gcd (a, b) = 1. Therefore,

√
2 is irrational.
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Challenging Problems

Exercise
Determine the truth of these following statements. The notation a logb denotes a
real number (if exists) such that a

a log b = b (e.g.: 2 log 8 = 3, 3 log 9 = 2).

1 2 log 3 is irrational.
2

3
√
2 is irrational.

3 If a is even and b is odd, then a log b is irrational.
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Proving Equivalent Statements

Suppose there is a theorem (or lemma/proposition) in a biconditional
statement: “p if and only if q”, or p↔ q.

The statement p↔ q is equivalent to (p→ q) ∧ (q → p), therefore to show
that p↔ q is true, we can do this by proving that p→ q is true and q → p is
true.

Theorem
Suppose n is an integer, then n is odd if and only if 5n+ 6 is odd.

Proof

(⇒) We first show that if n is odd, then 5n+ 6 is odd. Assume n is odd, then
n = 2k + 1, for some integer k. We have
5n+ 6 = 5 (2k + 1) + 6 = 2 (5k + 5) + 1. Therefore 5n+ 6 is odd.
(⇐) We will show that if 5n+ 6 is odd, then n is odd. This statement is
equivalent to its contrapositive, that is, if n is even, then 5n+ 6 is even. Assume
n even, then n = 2`, for some integer `. We have
5n+ 6 = 5 (2`) + 6 = 2 (5`+ 3). Therefore 5n+ 6 is even.
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Exercise 6

Exercise
Prove or disprove following statement. Let n be an integer:

1 n is odd if and only if 7n+ 4 is odd,
2 n+ 5 is even if and only if 3n+ 2 is odd.
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Counterexamples

Recall that in order to show that a statement of the form ∀xP (x) is false, it is
suffi cient to provide a counterexample, i.e., an element c in the universe of
discourse that makes P (c) is false.

Exercise
Prove or disprove following statements:

1 If x is a nonzero real number, then x2 ≥ 1.
2 Suppose x, y, and z are integers. If xy = 0 and yz = 0, then xz = 0.

Solution:

1 The statement is false, choose x = 1
2 , then x

2 = 1
4 6≥ 1.

2 The statement is false, choose x = 1, y = 0, and z = 2, then xy = 0,
yz = 0, yet xz = 2.

MZI (SoC Tel-U) Proof Methods December 2022 19 / 24



Counterexamples

Recall that in order to show that a statement of the form ∀xP (x) is false, it is
suffi cient to provide a counterexample, i.e., an element c in the universe of
discourse that makes P (c) is false.

Exercise
Prove or disprove following statements:

1 If x is a nonzero real number, then x2 ≥ 1.
2 Suppose x, y, and z are integers. If xy = 0 and yz = 0, then xz = 0.

Solution:

1 The statement is false, choose x =

1
2 , then x

2 = 1
4 6≥ 1.

2 The statement is false, choose x = 1, y = 0, and z = 2, then xy = 0,
yz = 0, yet xz = 2.

MZI (SoC Tel-U) Proof Methods December 2022 19 / 24



Counterexamples

Recall that in order to show that a statement of the form ∀xP (x) is false, it is
suffi cient to provide a counterexample, i.e., an element c in the universe of
discourse that makes P (c) is false.

Exercise
Prove or disprove following statements:

1 If x is a nonzero real number, then x2 ≥ 1.
2 Suppose x, y, and z are integers. If xy = 0 and yz = 0, then xz = 0.

Solution:

1 The statement is false, choose x = 1
2 , then x

2 = 1
4 6≥ 1.

2 The statement is false, choose x = 1, y = 0, and z = 2, then xy = 0,
yz = 0, yet xz = 2.

MZI (SoC Tel-U) Proof Methods December 2022 19 / 24



Counterexamples

Recall that in order to show that a statement of the form ∀xP (x) is false, it is
suffi cient to provide a counterexample, i.e., an element c in the universe of
discourse that makes P (c) is false.

Exercise
Prove or disprove following statements:

1 If x is a nonzero real number, then x2 ≥ 1.
2 Suppose x, y, and z are integers. If xy = 0 and yz = 0, then xz = 0.

Solution:

1 The statement is false, choose x = 1
2 , then x

2 = 1
4 6≥ 1.

2 The statement is false, choose x =

1, y = 0, and z = 2, then xy = 0,
yz = 0, yet xz = 2.

MZI (SoC Tel-U) Proof Methods December 2022 19 / 24



Counterexamples

Recall that in order to show that a statement of the form ∀xP (x) is false, it is
suffi cient to provide a counterexample, i.e., an element c in the universe of
discourse that makes P (c) is false.

Exercise
Prove or disprove following statements:

1 If x is a nonzero real number, then x2 ≥ 1.
2 Suppose x, y, and z are integers. If xy = 0 and yz = 0, then xz = 0.

Solution:

1 The statement is false, choose x = 1
2 , then x

2 = 1
4 6≥ 1.

2 The statement is false, choose x = 1, y =

0, and z = 2, then xy = 0,
yz = 0, yet xz = 2.

MZI (SoC Tel-U) Proof Methods December 2022 19 / 24



Counterexamples

Recall that in order to show that a statement of the form ∀xP (x) is false, it is
suffi cient to provide a counterexample, i.e., an element c in the universe of
discourse that makes P (c) is false.

Exercise
Prove or disprove following statements:

1 If x is a nonzero real number, then x2 ≥ 1.
2 Suppose x, y, and z are integers. If xy = 0 and yz = 0, then xz = 0.

Solution:

1 The statement is false, choose x = 1
2 , then x

2 = 1
4 6≥ 1.

2 The statement is false, choose x = 1, y = 0, and z =

2, then xy = 0,
yz = 0, yet xz = 2.

MZI (SoC Tel-U) Proof Methods December 2022 19 / 24



Counterexamples

Recall that in order to show that a statement of the form ∀xP (x) is false, it is
suffi cient to provide a counterexample, i.e., an element c in the universe of
discourse that makes P (c) is false.

Exercise
Prove or disprove following statements:

1 If x is a nonzero real number, then x2 ≥ 1.
2 Suppose x, y, and z are integers. If xy = 0 and yz = 0, then xz = 0.

Solution:

1 The statement is false, choose x = 1
2 , then x

2 = 1
4 6≥ 1.

2 The statement is false, choose x = 1, y = 0, and z = 2, then xy = 0,
yz = 0, yet xz = 2.

MZI (SoC Tel-U) Proof Methods December 2022 19 / 24



Contents

1 Indirect Proofs by Contradiction

2 Proofs of Equivalences

3 Counterexamples

4 Elementary Proofs Strategy

5 Mistakes in Proofs

MZI (SoC Tel-U) Proof Methods December 2022 20 / 24



Proof Strategy

“Begin at the beginning. . . and go on till you come to the end: then stop.”

-Lewis Carrol, Alice’s Adventures in Wonderland, 1865

When we need to verify the truth of a particular statement, we can do following
steps:

1 translate each of the terms according to its definition,

2 analyze the meaning of the hypothesis and conclusion in the statement,
3 observe the correlation between hypothesis and its conclusion,
4 try one of the proof methods to prove the statement, when we encounter an
implication (p→ q), we do:

1 try direct proof; if it failed
2 try indirect proof by contraposition; if it failed
3 try indirect proof by contradiction

5 if the proof methods failed; probably the statement is false and try to guess a
counterexample instead.
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Some Mistakes in Mathematical “Proofs”

What’s wrong with these “theorem”and “proof”?

“Theorem”
1 = −1

“Proof”

Observe that 1 =

√
1 =

√
(−1) (−1) =

√
−1
√
−1 =

(√
−1
)2
= −1.

An error occurs in the use of the fact that
√
(−1) (−1) =

√
−1
√
−1, the property√

ab =
√
a
√
b can only be used when at least one of a or b is positive. This type

of error is an example of mathematical fallacy .
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Are following theorem and proof correct?

Theorem
If n2 is even, then n is even.

Proof (?)

Assume that n2 is even, then n2 = 2k for some integer k. Suppose n = 2` for
some integer `, then we have n2 = 4`2 = 2

(
2`2
)
. Thus, we conclude that n is

even.

The above theorem is true, and one of its proof can be obtained using indirect
proof by contraposition.
However, “the proof” is incorrect because the statement “suppose n = 2` for
some integer `”occurs out of nowhere (there is no justification). No argument
has been given to show that n can be written as 2` for some integer `. Instead,
this is what we are supposed to prove.
This type of error, which occurs when we use the statement equivalent to the
statement being proved (within the prove of itself), is an example of circular
reasoning .
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