Relation 1: Definition and Representations

Discrete Mathematics - Second Term 2022-2023

MZI
School of Computing
Telkom University

SoC Tel-U

February 2023

Acknowledgements

This slide is composed based on the following materials:
(1) Discrete Mathematics and Its Applications, 8th Edition, 2019, K. H. Rosen (primary).
(0) Discrete Mathematics with Applications, 5th Edition, 2018, S. S. Epp.

- Mathematics for Computer Science. MIT, 2010, E. Lehman, F. T. Leighton, A. R. Meyer.
- Slide for Matematika Diskret 2 (2012). Fasilkom UI, B. H. Widjaja.
- Slide for Matematika Diskrit. Telkom University, B. Purnama.

Some of the pictures are taken from the above resources. This slide is intended for academic purpose at FIF Telkom University. If you have any suggestions/comments/questions related with the material on this slide, send an email to <pleasedontspam>@telkomuniversity.ac.id.

Contents

(1) Cartesian Product
(2) Definition and Basic Notation of Binary Relation
(3) Relation Presentations: Arrow diagram, matrix, and digraph

- Arrow Diagrams
- Tables
- Matrices
- Digraphs (Directed Graphs)

4 Set Operations on Relations

Contents

(1) Cartesian Product
(2) Definition and Basic Notation of Binary Relation
(3) Relation Presentations: Arrow diagram, matrix, and digraph

- Arrow Diagrams
- Tables
- Matrices
- Digraphs (Directed Graphs)
(4) Set Operations on Relations

Cartesian Product

Definition

Let A and B be two sets, Cartesian product of A and B is written as $A \times B$ and defined as $A \times B:=\{(a, b) \mid a \in A, b \in B\}$. In this case, (a, b) is called an ordered pair or 2-tuple.

Definition

Ordered pairs (a, b) and (c, d) are equal iff $a=c$ and $b=d$.

Example

If $A=\{1,2\}$ and $B=\{a, b, c\}$ then

$$
A \times B=
$$

Cartesian Product

Definition

Let A and B be two sets, Cartesian product of A and B is written as $A \times B$ and defined as $A \times B:=\{(a, b) \mid a \in A, b \in B\}$. In this case, (a, b) is called an ordered pair or 2-tuple.

Definition

Ordered pairs (a, b) and (c, d) are equal iff $a=c$ and $b=d$.

Example

If $A=\{1,2\}$ and $B=\{a, b, c\}$ then

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\} \text { and } \\
& B \times A=
\end{aligned}
$$

Cartesian Product

Definition

Let A and B be two sets, Cartesian product of A and B is written as $A \times B$ and defined as $A \times B:=\{(a, b) \mid a \in A, b \in B\}$. In this case, (a, b) is called an ordered pair or 2-tuple.

Definition

Ordered pairs (a, b) and (c, d) are equal iff $a=c$ and $b=d$.

Example

If $A=\{1,2\}$ and $B=\{a, b, c\}$ then

$$
\begin{aligned}
& A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\} \text { and } \\
& B \times A=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\}
\end{aligned}
$$

We can see that $A \times B \neq B \times A$, so, in general, Cartesian product is not commutative.

Definition

Let $A_{1}, A_{2}, \ldots, A_{n}$ be n sets, the Cartesian product of $A_{1}, A_{2}, \ldots, A_{n}$ is written as $A_{1} \times A_{2} \times \cdots \times A_{n}$ and defined as follows

$$
A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i} \text { for } i=1,2, \ldots, n\right\} .
$$

In this case, $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called ordered n-tuple (or n-tuple for short).
If $A_{1}=A_{2}=\cdots=A_{n}=A$, we can write $A \times A \times \cdots \times A$ as A^{n}. Two n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ are equal iff $a_{i}=b_{i}$ for every $i=1,2, \ldots, n$.

Some Important Theorems

Theorem

For A and B sets, we have
(1) $(a, b) \in A \times B \Leftrightarrow(a \in A) \wedge(b \in B)$,
(2) $(a, b) \in A \times B \Leftrightarrow(b, a) \in B \times A$,

- $A=\emptyset \Rightarrow A \times B=B \times A=\emptyset$,
- $A \times B=B \times A \Leftrightarrow(A=B) \vee(A=\emptyset) \vee(B=\emptyset)$.

Proof

Exercise.

Theorem

Let A and B be two finite sets, then

$$
|A \times B|=|A| \cdot|B|,
$$

with $|A|,|B|,|A \times B|$ is cardinality of set A, B, and $A \times B$, respectively.

Proof

Exercise.

Theorem

If $A_{1}, A_{2}, \ldots, A_{n}$ are finite sets, then

$$
\left|A_{1} \times A_{2} \times \cdots \times A_{n}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdots \cdots\left|A_{n}\right|,
$$

with $\left|A_{i}\right|$ is cardinality of A_{i} for $1 \leq i \leq n$ and $\left|A_{1} \times A_{2} \times \cdots \times A_{n}\right|$ is cardinality of $A_{1} \times A_{2} \times \cdots \times A_{n}$.

Proof

Exercise.

Contents

(1) Cartesian Product
(2) Definition and Basic Notation of Binary Relation
(3) Relation Presentations: Arrow diagram, matrix, and digraph

- Arrow Diagrams
- Tables
- Matrices
- Digraphs (Directed Graphs)

4 Set Operations on Relations

Binary Relation

Definition

Let A and B be two sets, binary relation from A to B is a subset of $A \times B$.

- If R is a relation from A to $B, a \in A$, and $b \in B$, then we write $a R b$ if $(a, b) \in R$.
- We can say that $a R b$ stated a is related to b. See that $a \in A$ and $b \in B$.
- Let $a \not R b$ or $a \bar{R} b$ or $\neg(a R b)$ denote $(a, b) \notin R$, or a is not related to b.
- Relation on A is relation from A to A. We have that relation on A is a subset of $A \times A$.

Domain and Range of Relation

Definition

Let A and B be two sets and R be a relation from A to B. Domain of R, denoted by dom (R), defined as

$$
\begin{aligned}
& \operatorname{dom}(R):=\{a \in A \mid \text { there exists } b \in B \text { such that } a R b\} \\
& \operatorname{dom}(R):=\{a \in A \mid \exists b \in B(a R b)\}
\end{aligned}
$$

In other words, $\operatorname{dom}(R)$ is a set containing all elements in A related to at least one element in B.
Range of R, denoted by ran (R), defined as

$$
\begin{aligned}
& \operatorname{ran}(R):=\{b \in B \mid \text { there exists } a \in A \text { such that } a R b\} \\
& \operatorname{ran}(R):=\{b \in B \mid \exists a \in A(a R b)\} .
\end{aligned}
$$

To simplify, $\operatorname{ran}(R)$ is a set containing all elements in B such that at least one element in A is related to them.

Examples

Example

Let $A=\{$ Alex, Ben, Cathy $\}$ is a set of students and $B=\{D M, C, D S, M V S\}$ is a set of courses. We have

$$
A \times B=\{
$$

Examples

Example

Let $A=\{$ Alex, Ben, Cathy $\}$ is a set of students and $B=\{D M, C, D S, M V S\}$ is a set of courses. We have

$$
A \times B=\left\{\begin{array}{l}
(\text { Alex }, D M),(\text { Alex }, C),(\text { Alex }, D S),(\text { Alex }, M V S),
\end{array}\right.
$$

Examples

Example

Let $A=\{$ Alex, Ben, Cathy $\}$ is a set of students and $B=\{D M, C, D S, M V S\}$ is a set of courses. We have

$$
A \times B=\left\{\begin{array}{r}
(\text { Alex }, D M),(\text { Alex }, C),(\text { Alex }, D S),(\text { Alex }, M V S), \\
(\text { Ben }, D M),(\text { Ben }, C),(\text { Ben }, D S),(\text { Ben }, M V S),
\end{array}\right.
$$

Examples

Example

Let $A=\{$ Alex, Ben, Cathy $\}$ is a set of students and $B=\{D M, C, D S, M V S\}$ is a set of courses. We have

$$
A \times B=\left\{\begin{array}{c}
(\text { Alex }, D M),(\text { Alex }, C),(\text { Alex }, D S),(\text { Alex }, M V S), \\
(\text { Ben }, D M),(\text { Ben }, C),(\text { Ben }, D S),(\text { Ben }, M V S), \\
(\text { Cathy }, D M),(\text { Cathy }, C),(\text { Cathy }, D S),(\text { Cathy }, M V S)
\end{array}\right\} .
$$

Let R be a relation from A to B defined as: "student x is taking y course" and we have these facts: Alex is taking DM and C, Ben is taking DM and DS, Cathy is taking DM and MVS.

Then

$$
R=\left\{\begin{array}{c}
(\text { Alex }, D M),(\text { Alex }, C), \\
(\text { Ben }, D M),(\text { Ben }, D S), \\
(\text { Cathy }, D M),(\text { Cathy }, M V S)
\end{array}\right\} .
$$

- We can see that $R \subseteq A \times B$.
- $\operatorname{dom}(R)=$

Then

$$
R=\left\{\begin{array}{c}
(\text { Alex }, D M),(\text { Alex }, C), \\
(\text { Ben }, D M),(\text { Ben }, D S), \\
(\text { Cathy }, D M),(\text { Cathy }, M V S)
\end{array}\right\} .
$$

- We can see that $R \subseteq A \times B$.
- $\operatorname{dom}(R)=\{$ Alex, Ben, Cathy $\}=A$.
- $\operatorname{ran}(R)=$

Then

$$
R=\left\{\begin{array}{c}
(\text { Alex }, D M),(\text { Alex }, C), \\
(\text { Ben }, D M),(\text { Ben }, D S), \\
(\text { Cathy }, D M),(\text { Cathy }, M V S)
\end{array}\right\} .
$$

- We can see that $R \subseteq A \times B$.
- $\operatorname{dom}(R)=\{$ Alex, Ben, Cathy $\}=A$.
- $\operatorname{ran}(R)=\{D M, C, D S, M V S\}=B$.

Then

$$
R=\left\{\begin{array}{c}
(\text { Alex }, D M),(\text { Alex }, C), \\
(\text { Ben }, D M),(\text { Ben }, D S), \\
(\text { Cathy }, D M),(\text { Cathy }, M V S)
\end{array}\right\} .
$$

- We can see that $R \subseteq A \times B$.
- $\operatorname{dom}(R)=\{$ Alex, Ben, Cathy $\}=A$.
- $\operatorname{ran}(R)=\{D M, C, D S, M V S\}=B$.
- (Alex, DM) $\in R$ or Alex R DM.

Then

$$
R=\left\{\begin{array}{c}
(\text { Alex }, D M),(\text { Alex }, C), \\
(\text { Ben }, D M),(\text { Ben }, D S), \\
(\text { Cathy }, D M),(\text { Cathy }, M V S)
\end{array}\right\} .
$$

- We can see that $R \subseteq A \times B$.
- $\operatorname{dom}(R)=\{$ Alex, Ben, Cathy $\}=A$.
- $\operatorname{ran}(R)=\{D M, C, D S, M V S\}=B$.
- (Alex, DM) $\in R$ or Alex R DM.
- (Alex, MVS) $\notin R$ or Alex $\not R M V S$ or Alex $\bar{R} M V S$ or $\neg($ Alex $R M V S)$.

Example

Let $A=\{1,2\}$ and $B=\{x, y\}$. Let R be a relation from A to B with $R=\{(1, x),(2, x),(2, y)\}$, then $\operatorname{dom}(R)=$

Example

Let $A=\{1,2\}$ and $B=\{x, y\}$. Let R be a relation from A to B with $R=\{(1, x),(2, x),(2, y)\}$, then $\operatorname{dom}(R)=\{1,2\}=A$ and $\operatorname{ran}(R)=$

Example

Let $A=\{1,2\}$ and $B=\{x, y\}$. Let R be a relation from A to B with $R=\{(1, x),(2, x),(2, y)\}$, then $\operatorname{dom}(R)=\{1,2\}=A$ and $\operatorname{ran}(R)=\{x, y\}=B$.

Example

Let $A=\{2,3,4\}$ and $B=\{2,4,8,9,15\}$. Let R be a relation from A to B defined as: $a R b$ iff a divides b, for $a \in A$ and $b \in B$. Then

$$
R=\{
$$

Example

Let $A=\{1,2\}$ and $B=\{x, y\}$. Let R be a relation from A to B with $R=\{(1, x),(2, x),(2, y)\}$, then $\operatorname{dom}(R)=\{1,2\}=A$ and $\operatorname{ran}(R)=\{x, y\}=B$.

Example

Let $A=\{2,3,4\}$ and $B=\{2,4,8,9,15\}$. Let R be a relation from A to B defined as: $a R b$ iff a divides b, for $a \in A$ and $b \in B$. Then

$$
R=\{(2,2),(2,4),(2,8),
$$

Example

Let $A=\{1,2\}$ and $B=\{x, y\}$. Let R be a relation from A to B with $R=\{(1, x),(2, x),(2, y)\}$, then $\operatorname{dom}(R)=\{1,2\}=A$ and $\operatorname{ran}(R)=\{x, y\}=B$.

Example

Let $A=\{2,3,4\}$ and $B=\{2,4,8,9,15\}$. Let R be a relation from A to B defined as: $a R b$ iff a divides b, for $a \in A$ and $b \in B$. Then

$$
R=\{(2,2),(2,4),(2,8),(3,9),(3,15),
$$

Example

Let $A=\{1,2\}$ and $B=\{x, y\}$. Let R be a relation from A to B with $R=\{(1, x),(2, x),(2, y)\}$, then $\operatorname{dom}(R)=\{1,2\}=A$ and $\operatorname{ran}(R)=\{x, y\}=B$.

Example

Let $A=\{2,3,4\}$ and $B=\{2,4,8,9,15\}$. Let R be a relation from A to B defined as: $a R b$ iff a divides b, for $a \in A$ and $b \in B$. Then

$$
R=\{(2,2),(2,4),(2,8),(3,9),(3,15),(4,4),(4,8)\} .
$$

- $\operatorname{dom}(R)=$

Example

Let $A=\{1,2\}$ and $B=\{x, y\}$. Let R be a relation from A to B with $R=\{(1, x),(2, x),(2, y)\}$, then $\operatorname{dom}(R)=\{1,2\}=A$ and $\operatorname{ran}(R)=\{x, y\}=B$.

Example

Let $A=\{2,3,4\}$ and $B=\{2,4,8,9,15\}$. Let R be a relation from A to B defined as: $a R b$ iff a divides b, for $a \in A$ and $b \in B$. Then

$$
R=\{(2,2),(2,4),(2,8),(3,9),(3,15),(4,4),(4,8)\} .
$$

- $\operatorname{dom}(R)=\{2,3,4\}=A$.
- $\operatorname{ran}(R)=$

Example

Let $A=\{1,2\}$ and $B=\{x, y\}$. Let R be a relation from A to B with $R=\{(1, x),(2, x),(2, y)\}$, then $\operatorname{dom}(R)=\{1,2\}=A$ and $\operatorname{ran}(R)=\{x, y\}=B$.

Example

Let $A=\{2,3,4\}$ and $B=\{2,4,8,9,15\}$. Let R be a relation from A to B defined as: $a R b$ iff a divides b, for $a \in A$ and $b \in B$. Then

$$
R=\{(2,2),(2,4),(2,8),(3,9),(3,15),(4,4),(4,8)\} .
$$

- $\operatorname{dom}(R)=\{2,3,4\}=A$.
- $\operatorname{ran}(R)=\{2,4,8,9,15\}=B$.

Example

Let $A=\{2,3,4,8,9\}$ and R is a relation on A defined as: $a R b$ iff a is a prime factor of b, for $a, b \in A$. Then

$$
R=\{
$$

Example

Let $A=\{2,3,4,8,9\}$ and R is a relation on A defined as: $a R b$ iff a is a prime factor of b, for $a, b \in A$. Then

$$
R=\{(2,2),(2,4),(2,8),
$$

Example

Let $A=\{2,3,4,8,9\}$ and R is a relation on A defined as: $a R b$ iff a is a prime factor of b, for $a, b \in A$. Then

$$
R=\{(2,2),(2,4),(2,8),(3,3),(3,9)\}
$$

- $\operatorname{dom}(R)=$

Example

Let $A=\{2,3,4,8,9\}$ and R is a relation on A defined as: $a R b$ iff a is a prime factor of b, for $a, b \in A$. Then

$$
R=\{(2,2),(2,4),(2,8),(3,3),(3,9)\} .
$$

- $\operatorname{dom}(R)=\{2,3\}$, it is clear that $\operatorname{dom}(R) \subset A$.
- $\operatorname{ran}(R)=$

Example

Let $A=\{2,3,4,8,9\}$ and R is a relation on A defined as: $a R b$ iff a is a prime factor of b, for $a, b \in A$. Then

$$
R=\{(2,2),(2,4),(2,8),(3,3),(3,9)\} .
$$

- $\operatorname{dom}(R)=\{2,3\}$, it is clear that $\operatorname{dom}(R) \subset A$.
- $\operatorname{ran}(R)=\{2,3,4,8,9\}=A$.

Example

Let \mathbb{Z} be the set of integers and R is a relation on \mathbb{Z} defined as:

$$
\text { for } a, b \in \mathbb{Z} \text {, then } a R b \text { iff } a=b^{2} \text {. }
$$

Then

- $\operatorname{dom}(R)=$

Example

Let $A=\{2,3,4,8,9\}$ and R is a relation on A defined as: $a R b$ iff a is a prime factor of b, for $a, b \in A$. Then

$$
R=\{(2,2),(2,4),(2,8),(3,3),(3,9)\} .
$$

- $\operatorname{dom}(R)=\{2,3\}$, it is clear that $\operatorname{dom}(R) \subset A$.
- $\operatorname{ran}(R)=\{2,3,4,8,9\}=A$.

Example

Let \mathbb{Z} be the set of integers and R is a relation on \mathbb{Z} defined as:

$$
\text { for } a, b \in \mathbb{Z} \text {, then } a R b \text { iff } a=b^{2} \text {. }
$$

Then

- $\operatorname{dom}(R)=\left\{x^{2} \mid x \in \mathbb{Z}\right\}$.
- $\operatorname{ran}(R)=$

Example

Let $A=\{2,3,4,8,9\}$ and R is a relation on A defined as: $a R b$ iff a is a prime factor of b, for $a, b \in A$. Then

$$
R=\{(2,2),(2,4),(2,8),(3,3),(3,9)\} .
$$

- $\operatorname{dom}(R)=\{2,3\}$, it is clear that $\operatorname{dom}(R) \subset A$.
- $\operatorname{ran}(R)=\{2,3,4,8,9\}=A$.

Example

Let \mathbb{Z} be the set of integers and R is a relation on \mathbb{Z} defined as:

$$
\text { for } a, b \in \mathbb{Z} \text {, then } a R b \text { iff } a=b^{2} \text {. }
$$

Then

- $\operatorname{dom}(R)=\left\{x^{2} \mid x \in \mathbb{Z}\right\}$.
- $\operatorname{ran}(R)=\{x \mid x \in \mathbb{Z}\}=\mathbb{Z}$.

Contents

(1) Cartesian Product

2) Definition and Basic Notation of Binary Relation

(3) Relation Presentations: Arrow diagram, matrix, and digraph

- Arrow Diagrams
- Tables
- Matrices
- Digraphs (Directed Graphs)

Relation Representations of Relations over Finite Sets

If we have relations over finite sets, then we can represent those relations with:
© arrow diagrams,
(2) tables,
(0) matrices, and

- digraphs.

Arrow Diagrams

Let:
(1) R_{1} is a relation from $A=\{$ Amir, Budi, Cecep $\}$ to $B=\{I F 221, I F 251, I F 342$, IF323 $\}$ with

$$
R_{1}=\left\{\begin{array}{c}
(\text { Amir }, \text { IF251) },(\text { Amir }, \text { IF323 }), \\
(\text { Budi, IF221 }),(\text { Budi }, \text { IF } 251),(\text { Cecep }, \text { IF323 })
\end{array}\right\} .
$$

(c) R_{2} is a relation from $P=\{2,3,4\}$ to $Q=\{2,4,8,9,15\}$ with $R_{2}=\{(2,2),(2,4),(2,8),(3,9),(3,15),(4,4),(4,8)\}$.

- R_{3} is a relation on $A=\{2,3,4,8,9\}$ with $R_{3}=\{(2,2),(2,4),(2,8),(3,3),(3,9)\}$.

Arrow diagrams representation of R_{1}, R_{2}, and R_{3} are:

Tables

Let R_{2} be a relation from P to Q as defined above, then we can represent R_{2} with the following table.

$\operatorname{dom}\left(R_{2}\right)$	$\operatorname{ran}\left(R_{2}\right)$
2	2
2	4
2	8
3	9
3	15
4	4
4	8

Representation Matrix of a Relation

Definition

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be two non-empty finite sets and R is a relation from A to B. Relation R can be represented as an $|A| \times|B|$ matrix \mathbf{M}_{R} defined as

$$
\begin{aligned}
& \mathbf{M}_{R}=\left[m_{i j}\right], \text { with } m_{i j}= \begin{cases}1, & \text { if }\left(a_{i}, b_{j}\right) \in R \\
0, & \text { if }\left(a_{i}, b_{j}\right) \notin R .\end{cases} \\
& \mathbf{M}_{R}=\begin{array}{r}
b_{1} \\
a_{1} \\
a_{2} \\
\vdots
\end{array}
\end{aligned}
$$

\mathbf{M}_{R} is called a representation matrix of R.

Example

Exercise

Let $A=\{1,2,3\}, B=\{1,2\}$, and R is a relation from A to B defined as: $a R b$ iff $a>b$. Find a representation matrix of R if $a_{1}=1, a_{2}=2, a_{3}=3, b_{1}=1, b_{2}=2$.

Solution:

Example

Exercise

Let $A=\{1,2,3\}, B=\{1,2\}$, and R is a relation from A to B defined as: $a R b$ iff $a>b$. Find a representation matrix of R if $a_{1}=1, a_{2}=2, a_{3}=3, b_{1}=1, b_{2}=2$.

Solution: $R=\{(2,1),(3,1),(3,2)\}$, then we have the representation matrix of R is

$$
\mathbf{M}_{R}=[
$$

Example

Exercise

Let $A=\{1,2,3\}, B=\{1,2\}$, and R is a relation from A to B defined as: $a R b$ iff $a>b$. Find a representation matrix of R if $a_{1}=1, a_{2}=2, a_{3}=3, b_{1}=1, b_{2}=2$.

Solution: $R=\{(2,1),(3,1),(3,2)\}$, then we have the representation matrix of R is

$$
\mathbf{M}_{R}=\left[{ }^{0}\right.
$$

Example

Exercise

Let $A=\{1,2,3\}, B=\{1,2\}$, and R is a relation from A to B defined as: $a R b$ iff $a>b$. Find a representation matrix of R if $a_{1}=1, a_{2}=2, a_{3}=3, b_{1}=1, b_{2}=2$.

Solution: $R=\{(2,1),(3,1),(3,2)\}$, then we have the representation matrix of R is

$$
\mathbf{M}_{R}=\left[\begin{array}{ll}
0 & 0 \\
&
\end{array}\right.
$$

Example

Exercise

Let $A=\{1,2,3\}, B=\{1,2\}$, and R is a relation from A to B defined as: $a R b$ iff $a>b$. Find a representation matrix of R if $a_{1}=1, a_{2}=2, a_{3}=3, b_{1}=1, b_{2}=2$.

Solution: $R=\{(2,1),(3,1),(3,2)\}$, then we have the representation matrix of R is

$$
\mathbf{M}_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 &
\end{array}\right.
$$

Example

Exercise

Let $A=\{1,2,3\}, B=\{1,2\}$, and R is a relation from A to B defined as: $a R b$ iff $a>b$. Find a representation matrix of R if $a_{1}=1, a_{2}=2, a_{3}=3, b_{1}=1, b_{2}=2$.

Solution: $R=\{(2,1),(3,1),(3,2)\}$, then we have the representation matrix of R is

$$
\mathbf{M}_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right.
$$

Example

Exercise

Let $A=\{1,2,3\}, B=\{1,2\}$, and R is a relation from A to B defined as: $a R b$ iff $a>b$. Find a representation matrix of R if $a_{1}=1, a_{2}=2, a_{3}=3, b_{1}=1, b_{2}=2$.

Solution: $R=\{(2,1),(3,1),(3,2)\}$, then we have the representation matrix of R is

$$
\mathbf{M}_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 &
\end{array}\right.
$$

Example

Exercise

Let $A=\{1,2,3\}, B=\{1,2\}$, and R is a relation from A to B defined as: $a R b$ iff $a>b$. Find a representation matrix of R if $a_{1}=1, a_{2}=2, a_{3}=3, b_{1}=1, b_{2}=2$.

Solution: $R=\{(2,1),(3,1),(3,2)\}$, then we have the representation matrix of R is

$$
\mathbf{M}_{R}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right] .
$$

Digraph

Definition

Digraph (directed graph) is a graph contains set V of vertices and a set E in which its elements are ordered pairs of $V \times V$, which is called an edge. Vertex a is called initial vertex of edge (a, b), and b is the terminal vertex of edge (a, b). An edge of form (a, a) is called loop.

Digraph can only represent a relation on A, relation from A to B where $A \neq B$ cannot be represented as a digraph.

Exercise

Draw a digraph representing relation $R=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ in $\{1,2,3,4\}$.

Solution:

Exercise

Draw a digraph representing relation
$R=\{(1,1),(1,3),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1)\}$ in $\{1,2,3,4\}$.
Solution:

Digraph representing R.

Exercise

Draw a digraph representing relation
$R=\{(a, a),(a, b),(b, a),(b, c),(b, d),(c, a),(c, d),(d, b)\}$ in $\{a, b, c, d\}$.
Solution:

Exercise

Draw a digraph representing relation
$R=\{(a, a),(a, b),(b, a),(b, c),(b, d),(c, a),(c, d),(d, b)\}$ in $\{a, b, c, d\}$.
Solution:

Contents

(1) Cartesian Product
2) Definition and Basic Notation of Binary Relation
(3) Relation Presentations: Arrow diagram, matrix, and digraph

- Arrow Diagrams
- Tables
- Matrices
- Digraphs (Directed Graphs)
(4) Set Operations on Relations

Set Operations on Relations

Definition

Let A and B be two sets, R, R_{1}, and R_{2} be relations from A to B. We define
(1) $R_{1} \cup R_{2}=\left\{(a, b) \in A \times B \mid(a, b) \in R_{1}\right.$ or $\left.(a, b) \in R_{2}\right\}$. $R_{1} \cup R_{2}=\left\{(a, b) \in A \times B \mid\left(a R_{1} b\right) \vee\left(a \bar{R}_{2} b\right)\right\}$.
(0) $R_{1} \cap R_{2}=\left\{(a, b) \in A \times B \mid(a, b) \in R_{1}\right.$ and $\left.(a, b) \in R_{2}\right\}$. $R_{1} \cap R_{2}=\left\{(a, b) \in A \times B \mid\left(a R_{1} b\right) \wedge\left(a \overline{R_{2}} b\right)\right\}$.
(0) $R_{1} \oplus R_{2}=\left\{(a, b) \in A \times B \mid(a, b) \in R_{1}\right.$ or $(a, b) \in R_{2}$, but not both $\}$. $R_{1} \oplus R_{2}=\left\{(a, b) \in A \times B \mid(a, b) \in R_{1} \oplus(a, b) \in R_{2}\right\}$.
(-) $R_{1} \backslash R_{2}=\left\{(a, b) \in A \times B \mid(a, b) \in R_{1}\right.$ and $\left.(a, b) \notin R_{2}\right\}$. $R_{1} \backslash R_{2}=\left\{(a, b) \in A \times B \mid\left(a R_{1} b\right) \wedge \neg\left(a R_{2} b\right)\right\}$.

- $\neg R=\{(a, b) \in A \times B \mid(a, b) \notin R\}$. $\neg R$ can be written as \bar{R} $\neg R=\{(a, b) \in A \times B \mid \neg(a R b)\}$.
(0) $R^{-1}=\{(b, a) \in B \times A \mid(a, b) \in R\}$.

Exercise

Let $A=\{a, b, c\}$ and $B=\{a, b, c, d\}$. If R_{1} and R_{2} are relations from A to B where:

$$
\begin{aligned}
& R_{1}=\{(a, a),(b, b),(c, c)\} \\
& R_{2}=\{(a, a),(a, b),(a, c),(a, d)\}
\end{aligned}
$$

Find:
(1) $R_{1} \cap R_{2}$
(2) $R_{1} \cup R_{2}$

- $R_{1} \oplus R_{2}$
- $R_{1} \backslash R_{2}$
- $R_{2} \backslash R_{1}$
- $\neg R_{1}$ or \bar{R}_{1}
- R_{2}^{-1}.

Solution:

(1) $R_{1} \cap R_{2}=$

Solution:
(1) $R_{1} \cap R_{2}=\{(a, a),(b, b),(c, c)\} \cap\{(a, a),(a, b),(a, c),(a, d)\}=\{(a, a)\}$.
(2) $R_{1} \cup R_{2}=$

Solution:
(1) $R_{1} \cap R_{2}=\{(a, a),(b, b),(c, c)\} \cap\{(a, a),(a, b),(a, c),(a, d)\}=\{(a, a)\}$.
(3) $R_{1} \cup R_{2}=\{(a, a),(a, b),(a, c),(a, d),(b, b),(c, c)\}$.
(-) $R_{1} \oplus R_{2}=$

Solution:
(1) $R_{1} \cap R_{2}=\{(a, a),(b, b),(c, c)\} \cap\{(a, a),(a, b),(a, c),(a, d)\}=\{(a, a)\}$.
(3) $R_{1} \cup R_{2}=\{(a, a),(a, b),(a, c),(a, d),(b, b),(c, c)\}$.

- $R_{1} \oplus R_{2}=\{(a, b),(a, c),(a, d),(b, b),(c, c)\}$.
(1) $R_{1} \backslash R_{2}=$

Solution:
(1) $R_{1} \cap R_{2}=\{(a, a),(b, b),(c, c)\} \cap\{(a, a),(a, b),(a, c),(a, d)\}=\{(a, a)\}$.
(3) $R_{1} \cup R_{2}=\{(a, a),(a, b),(a, c),(a, d),(b, b),(c, c)\}$.

- $R_{1} \oplus R_{2}=\{(a, b),(a, c),(a, d),(b, b),(c, c)\}$.
- $R_{1} \backslash R_{2}=\{(b, b),(c, c)\}$.
- $R_{2} \backslash R_{1}=$

Solution:
(1) $R_{1} \cap R_{2}=\{(a, a),(b, b),(c, c)\} \cap\{(a, a),(a, b),(a, c),(a, d)\}=\{(a, a)\}$.
(2) $R_{1} \cup R_{2}=\{(a, a),(a, b),(a, c),(a, d),(b, b),(c, c)\}$.
(0) $R_{1} \oplus R_{2}=\{(a, b),(a, c),(a, d),(b, b),(c, c)\}$.

- $R_{1} \backslash R_{2}=\{(b, b),(c, c)\}$.
- $R_{2} \backslash R_{1}=\{(a, b),(a, c),(a, d)\}$.
(-) $\neg R_{1}=\bar{R}_{1}=$

Solution:
(1) $R_{1} \cap R_{2}=\{(a, a),(b, b),(c, c)\} \cap\{(a, a),(a, b),(a, c),(a, d)\}=\{(a, a)\}$.
(3) $R_{1} \cup R_{2}=\{(a, a),(a, b),(a, c),(a, d),(b, b),(c, c)\}$.

- $R_{1} \oplus R_{2}=\{(a, b),(a, c),(a, d),(b, b),(c, c)\}$.
- $R_{1} \backslash R_{2}=\{(b, b),(c, c)\}$.
(-) $R_{2} \backslash R_{1}=\{(a, b),(a, c),(a, d)\}$.
- $\neg R_{1}=\bar{R}_{1}=\{(a, b),(a, c),(a, d),(b, a),(b, c),(b, d),(c, a),(c, b),(c, d)\}$.
($R_{2}^{-1}=$

Solution:
(1) $R_{1} \cap R_{2}=\{(a, a),(b, b),(c, c)\} \cap\{(a, a),(a, b),(a, c),(a, d)\}=\{(a, a)\}$.
(2) $R_{1} \cup R_{2}=\{(a, a),(a, b),(a, c),(a, d),(b, b),(c, c)\}$.

- $R_{1} \oplus R_{2}=\{(a, b),(a, c),(a, d),(b, b),(c, c)\}$.
(-) $R_{1} \backslash R_{2}=\{(b, b),(c, c)\}$.
(-) $R_{2} \backslash R_{1}=\{(a, b),(a, c),(a, d)\}$.
- $\neg R_{1}=\bar{R}_{1}=\{(a, b),(a, c),(a, d),(b, a),(b, c),(b, d),(c, a),(c, b),(c, d)\}$.
- $R_{2}^{-1}=\{(a, a),(b, a),(c, a),(d, a)\}$.

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$. So $R_{1} \cup R_{2}=$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$. So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$.

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$. So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(0) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.

- $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(0) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.

- $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(0) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.

- $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.
(3) $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow x<y$ and $x \leq y \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.
(3) $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow x<y$ and $x \leq y \Leftrightarrow x<y$. So $R_{1} \backslash R_{2}=$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.
(3) $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow x<y$ and $x \leq y \Leftrightarrow x<y$. So $R_{1} \backslash R_{2}=R_{1}$.
(0) With the same reasoning in number $3, R_{2} \backslash R_{1}=$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.
(3) $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow x<y$ and $x \leq y \Leftrightarrow x<y$. So $R_{1} \backslash R_{2}=R_{1}$.
((With the same reasoning in number $3, R_{2} \backslash R_{1}=R_{2}$.
(0) $(x, y) \in R_{1} \oplus R_{2}$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.
(3) $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow x<y$ and $x \leq y \Leftrightarrow x<y$. So $R_{1} \backslash R_{2}=R_{1}$.
(9) With the same reasoning in number $3, R_{2} \backslash R_{1}=R_{2}$.
(5) $(x, y) \in R_{1} \oplus R_{2} \Leftrightarrow(x, y) \in R_{1} \cup R_{2}$ and $(x, y) \notin R_{1} \cap R_{2} \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.
(3) $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow x<y$ and $x \leq y \Leftrightarrow x<y$. So $R_{1} \backslash R_{2}=R_{1}$.
(9) With the same reasoning in number $3, R_{2} \backslash R_{1}=R_{2}$.
(0) $(x, y) \in R_{1} \oplus R_{2} \Leftrightarrow(x, y) \in R_{1} \cup R_{2}$ and $(x, y) \notin R_{1} \cap R_{2} \Leftrightarrow x \neq y$ and $(x, y) \notin \emptyset \Leftrightarrow$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.
(3) $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow x<y$ and $x \leq y \Leftrightarrow x<y$. So $R_{1} \backslash R_{2}=R_{1}$.
(9) With the same reasoning in number $3, R_{2} \backslash R_{1}=R_{2}$.
(5) $(x, y) \in R_{1} \oplus R_{2} \Leftrightarrow(x, y) \in R_{1} \cup R_{2}$ and $(x, y) \notin R_{1} \cap R_{2} \Leftrightarrow x \neq y$ and $(x, y) \notin \emptyset \Leftrightarrow x \neq y$. So $R_{1} \oplus R_{2}=$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.
(3) $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow x<y$ and $x \leq y \Leftrightarrow x<y$. So $R_{1} \backslash R_{2}=R_{1}$.
(9) With the same reasoning in number $3, R_{2} \backslash R_{1}=R_{2}$.
(5) $(x, y) \in R_{1} \oplus R_{2} \Leftrightarrow(x, y) \in R_{1} \cup R_{2}$ and $(x, y) \notin R_{1} \cap R_{2} \Leftrightarrow x \neq y$ and $(x, y) \notin \emptyset \Leftrightarrow x \neq y$. So $R_{1} \oplus R_{2}=R_{1} \cup R_{2}=$

Exercise

Let R_{1} be a relation on \mathbb{R} defined as: $x R_{1} y$ iff $x<y$. Let R_{2} be a relation on \mathbb{R} defined as: $x R_{2} y$ iff $x>y$. Find all relations defined as: $R_{1} \cup R_{2}, R_{1} \cap R_{2}$, $R_{1} \backslash R_{2}, R_{2} \backslash R_{1}$, and $R_{1} \oplus R_{2}$.

Solution:
(1) $(x, y) \in R_{1} \cup R_{2} \Leftrightarrow(x, y) \in R_{1}$ or $(x, y) \in R_{2} \Leftrightarrow x<y$ or $x>y \Leftrightarrow x \neq y$.

So $R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in R_{1} \cap R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \in R_{2} \Leftrightarrow x<y$ and $x>y$. Because it is not possible that $x<y$ and $x>y$ both happens, for all $x, y \in \mathbb{R}$, then $R_{1} \cap R_{2}=\emptyset$.
(3) $(x, y) \in R_{1} \backslash R_{2} \Leftrightarrow(x, y) \in R_{1}$ and $(x, y) \notin R_{2} \Leftrightarrow x<y$ and $\neg(x>y) \Leftrightarrow x<y$ and $x \leq y \Leftrightarrow x<y$. So $R_{1} \backslash R_{2}=R_{1}$.
(9) With the same reasoning in number $3, R_{2} \backslash R_{1}=R_{2}$.
(5) $(x, y) \in R_{1} \oplus R_{2} \Leftrightarrow(x, y) \in R_{1} \cup R_{2}$ and $(x, y) \notin R_{1} \cap R_{2} \Leftrightarrow x \neq y$ and $(x, y) \notin \emptyset \Leftrightarrow x \neq y$. So $R_{1} \oplus R_{2}=R_{1} \cup R_{2}=\{(x, y) \mid x \neq y\}$.

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(0) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(0) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$.

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(0) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(0) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y)$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$.

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$. So $(x, y) \in \bar{R}$ iff $x \geq y$, or $\bar{R}=\{(x, y) \mid x \geq y\}$.

Exercise

Let S be a relation on \mathbb{R} defined as: $x S y$ iff $x \neq y$. Find all relations defined as: S^{-1}, \bar{S}.

Solution:

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$. So $(x, y) \in \bar{R}$ iff $x \geq y$, or $\bar{R}=\{(x, y) \mid x \geq y\}$.

Exercise

Let S be a relation on \mathbb{R} defined as: $x S y$ iff $x \neq y$. Find all relations defined as: S^{-1}, \bar{S}.

Solution:
(1) $(x, y) \in S^{-1} \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$. So $(x, y) \in \bar{R}$ iff $x \geq y$, or $\bar{R}=\{(x, y) \mid x \geq y\}$.

Exercise

Let S be a relation on \mathbb{R} defined as: $x S y$ iff $x \neq y$. Find all relations defined as: S^{-1}, \bar{S}.

Solution:
(c) $(x, y) \in S^{-1} \Leftrightarrow(y, x) \in S \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$. So $(x, y) \in \bar{R}$ iff $x \geq y$, or $\bar{R}=\{(x, y) \mid x \geq y\}$.

Exercise

Let S be a relation on \mathbb{R} defined as: $x S y$ iff $x \neq y$. Find all relations defined as: S^{-1}, \bar{S}.

Solution:
(1) $(x, y) \in S^{-1} \Leftrightarrow(y, x) \in S \Leftrightarrow y \neq x$.

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(0) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$. So $(x, y) \in \bar{R}$ iff $x \geq y$, or $\bar{R}=\{(x, y) \mid x \geq y\}$.

Exercise

Let S be a relation on \mathbb{R} defined as: $x S y$ iff $x \neq y$. Find all relations defined as: S^{-1}, \bar{S}.

Solution:
(1) $(x, y) \in S^{-1} \Leftrightarrow(y, x) \in S \Leftrightarrow y \neq x$. So $(x, y) \in S^{-1}$ iff $x \neq y$ (because $x \neq y$ is equivalent to $y \neq x)$, or $S^{-1}=S=\{(x, y) \mid x \neq y\}$.

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(0) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$. So $(x, y) \in \bar{R}$ iff $x \geq y$, or $\bar{R}=\{(x, y) \mid x \geq y\}$.

Exercise

Let S be a relation on \mathbb{R} defined as: $x S y$ iff $x \neq y$. Find all relations defined as: S^{-1}, \bar{S}.

Solution:
(1) $(x, y) \in S^{-1} \Leftrightarrow(y, x) \in S \Leftrightarrow y \neq x$. So $(x, y) \in S^{-1}$ iff $x \neq y$ (because $x \neq y$ is equivalent to $y \neq x)$, or $S^{-1}=S=\{(x, y) \mid x \neq y\}$.
($0(x, y) \in \bar{S} \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$. So $(x, y) \in \bar{R}$ iff $x \geq y$, or $\bar{R}=\{(x, y) \mid x \geq y\}$.

Exercise

Let S be a relation on \mathbb{R} defined as: $x S y$ iff $x \neq y$. Find all relations defined as: S^{-1}, \bar{S}.

Solution:
(1) $(x, y) \in S^{-1} \Leftrightarrow(y, x) \in S \Leftrightarrow y \neq x$. So $(x, y) \in S^{-1}$ iff $x \neq y$ (because $x \neq y$ is equivalent to $y \neq x)$, or $S^{-1}=S=\{(x, y) \mid x \neq y\}$.
(0) $(x, y) \in \bar{S} \Leftrightarrow(x, y) \notin S \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$. So $(x, y) \in \bar{R}$ iff $x \geq y$, or $\bar{R}=\{(x, y) \mid x \geq y\}$.

Exercise

Let S be a relation on \mathbb{R} defined as: $x S y$ iff $x \neq y$. Find all relations defined as: S^{-1}, \bar{S}.

Solution:
(1) $(x, y) \in S^{-1} \Leftrightarrow(y, x) \in S \Leftrightarrow y \neq x$. So $(x, y) \in S^{-1}$ iff $x \neq y$ (because $x \neq y$ is equivalent to $y \neq x)$, or $S^{-1}=S=\{(x, y) \mid x \neq y\}$.
($(x, y) \in \bar{S} \Leftrightarrow(x, y) \notin S \Leftrightarrow \neg(x \neq y) \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{R} defined as: $x R y$ iff $x<y$. Find all relations defined as: R^{-1}, \bar{R}.

Solution:
(1) $(x, y) \in R^{-1} \Leftrightarrow(y, x) \in R \Leftrightarrow y<x$. So $(x, y) \in R^{-1}$ iff $x>y$, or $R^{-1}=\{(x, y) \mid x>y\}$.
(2) $(x, y) \in \bar{R} \Leftrightarrow(x, y) \notin R \Leftrightarrow \neg(x<y) \Leftrightarrow(x \geq y)$. So $(x, y) \in \bar{R}$ iff $x \geq y$, or $\bar{R}=\{(x, y) \mid x \geq y\}$.

Exercise

Let S be a relation on \mathbb{R} defined as: $x S y$ iff $x \neq y$. Find all relations defined as: S^{-1}, \bar{S}.

Solution:
(1) $(x, y) \in S^{-1} \Leftrightarrow(y, x) \in S \Leftrightarrow y \neq x$. So $(x, y) \in S^{-1}$ iff $x \neq y$ (because $x \neq y$ is equivalent to $y \neq x)$, or $S^{-1}=S=\{(x, y) \mid x \neq y\}$.
(2) $(x, y) \in \bar{S} \Leftrightarrow(x, y) \notin S \Leftrightarrow \neg(x \neq y) \Leftrightarrow(x=y)$. Then $(x, y) \in \bar{S}$ iff $x=y$, or $\bar{S}=\{(x, y) \mid x=y\}=\{(x, x) \mid x \in \mathbb{R}\}$.

Exercise

Let R be a relation on \mathbb{Z} defined as: $x R y$ iff $x \leq y$. Find relation R^{-1} and relation \bar{R} (or relation $\neg R$).

Solution:
(c) $(a, b) \in R^{-1} \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{Z} defined as: $x R y$ iff $x \leq y$. Find relation R^{-1} and relation \bar{R} (or relation $\neg R$).

Solution:
(1) $(a, b) \in R^{-1} \Leftrightarrow(b, a) \in R \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{Z} defined as: $x R y$ iff $x \leq y$. Find relation R^{-1} and relation \bar{R} (or relation $\neg R$).

Solution:
(1) $(a, b) \in R^{-1} \Leftrightarrow(b, a) \in R \Leftrightarrow b \leq a$.

Exercise

Let R be a relation on \mathbb{Z} defined as: $x R y$ iff $x \leq y$. Find relation R^{-1} and relation \bar{R} (or relation $\neg R$).

Solution:
(0) $(a, b) \in R^{-1} \Leftrightarrow(b, a) \in R \Leftrightarrow b \leq a$. So $x R^{-1} y$ iff

Exercise

Let R be a relation on \mathbb{Z} defined as: $x R y$ iff $x \leq y$. Find relation R^{-1} and relation \bar{R} (or relation $\neg R$).

Solution:
(1) $(a, b) \in R^{-1} \Leftrightarrow(b, a) \in R \Leftrightarrow b \leq a$. So $x R^{-1} y$ iff $x \geq y$.
(0) $(a, b) \in \bar{R} \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{Z} defined as: $x R y$ iff $x \leq y$. Find relation R^{-1} and relation \bar{R} (or relation $\neg R$).

Solution:
(1) $(a, b) \in R^{-1} \Leftrightarrow(b, a) \in R \Leftrightarrow b \leq a$. So $x R^{-1} y$ iff $x \geq y$.
(3) $(a, b) \in \bar{R} \Leftrightarrow(a, b) \notin R \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{Z} defined as: $x R y$ iff $x \leq y$. Find relation R^{-1} and relation \bar{R} (or relation $\neg R$).

Solution:
(1) $(a, b) \in R^{-1} \Leftrightarrow(b, a) \in R \Leftrightarrow b \leq a$. So $x R^{-1} y$ iff $x \geq y$.
(0) $(a, b) \in \bar{R} \Leftrightarrow(a, b) \notin R \Leftrightarrow \neg(a \leq b) \Leftrightarrow$

Exercise

Let R be a relation on \mathbb{Z} defined as: $x R y$ iff $x \leq y$. Find relation R^{-1} and relation \bar{R} (or relation $\neg R$).

Solution:
(1) $(a, b) \in R^{-1} \Leftrightarrow(b, a) \in R \Leftrightarrow b \leq a$. So $x R^{-1} y$ iff $x \geq y$.
(3) $(a, b) \in \bar{R} \Leftrightarrow(a, b) \notin R \Leftrightarrow \neg(a \leq b) \Leftrightarrow(a>b)$.

Exercise

Let R be a relation on \mathbb{Z} defined as: $x R y$ iff $x \leq y$. Find relation R^{-1} and relation \bar{R} (or relation $\neg R$).

Solution:
(1) $(a, b) \in R^{-1} \Leftrightarrow(b, a) \in R \Leftrightarrow b \leq a$. So $x R^{-1} y$ iff $x \geq y$.
(0) $(a, b) \in \bar{R} \Leftrightarrow(a, b) \notin R \Leftrightarrow \neg(a \leq b) \Leftrightarrow(a>b)$. Then $x \bar{R} y$ iff $x>y$.

Important Theorem

Theorem

Let A and B be two sets, R and S be relations from A to B, then
(1) $\operatorname{dom}\left(R^{-1}\right)=\operatorname{ran}(R)$
(3) $\operatorname{ran}\left(R^{-1}\right)=\operatorname{dom}(R)$
(0) R^{-1} is a relation from B to A

- $\left(R^{-1}\right)^{-1}=R$
© $R \subseteq S$ iff $R^{-1} \subseteq S^{-1}$.

