SISTEM TRANSPORTASI DAN DISTRIBUSI BARANG

Integrasi Perutean Kendaraan dan Persediaan

Muhammad Nashir Ardiansyah, S.T., M.T., Ph.D.

Program Studi S1 Teknik Industri – Telkom University

Image Source: https://maravelias.che.wisc.edu/overview/supply-chain-management/inventory-routing-problem-in-the-chemical-industry/

Model Matematis IRP

Peng Peny Source: Aghezza inventory consump Researc

Penggunaan Solver untuk Penyelesaian Masalah IRP

Aghezzaf, Raa, and van Landeghem (2006). Modeling inventory routing problems in supply chains of high consumption products. European Journal of Operational Research 169, p.1048-1063.

- The problem is concerned with developing a cyclical distribution plan of a single product distributed from a single-distribution center r to a set of sales-point S.
- Sales-point $i \in S$ consume the product at a given demand rate of d_i per hour.
- A fleet of homogeneous vehicle V, each with capacity k
- The objective is to minimize the expected distribution and inventory costs during the planning horizon without causing stock-outs at any of the sales-points.
 - Decision to be made are frequency with which sales-point should be served
 - Determination of routes to be used

Kontek

Ilustrasi Permasalahan

Feasible Solution:

Parameters:

- ψ : fix operating cost per hour
- δ : transportation cost per km
- η : holding cost per unit hours
- φ : handling and delivery cost
- t_{ii} : duration trip
- d_i : demand rate (ton/hour) in sales point i
- k(v): maximum capacity of vehicle v

Ilustrasi Permasalahan

Variable:

- x_{ij}^{ν} : A binary variable set to 1 if node j is served after i by vehicle v
- y^{ν} : A binary variable set to 1 if vehicle v is being used
- z_{ii}^{v} : Sum of demand rates (in units per hour) of remaining node in a tour covered by vehicle v when it travels to sales-point *j*

 T^{ν} : The cycle time of the multi-tour made by vehicle v

IRP Mod

$$\begin{array}{lll} \mbox{Fixed operating cost} & \mbox{Transportation cost} & \mbox{Delivery had cost} \\ \mbox{Minimize} & \mbox{$Z=\sum_{v\in V} \left[\psi^v y^v+\frac{1}{T^v}\left(\sum_{i\in S^+}\sum_{j\in S^+}\delta vt_{ij}x_{ij}^v\right)+\sum_{i\in S}\left(\varphi_i\frac{1}{T^v}+\frac{1}{2}\right) \\ \mbox{Subject to:} & \mbox{$\sum\sum_{v\in V}\sum_{i\in S^+}x_{ij}^v=1$ for all $j\in S$,} \\ & \mbox{$\sum\sum_{i\in S^+}x_{ij}^v-\sum_{k\in S^+}x_{jk}^v=0$ for all $v\in V,j\in S^+$,} \\ & \mbox{$\sum\sum_{i\in S^+}\sum_{j\in S^+}t_{ij}^vx_{ij}^v-T^v\leqslant 0$ for all $v\in V$,} \\ & \mbox{$\sum\sum_{i\in S^+}\sum_{j\in S^+}z_{ij}^v-\sum_{k\in S^+}\sum_{k\in S^+}z_{jk}^v=d_j$ for all $j\in S$,} \\ & \mbox{$x_{rj}^v-y^v\leqslant 0$ for all $v\in V,j\in S$,} \\ & \mbox{$T^vz_{rj}^v\leqslant \kappa(v)$ for all $v\in V,j\in S$,} \\ & \mbox{$z_{ij}^v=\left(\sum_{k\in S}d_k\right)x_{ij}^v\leqslant 0$ for all $v\in V,i,j\in S^+$,} \\ & \mbox{$x_{ij}^v\in\{0,1\},z_{ij}^v\geqslant 0,y^v\in\{0,1\},T^v\geqslant 0$ for all $v\in V,i$,} \end{array}$$

