Deep Learning with Python

Chapter 3: Getting started
with neural networks



Loss functions and optimizers:
keys to configuring the learning process

Choosing the right objective function for the right problem is
extremely important

Imagine a stupid, omnipotent Al trained via

SGD, with this poorly chosen objective function: “maximizing the average well-being
of all humans alive.” To make its job easier, this Al might choose to kill all humans
except a few and focus on the well-being of the remaining ones—because average
well-being isn’t affected by how many humans are left. That might not be what you

Intended!



You’ll use binary crossentropy for a two-class
classification problem, categorical crossentropy for a
many-class classification problem, meansquared error
for a regression problem, connectionist temporal
classification (CTC) for a sequence-learning problem,
and so on. Only when you’re working on truly new
research problems will you have to develop your own
objective functions.



Introduction to Keras

Keras has the following key features:

= It allows the same code to run seamlessly on CPU or GPU.

= It has a user-friendly API that makes 1t easy to quickly prototype deep-learning
models.

= It has built-in support for convolutional networks (for computer vision), recur-
rent networks (for sequence processing), and any combination of both.

= It supports arbitrary network architectures: multi-input or multi-output models,
layer sharing, model sharing, and so on. This means Keras is appropriate for
building essentially any deep-learning model, from a generative adversarial net-
work to a neural Turing machine.
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Introduction to Keras

There are two ways to define a model: using the Sequential class (only for linear
stacks of layers, which is the most common network architecture by far) or the func-

tional API (for directed acyclic graphs of layers, which lets you build completely arbi-
trary architectures).



Introduction to Keras

Sequential

from keras import models
from keras import layers

model = models.Sequential ()
model .add(layers.Dense (32, activation='relu', input_shape=(784,)))

model .add(layers.Dense (10, activation='softmax'))

Functional

input_tensor = layers.Input (shape=(784,))
x = layers.Dense(32, activation='relu') (input_tensor)

output_tensor = layers.Dense(l1l0, activation='softmax') (x)

model = models.Model (inputs=input_tensor, outputs=output_tensor)



Introduction to Keras

The learning process is configured in the compilation step, where you specify the
optimizer and loss function(s) that the model should use, as well as the metrics you
want to monitor during training. Here's an example with a single loss function, which

is b}’ far the most common case:
from keras import optimizers

model .compile(optimizer=optimizers.RMSprop(lr=0.001),
loss="mse',
metrics=['accuracy'])

model.fit (input_tensor, target_tensor, batch_size=128, epochs=10)



Classifying movie reviews:
a binary classification example

The IMDB dataset

You'll work with the IMDB dataset: a set of 50,000 highly polarized reviews from the
Internet Movie Database. They're split into 25,000 reviews for training and 25,000
reviews for testing, each set consisting of 50% negative and 50% positive reviews.



Classifying movie reviews:
a binary classification example

Listing 3.1 Loading the IMDB dataset

from keras.datasets import imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(
num_words=10000)

The argument num_words=1000[0 means you'll only keep the top 10,000 most fre-

quently occurring words in the training data. Rare words will be discarded. This allows
vou to work with vector data of manageable size.

The variables train_data and test_data are lists of reviews; each review is a list of

word indices (encoding a sequence of words). train_labels and test_labels are
lists of Os and 1s, where 0 stands for negative and 1 stands for positive:

>>> train _data[0]
13, 34, 32 16, 250 298, 321

>>> train_ labels|[0]
1 B



Preparing the data

= One-hot encode your lists to turn them into vectors of Os and 1s. This would
mean, for instance, turning the sequence [3, 5] into a 10,000-dimensional vec-
tor that would be all Os except for indices 3 and 5, which would be 1s. Then you
could use as the first layer in your network a Dense layer, capable of handling
floating-point vector data.



Listing 3.2 Encoding the Integer sequences Into a binary matrix

import num as n .
p 12)' P Creates an all-zero matrix

def vectorize_sequences (sequences, dimension=10000) : of shape (len(sequences),
results = np.zeros((len(sequences), dimension)) dimension)
for i, sequence in enumerate (sequences):
results[i, sequence] = 1. <t

| Sets specific indices
of results[i] to 1s

X_train = vectorize_sequences(train_data) <+—— Vectorized training data
X_test = vectorize_sequences(test_data) <+—— Vectorized test data

return results

Here’s what the samples look like now:

»>>> x _train[0]

array([ 0., 1., 1., ..., 0., 0., 0.])

You should also vectorize your labels, which is straightforward:

v_train = np.asarray(train_labels) .astype('floati2’')
yv_test = np.asarray(test_labels) .astype('fleoati2’)

Now the data is ready to be fed into a neural network.
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Figure 3.6 shows what the network looks like. And here’s the Keras implementation,
similar to the MNIST example you saw previously.

Listing 3.3 The model definitilon

from keras import models
from keras import layers

model = models.Sequential ()

model .add (layers.Dense (16, activation='relu', input_shape=(10000,)))
mode]l .add(layers.Dense (16, activation='relu'))

model .add (layers.Dense(l, activation='sigmoid'))



Listing 3.4 Complling the model

model .compile(optimizer="rmsprop’,
loss="'binary_crossentropy',
metrics=["accuracy'])

Listing 3.5 Conflguring the optimizer

from keras import optimizers

model .compile(optimizer-optimizers.RMSprop(lr=0.001),
loss="binary_ crossentropy',
metrics=["'accuracy'])

Listing 3.6 UsIng custom losses and metrics

from keras import losses
from keras import metrics

model .compile(optimizer-optimizers.RMSprop(lr=0.001),
loss=losses.binary_crossentropy,
metrics=[metrics.binary_accuracy])



Listing 3.7 Setting aslde a valldation set

x_val = x_train[:10000]
partial_x_train = x_train[10000:]

y val = y_train[:10000]
partial_v train = y_train[10000:]

Listing 3.8 Training your model

model .compile(optimizer="'rmsprop’,
loss="'binary_ crossentropy',
metrics=['acc'])

history = model.fit(partial_x_train,
partial_vy train,
epochs=20,
batch_size=512,
validation_data=(x_val, y_val))



Listing 3.9 Plotting the training and validation loss

import matplotlib.pyplot as plt

history_dict = history.history
loss_values = history_dict['loss']
val_loss_values = history_dict['val_loss']

epochs = range(l, len(acc) + 1) “bo” is for
plt.plot(epochs, loss_values, 'bo', label='Training loss') q.J “blue dot.”
plt.plot(epochs, val_loss_values, 'b', label='Validation loss')
plt.title('Training and validation loss') ) )
plt.xlabel ( 'Epochs') “b” is for “;olng
plt.ylabel('Loss') blue line.

plt.legend()

plt.show()
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Listing 3.10 Plotting the training and validation accuracy

plt.clf() <+ Clears the figure
acc_values = history dict['acc']

val_acc_values = history_dict['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel ('Epochs')

plt.ylabel ('Loss"')

plt.legend()

plt.showl()
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Listing 3.11 Retraining a model from scratch

model = models.Sequential()

model .add(layers.Dense(l6, activation='relu', input_shape=(10000,)))
model .add(layers.Dense(1l6, activation='relu'))

model .add(layers.Dense(l, activation='sigmoid'))

model .compile (optimizer="rmsprop"’,
loss="binary_ crossentropy’,
metrics=["'accuracy'])

model .fit(x_train, vy _train, epochs=4, batch _size=512)

results = model.evaluate(x_test, y_test)

The final results are as follows:

>>> results
[0.2929924130630493, 0.88327999999999995]



3.4.5 Using a trained network to generate predictions on new data

After having trained a network, you'll want to use it in a practical setting. You can gen-
erate the likelihood of reviews being positive by using the predict method:

>>> model .predict (x_test)
array([[ 0.98006207]

[ 0.99758697]

[ 0.99975556]

[ 0.82167041]
[ 0.02885115]
[ 0.65371346]], dtype=float32)



3.5 Classifying newswires:
a multiclass classification example



3.5.1 The Reuters dataset

You'll work with the Reuters dataset, a set of short newswires and their topics, published
by Reuters in 1986. It’s a simple, widely used toy dataset for text classification. There

are 46 different topics; some topics are more represented than others, but each topic
has at least 10 examples in the training set.

Like IMDB and MNIST, the Reuters dataset comes packaged as part of Keras. Let’s
take a look.

Listing 3.12 Loading the Reuters dataset

from keras.datasets import reuters

(train_data, train_labels), (test_data, test_labels) = reuters.load_datal
num_words=10000)



>>> len(train_data)
8982
>>> len(test_data)
2246

As with the IMDB reviews, each example is a list of integers (word indices):

>>> train_data[1l0]
[1, 245, 273, 207, 156, 53, T4, 160, 26, 14, 46, 296, 26, 39, 74, 2979,
3554, 14, 46, 4689, 4329, 86, 61, 3499, 4795, 14, 61, 451, 4329, 17, 12]



Listing 3.14 Encoding the data
import numpy as np
def vectorize_sequences (sequences,

results =
for 1.

dimension=10000) :
np.zeros((len(seguences), dimension))
sequence in enumerate (sequences) :
results[i, sequence] = 1.

return results

x: Erain =
X_test =

I Vectorized training data

<—— Yectorized test data

vectorize_sequences (train_data)
vectorize_sequences(test_data)



def to_one_hot(labels, dimension=46):
results = np.zeros((len(labels), dimension))
for i, label in enumerate(labels):
results[i, label] = 1.
return results

| Vectorized training labels

one_hot_train_labels = to_one_hot(train_labels)
one_hot_test_labels = to_one_hot (test_labels) <— Yectorized test labels

Note that there is a built-in way to do this in Keras, which you’ve already seen in action
in the MNIST example:

from keras.utils.np_utils import to_categorical

one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)



Listing 3.15 Model definition

from keras import models
from keras import layers

model = models.Sequential ()
model .add(layers.Dense(64, activation='relu', input_shape=(10000,)))

model .add(layers.Dense(64, activation='relu'))
model .add(layers.Dense (46, activation='softmax'))

Listing 3.16 Compiling the model

model .compile(optimizer="rmsprop’,
loss="'categorical_crossentropy’',

metrics=['accuracy'])



Listing 3.17 Setting aside a validation set

x_val = x_train[:1000]
partial x train = x _train[1000:]

y_val = one_hot_train labels[:1000]
partial y train = one_hot train labels[1000:]

Listing 3.18 Training the model

history = model.fit(partial x train,
partial_vy train,
epochs=20,
batch_size=512,
validation_data=(x_wval, v _wval))



Listing 3.19 Plotting the training and validation loss

import matplotlib.pyvplot as plt

loss = history.history['loss']
val_loss = historv.history['val_loss']

epochs = range(l, len(loss) + 1)

plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')

plt.xlabel ("'Epochs"')

plt.ylabel ('Loss"')

plt.legend()

plt.show()



Listing 3.20 Plotting the training and validation accuracy

plt.clf() <—— Clears the figure

acc = history.history['acc']
val_acc = history.history(['val_acc']

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel ('Epochs')

plt.ylabel ('Loss"') Training and validation loss
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Listing 3.21 Retraining a model from scratch

model = models.Sequential()

model .add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model .add(layers.Dense(64, activation='relu'))

model .add(layers.Dense(46, activation='softmax'))

model .compile(optimizer="'rmsprop’,
loss="'categorical_crossentropy’',
metrics=['accuracy'])
model .fit (partial_x_train,
partial_v_train,
epochs=0,
batch_size=512,
validation_data=(x_val, y_val))
results = model.evaluate(x_test, one_hot_test_labels)

Here are the final results:

>>> results
[0.9565213431445807, 0.79697239536954589]



Listing 3.22 Generating predictions for new data

predictions = model.predict(x_test)

Each entry in predictions is a vector of length 46:

>>> predictions[0].shape
(46,)

The coefficients in this vector sum to 1:

>>> np.sum(predictions([0])
1.0

The largest entry is the predicted class—the class with the highest probability:

>>> np.argmax(predictions[0])
4



3.5.6 A different way to handle the labels and the loss

We mentioned earlier that another way to encode the labels would be to cast them as
an integer tensor, like this:

y_train = np.array(train_labels)
yv_test = np.array(test_labels)

The only thing this approach would change is the choice of the loss function. The loss
function used in listing 3.21, categorical_crossentropy, expects the labels to follow
a categorical encoding. With integer labels, you should use sparse_categorical_
crossentropy:

model .compile(optimizer="rmsprop',

loss='sparse_categorical_crossentropy'’,
metrics=['acc'])



Listing 3.23 A model with an information bottleneck

model = models.Sequential ()

model .add(layers.Dense(64, activation='relu', input_shape=(10000,)))
model .add(layers.Dense(4, activation='relu'))

model .add(layers.Dense (46, activation='softmax'))

model .compile(optimizer='rmsprop"’,
loss="'categorical_crossentropy’,
metrics=["'accuracy'])
model .fit (partial_x_train,
partial_vy_train,
epochs=20,
batch_size=128,
validation_data=(x_val, y_val))

The network now peaks at ~71% validation accuracy, an 8% absolute drop. This drop
is mostly due to the fact that you're trying to compress a lot of information (enough
information to recover the separation hyperplanes of 46 classes) into an intermediate

space that is too low-dimensional. The network is able to cram most of the necessary
information into these eight-dimensional representations, but not all of it.



3.6 Predicting house prices: a regression example

Listing 3.24 Loading the Boston housing dataset

from keras.datasets import boston_housing

(train_data, train_targets), (test_data, test_targets) =
wrboston_housing.load datal()

let’s look at the data:

>>> train_data.shape

(404, 13)
>>> test_data.shape
(102, 13)

As you can see, you have 404 training samples and 102 test samples, each with 13
numerical features, such as per capita crime rate, average number of rooms per dwell-
ing, accessibility to highways, and so on.

The targets are the median values of owner-occupied homes, in thousands of
dollars:

>>> train_targets
[ 1.2, 42.3, 50. ... 19.4, 19.4, 29.1]



Listing 3.25 Normallzing the data

mean = train data.mean(axis=0)
train data -= mean
std = train data.std(axis=0)

train_data /= std

test_data -= mean
test_data /= std

Listing 3.26 Model definltion

from keras import models

_ Because you’ll need to instantiate
from keras import layers

the same model multiple times, you
def build model () : use a function to construct it.
model = models.Sequentiall()
model .add(layers.Dense (64, activation='relu',
input_shape=(train_data.shape[1],)))
model .add (layers.Dense (64, activation='relu'))
model .add(layers.Densg (1))

model.compile{optimizer:Trmsprop',Iloss:TmseTlImetrics:['mae']}I
return model




Validating your approach using K-fold validation

Data split into 3 partitions
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Figure 3.11 3-fold cross-validation
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Listing 3.27 K-fold valldation

import numpy as np

k=4
num_val_ samples =
num_epochs = 100

[]

/1 k

len(train_data)
all scores =

Prepares the validation data:
data from partition #k

for i in rangel(k):
print ('processing fold #',
val data = train data[i *

val_ targets =

i)

L num_val_ samples:

train_targets[i * num val_ samples:

partial_ train_data np.concatenate (

E

[train_datal:1i num_val_samples],

train datal[(i + 1) * num val_samples:]],
axis=0)
partial_train_targets

[train_targets[:1 *

np.concatenate (
num_val_samples],

(1 + 1) *
(1 + 1) *

train targets[(i + 1) * num val_ samples:]],
axis=0)
model = build model () <]

model.fit(partial_train data, partial_train_ targets,

Prepares the training data:
data from all other partitions

num_val_ samples]
num_val_ samples]

<3

Builds the Keras model
(already compiled)

Trains the model
(in silent mode,
verbose = 0)

= —]

epochs=num_epochs, batch_size=1, wverbose=0)

val mse, val mas = model.evaluate(wval data,

all scores.append(val_mae)

val_targets, wverbose=0) =

Evaluates the model
on the validation data



Running this with num_epochs = 100 yields the following results:

»»>> all scores
[2.588258957792037, 3.1280568449719116, 3.1856116051248984, 3.0763342615401386]

>>> np.mean(all_scores)
2.9947904173572462

The different runs do indeed show rather ditfferent validation scores, from 2.6 to 3.2.
The average (3.0) is a much more reliable metric than any single score—that’s the
entire point of K-fold cross-validation. In this case, you're off by $3,000 on average,

which is significant considering that the prices range from $10,000 to $50,000.



Listing 3.28 Saving the valldation logs at each fold

hs = 500 c e
TERee e . Prepares the validation data:
all mae histories = [] .

. data from partition #k
for 1 in range (k) :

print ( 'processing fold #', i)

val_data = train_data[i * num _val_samples: (i + 1) * num _wval_ samples]

val_targets = train_targets[i * num wval_samples: (i + 1) * num_wval_ samples]

partial_train data = np.concatenate( <

Prepares the training
data: data from all
other partitions

[train _datal:1 * num_vwval_samples],
train data[(i + 1) * num val_samples:]],
axis=0)

partial_ train_ targets np.concatenate (

[train targets[:1 * num val samples], Builds the Keras model
train targets[(i + 1) * num val samples:]], (already compiled)
axis=0)
model = bulild model () <1

history = model.fit(partial_train data, partial_train_targets, =
validation_data=(val_data, wval_targets),
epochs=num_epochs, batch_size=1, wverbose=0)

mae_history = history.history['wval_mean_ absolute_error']

all_mae histories.append(mae_history) Trains the model

(in silent mode, verbose=0)

Listing 3.29 Bullding the history of successlve mean K-fold valldatilon scores

average_mae_history = [
np.mean([x[i] for x in all_mae_ histories]) for i in range (num_epochs) ]



Listing 3.30 Plotting validation scores

import matplotlib.pyplot as plt

plt.plot(range(l, len(average_mae _history) + 1), average_mae_history)
plt.xlabel ('Epochs')

plt.ylabel('Validation MAE')

plt.show()
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It may be a little difficult to see the plot, due to scaling issues and relatively high vari-
ance. Let’s do the following:

= Omit the first 10 data points, which are on a different scale than the rest of the curve.

= Replace each point with an exponential moving average of the previous points,
to obtain a smooth curve.



Listing 3.31 Plotting valldatlon scores, excluding the flrst 10 data polnts

def smooth_curve(points, factor=0.9):
amoothed_points = []
for point in points:
if smoothed_points:

previous = smoothed_points[-1]
smoothed_points.append(previous * factor + point * (1 - factor))
else:

smoothed points.append(point)
return smoothed_points

smooth_mae_history = smooth_curve(average_mas_history[10:])

plt.plotirange(l, len(smoocth_mae history) + 1), smooth_mae history)
plt.xlabel ('Epochs')

plt.vlabel ('Validation MAE')

plt.show()
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Listing 3.32 Tralning the final model

| Gets a fresh, compiled model

model = build model () | Trains it on the entirety of the data
model . fit(train_data, train_ targets,
epochs=80, batch_size=16, wverbose=0)

test_mse_score, test_mae_score = model.evaluate(test_data, test_targets)

Here's the final result:

»»> test_mae_ score
2.5532484335057877

You're still off by about $2,550.



Wrapping up

Here’s what you should take away from this example:

Regression 1s done using different loss functions than what we used for classifi-
cation. Mean squared error (MSE) 1s a loss function commonly used for regres-
sion.

Similarly, evaluation metrics to be used for regression differ from those used for
classification; naturally, the concept of accuracy doesn’t apply for regression. A
common regression metric is mean absolute error (MAE).

When features in the iput data have values in different ranges, each feature
should be scaled independently as a preprocessing step.

When there is little data available, using K-fold validation 1s a great way to reli-
ably evaluate a model.

When little training data 1s available, 1t’s preferable to use a small network with
few hidden layers (typlically only one or two), in order to avoid severe overfitting.



