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Cartesian Product

Cartesian Product

Definition
Let A and B be two sets, Cartesian product of A and B is written as A×B and
defined as A×B := {(a, b) | a ∈ A, b ∈ B}. In this case, (a, b) is called an
ordered pair or 2-tuple.

Definition
Ordered pairs (a, b) and (c, d) are equal iff a = c and b = d.

Example
If A = {1, 2} and B = {a, b, c} then

A×B =

{(1, a) , (1, b) , (1, c) , (2, a) , (2, b) , (2, c)} and
B ×A = {(a, 1) , (a, 2) , (b, 1) , (b, 2) , (c, 1) , (c, 2)} .

We can see that A×B 6= B ×A, so, in general, Cartesian product is not
commutative.
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Cartesian Product

Definition
Let A1, A2, . . . , An be n sets, the Cartesian product of A1, A2, . . . , An is written
as A1 ×A2 × · · · ×An and defined as follows

A1 ×A2 × · · · ×An = {(a1, a2, . . . , an) | ai ∈ Ai for i = 1, 2, . . . , n} .

In this case, (a1, a2, . . . , an) is called ordered n-tuple (or n-tuple for short).

If A1 = A2 = · · · = An = A, we can write A×A× · · · ×A as An. Two n-tuple
(a1, a2, . . . , an) and (b1, b2, . . . , bn) are equal iff ai = bi for every i = 1, 2, . . . , n.
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Cartesian Product

Some Important Theorems

Theorem
For A and B sets, we have

1 (a, b) ∈ A×B ⇔ (a ∈ A) ∧ (b ∈ B),
2 (a, b) ∈ A×B ⇔ (b, a) ∈ B ×A,
3 A = ∅ ⇒ A×B = B ×A = ∅,
4 A×B = B ×A⇔ (A = B) ∨ (A = ∅) ∨ (B = ∅).

Proof
Exercise.
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Cartesian Product

Theorem
Let A and B be two finite sets, then

|A×B| = |A| · |B| ,

with |A| , |B| , |A×B| is cardinality of set A, B, and A×B, respectively.

Proof
Exercise.
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Definition and Basic Notation of Binary Relation
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Definition and Basic Notation of Binary Relation

Binary Relation

Definition
Let A and B be two sets, binary relation from A to B is a subset of A×B.

If R is a relation from A to B, a ∈ A, and b ∈ B, then we write aRb if
(a, b) ∈ R.
We can say that aRb stated a is related to b. See that a ∈ A and b ∈ B.
Let a /Rb or aR̄b or ¬ (aRb) denote (a, b) 6∈ R, or a is not related to b.
Relation on A is relation from A to A. We have that relation on A is a
subset of A×A.
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Definition and Basic Notation of Binary Relation

Domain and Range of Relation

Definition
Let A and B be two sets and R be a relation from A to B. Domain of R,
denoted by dom (R), defined as

dom (R) := {a ∈ A | there exists b ∈ B such that aRb} .
dom (R) := {a ∈ A | ∃b ∈ B (aRb)} .

In other words, dom (R) is a set containing all elements in A related to at least
one element in B.
Range of R, denoted by ran (R), defined as

ran (R) := {b ∈ B | there exists a ∈ A such that aRb} .
ran (R) := {b ∈ B | ∃a ∈ A (aRb)} .

To simplify, ran (R) is a set containing all elements in B such that at least one
element in A is related to them.
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Definition and Basic Notation of Binary Relation

Examples

Example
Let A = {Alex,Ben,Cathy} is a set of students and B = {DM,C,DS,MV S}
is a set of courses. We have

A×B =



(Alex,DM) , (Alex,C) , (Alex,DS) , (Alex,MV S) ,
(Ben,DM) , (Ben,C) , (Ben,DS) , (Ben,MV S) ,

(Cathy,DM) , (Cathy, C) , (Cathy,DS) , (Cathy,MV S)

 .
Let R be a relation from A to B defined as: “student x is taking y course”and
we have these facts: Alex is taking DM and C, Ben is taking DM and DS, Cathy
is taking DM and MVS.
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Definition and Basic Notation of Binary Relation

Then

R =

 (Alex,DM) , (Alex,C) ,
(Ben,DM) , (Ben,DS) ,

(Cathy,DM) , (Cathy,MV S)

 .
We can see that R ⊆ A×B.
dom (R) =

{Alex,Ben,Cathy} = A.

ran (R) = {DM,C,DS,MV S} = B.

(Alex,DM) ∈ R or Alex R DM .
(Alex,MV S) 6∈ R or Alex /R MV S or Alex R̄ MV S or ¬ (Alex R MV S).
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Definition and Basic Notation of Binary Relation

Example
Let A = {1, 2} and B = {x, y}. Let R be a relation from A to B with
R = {(1, x) , (2, x) , (2, y)}, then dom (R) =

{1, 2} = A and
ran (R) = {x, y} = B.

Example
Let A = {2, 3, 4} and B = {2, 4, 8, 9, 15}. Let R be a relation from A to B
defined as: aRb iff a divides b, for a ∈ A and b ∈ B. Then

R = { (2, 2) , (2, 4) , (2, 8) , (3, 9) , (3, 15) , (4, 4) , (4, 8)} .

dom (R) = {2, 3, 4} = A.

ran (R) = {2, 4, 8, 9, 15} = B.
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Definition and Basic Notation of Binary Relation

Example
Let A = {2, 3, 4, 8, 9} and R is a relation on A defined as: aRb iff a is a prime
factor of b, for a, b ∈ A. Then

R = {

(2, 2) , (2, 4) , (2, 8) , (3, 3) , (3, 9)} .

dom (R) = {2, 3}, it is clear that dom (R) ⊂ A.
ran (R) = {2, 3, 4, 8, 9} = A.

Example
Let Z be the set of integers and R is a relation on Z defined as:

for a, b ∈ Z, then aRb iff a = b2.

Then

dom (R) =
{
x2 | x ∈ Z

}
.

ran (R) = {x | x ∈ Z} = Z.
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Relation Presentations: Arrow diagram, matrix, and digraph

Relation Representations of Relations over Finite Sets

If we have relations over finite sets, then we can represent those relations with:

1 arrow diagrams,
2 tables,
3 matrices, and
4 digraphs.
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Relation Presentations: Arrow diagram, matrix, and digraph Arrow Diagrams

Arrow Diagrams

Let:

1 R1 is a relation from A = {Amir,Budi, Cecep} to
B = {IF221, IF251, IF342, IF323} with

R1 =

{
(Amir, IF251) , (Amir, IF323) ,

(Budi, IF221) , (Budi, IF251) , (Cecep, IF323)

}
.

2 R2 is a relation from P = {2, 3, 4} to Q = {2, 4, 8, 9, 15} with
R2 = {(2, 2) , (2, 4) , (2, 8) , (3, 9) , (3, 15) , (4, 4) , (4, 8)}.

3 R3 is a relation on A = {2, 3, 4, 8, 9} with
R3 = {(2, 2) , (2, 4) , (2, 8) , (3, 3) , (3, 9)}.
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Relation Presentations: Arrow diagram, matrix, and digraph Arrow Diagrams

Arrow diagrams representation of R1, R2, and R3 are:

Amir

Budi

Cecep

IF221

IF251

IF342

IF323

2

3

4

2

4

8

9

15

2

3

4

8

9

2

3

4

8

9

A
B

P

Q
A A
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Relation Presentations: Arrow diagram, matrix, and digraph Tables

Tables

Let R2 be a relation from P to Q as defined above, then we can represent R2
with the following table.

dom (R2) ran (R2)
2 2
2 4
2 8
3 9
3 15
4 4
4 8
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Relation Presentations: Arrow diagram, matrix, and digraph Matrices

Representation Matrix of a Relation

Definition
Let A = {a1, a2, . . . , am} and B = {b1, b2, . . . , bn} be two non-empty finite sets
and R is a relation from A to B. Relation R can be represented as an |A| × |B|
matrix MR defined as

MR = [mij ] , with mij =

{
1, if (ai, bj) ∈ R
0, if (ai, bj) 6∈ R.

MR =

b1 b2 · · · · · · bn
a1 m11 m12 · · · · · · m1n

a2 m21 m22 · · · · · · m2n

...
...

...
. . .

...
...

...
...

. . .
...

am mm1 mm2 · · · · · · mmn

MR is called a representation matrix of R.
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Relation Presentations: Arrow diagram, matrix, and digraph Matrices

Example

Exercise
Let A = {1, 2, 3}, B = {1, 2}, and R is a relation from A to B defined as: aRb iff
a > b. Find a representation matrix of R if a1 = 1, a2 = 2, a3 = 3, b1 = 1, b2 = 2.

Solution:

R = {(2, 1) , (3, 1) , (3, 2)}, then we have the representation matrix of R
is

MR =

 0 0
1 0
1 1

 .
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Relation Presentations: Arrow diagram, matrix, and digraph Digraphs (Directed Graphs)

Digraph

Definition
Digraph (directed graph) is a graph contains set V of vertices and a set E in
which its elements are ordered pairs of V × V , which is called an edge. Vertex a is
called initial vertex of edge (a, b), and b is the terminal vertex of edge (a, b). An
edge of form (a, a) is called loop.

Digraph can only represent a relation on A, relation from A to B where A 6= B
cannot be represented as a digraph.
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Relation Presentations: Arrow diagram, matrix, and digraph Digraphs (Directed Graphs)

Exercise
Draw a digraph representing relation
R = {(1, 1) , (1, 3) , (2, 1) , (2, 3) , (2, 4) , (3, 1) , (3, 2) , (4, 1)} in {1, 2, 3, 4}.

Solution:

Digraph representing R.

MZI (SoC Tel-U) Relation 1 February 2023 25 / 34



Relation Presentations: Arrow diagram, matrix, and digraph Digraphs (Directed Graphs)

Exercise
Draw a digraph representing relation
R = {(1, 1) , (1, 3) , (2, 1) , (2, 3) , (2, 4) , (3, 1) , (3, 2) , (4, 1)} in {1, 2, 3, 4}.

Solution:

Digraph representing R.

MZI (SoC Tel-U) Relation 1 February 2023 25 / 34



Relation Presentations: Arrow diagram, matrix, and digraph Digraphs (Directed Graphs)

Exercise
Draw a digraph representing relation
R = {(a, a) , (a, b) , (b, a) , (b, c) , (b, d) , (c, a) , (c, d) , (d, b)} in {a, b, c, d}.

Solution:

a b

c d
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Set Operations on Relations

Set Operations on Relations

Definition
Let A and B be two sets, R, R1, and R2 be relations from A to B. We define

1 R1 ∪R2 = {(a, b) ∈ A×B | (a, b) ∈ R1 or (a, b) ∈ R2}.
R1 ∪R2 = {(a, b) ∈ A×B | (aR1b) ∨ (aR2b)}.

2 R1 ∩R2 = {(a, b) ∈ A×B | (a, b) ∈ R1 and (a, b) ∈ R2}.
R1 ∩R2 = {(a, b) ∈ A×B | (aR1b) ∧ (aR2b)}.

3 R1 ⊕R2 = {(a, b) ∈ A×B | (a, b) ∈ R1 or (a, b) ∈ R2, but not both}.
R1 ⊕R2 = {(a, b) ∈ A×B | (a, b) ∈ R1 ⊕ (a, b) ∈ R2}.

4 R1 rR2 = {(a, b) ∈ A×B | (a, b) ∈ R1 and (a, b) 6∈ R2}.
R1 rR2 = {(a, b) ∈ A×B | (aR1b) ∧ ¬ (aR2b)}.

5 ¬R = {(a, b) ∈ A×B | (a, b) 6∈ R}. ¬R can be written as R̄
¬R = {(a, b) ∈ A×B | ¬ (aRb)}.

6 R−1 = {(b, a) ∈ B ×A | (a, b) ∈ R}.
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Set Operations on Relations

Exercise
Let A = {a, b, c} and B = {a, b, c, d}. If R1 and R2 are relations from A to B
where:

R1 = {(a, a) , (b, b) , (c, c)}
R2 = {(a, a) , (a, b) , (a, c) , (a, d)}

Find:

1 R1 ∩R2
2 R1 ∪R2
3 R1 ⊕R2
4 R1 rR2
5 R2 rR1
6 ¬R1 or R̄1
7 R−12 .
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Set Operations on Relations

Solution:

1 R1 ∩R2 =

{(a, a) , (b, b) , (c, c)} ∩ {(a, a) , (a, b) , (a, c) , (a, d)} = {(a, a)}.
2 R1 ∪R2 = {(a, a) , (a, b) , (a, c) , (a, d) , (b, b) , (c, c)}.
3 R1 ⊕R2 = {(a, b) , (a, c) , (a, d) , (b, b) , (c, c)}.
4 R1 rR2 = {(b, b) , (c, c)}.
5 R2 rR1 = {(a, b) , (a, c) , (a, d)}.
6 ¬R1 = R̄1 = {(a, b) , (a, c) , (a, d) , (b, a) , (b, c) , (b, d) , (c, a) , (c, b) , (c, d)}.
7 R−12 = {(a, a) , (b, a) , (c, a) , (d, a)}.
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Set Operations on Relations

Exercise
Let R1 be a relation on R defined as: xR1y iff x < y. Let R2 be a relation on R
defined as: xR2y iff x > y. Find all relations defined as: R1 ∪R2, R1 ∩R2,
R1 rR2, R2 rR1, and R1 ⊕R2.

Solution:

1 (x, y) ∈ R1 ∪R2 ⇔

(x, y) ∈ R1 or (x, y) ∈ R2 ⇔ x < y or x > y ⇔ x 6= y.
So R1 ∪R2 = {(x, y) | x 6= y}.

2 (x, y) ∈ R1 ∩R2 ⇔ (x, y) ∈ R1 and (x, y) ∈ R2 ⇔ x < y and x > y.
Because it is not possible that x < y and x > y both happens, for all
x, y ∈ R, then R1 ∩R2 = ∅.

3 (x, y) ∈ R1 rR2 ⇔ (x, y) ∈ R1 and (x, y) 6∈ R2 ⇔ x < y and
¬ (x > y)⇔ x < y and x ≤ y ⇔ x < y. So R1 rR2 = R1.

4 With the same reasoning in number 3, R2 rR1 = R2.
5 (x, y) ∈ R1 ⊕R2 ⇔ (x, y) ∈ R1 ∪R2 and (x, y) 6∈ R1 ∩R2 ⇔ x 6= y and

(x, y) 6∈ ∅ ⇔ x 6= y. So R1 ⊕R2 = R1 ∪R2 = {(x, y) | x 6= y}.
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Set Operations on Relations

Important Theorem

Theorem
Let A and B be two sets, R and S be relations from A to B, then

1 dom
(
R−1

)
= ran (R)

2 ran
(
R−1

)
= dom (R)

3 R−1 is a relation from B to A
4
(
R−1

)−1
= R

5 R ⊆ S iff R−1 ⊆ S−1.
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