
Query Processing

08 | Query Processing (3)
CSH2D3 - Database System



Query Processing

Goals of the Meeting

Students know various 
ways to optimize 
query processing

01
Students can generate 
equivalent expressions 
when transforming 
relational algebra 
expression

02
Students can execute 
an SQL statement to 
view query evaluation 
plans in DBMS

03

2



Query Processing

Outline

Equivalence Rules

Cost based Optimization

Heuristic Optimization



Query Processing

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation



Query Processing

Introduction

• Alternative ways of evaluating a given query

• Equivalent expressions

• Different algorithms for each operation



Query Processing

Introduction (Cont.)

• An evaluation plan defines exactly what algorithm is used for each operation, 
and how the execution of the operations is coordinated.



Query Processing

Introduction (Cont.)

• Cost difference between evaluation plans for a query can be enormous

• E.g., seconds vs. days in some cases

• Steps in cost-based query optimization

1. Generate logically equivalent expressions using equivalence rules

2.   Annotate resultant expressions to get alternative query plans

3.   Choose the cheapest plan based on estimated cost

• Estimation of plan cost based on:

• Statistical information about relations. Examples:

• number of tuples, number of distinct values for an attribute

• Statistics estimation for intermediate results

• to compute cost of complex expressions

• Cost formulae for algorithms, computed using statistics



Query Processing

Generating Equivalent 
Expressions



Query Processing

Transformation of Relational Expressions

• Two relational algebra expressions are said to be equivalent if the two 
expressions generate the same set of tuples on every legal database instance

• Note: order of tuples is irrelevant

• we don’t care if they generate different results on databases that violate 
integrity constraints

• In SQL, inputs and outputs are multisets of tuples

• Two expressions in the multiset version of the relational algebra are said to 
be equivalent if the two expressions generate the same multiset of tuples on 
every legal database instance. 

• An equivalence rule says that expressions of two forms are equivalent

• Can replace expression of first form by second, or vice versa



Query Processing

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of 
individual selections.

σ1  2 
(E) ≡  σ1

(σ2 
(E))

2. Selection operations are commutative.
σ1

(σ2
(E)) ≡   σ2

(σ1
(E))

3. Only the last in a sequence of projection operations is needed, the others can 
be omitted.
 L1

( L2
(…( Ln

(E))…))     ≡      L1
(E)

where L1 ⊆ L2 … ⊆ Ln

4.    Selections can be combined with Cartesian products and theta joins.

a. σ (E1 x E2) ≡    E1⨝  E2

b. σ 1 
(E1⨝2

E2) ≡    E1⨝ 1∧2
E2



Query Processing

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

E1⨝ E2 ≡    E2⨝ E1

6.  (a) Natural join operations are associative:

(E1⨝ E2) ⨝ E3 ≡     E1⨝ (E2⨝ E3)

(b) Theta joins are associative in the following manner:

(E1⨝ 1
E2) ⨝ 2  3 

E3 ≡    E1⨝1  3
(E2⨝ 2

E3)

where 2 involves attributes from only E2 and E3.



Query Processing

Pictorial Depiction of Equivalence Rules



Query Processing

Equivalence Rules (Cont.)

7. The selection operation distributes over the theta join operation under 
the following two conditions:
(a)  When all the attributes in 0 involve only the attributes of one 

of the expressions (E1) being joined.

0 
(E1 ⨝ E2)      ≡    (0

(E1)) ⨝ E2

(b) When 1 involves only the attributes of E1 and 2 involves  
only the attributes of E2.

1  2
(E1⨝ E2)     ≡ (1

(E1))⨝ (2
(E2))



Query Processing

Equivalence Rules (Cont.)

8. The projection operation distributes over the theta join operation as follows:

(a) if  involves only attributes from L1  L2:
 L1  L2

(E1⨝ E2)     ≡      L1
(E1) ⨝ L2

(E2)

(b) In general, consider a join E1⨝ E2. 

• Let L1 and L2 be sets of attributes from E1 and E2, respectively.  

• Let L3 be attributes of E1 that are involved in join condition , but are not 
in L1  L2, and

• let L4 be attributes of E2 that are involved in join condition , but are not 
in L1  L2.
 L1  L2

(E1⨝ E2)     ≡     L1  L2
( L1  L3

(E1) ⨝ L2  L4
(E2))

Similar equivalences hold for outerjoin operations: ⟕, ⟖, and ⟗



Query Processing

Equivalence Rules (Cont.)

9.  The set operations union and intersection are commutative

E1  E2     ≡   E2  E1 

E1  E2     ≡   E2  E1

(set difference is not commutative).

10.  Set union and intersection are associative.

(E1  E2 )  E3    ≡ E1  (E2  E3)

(E1  E2 )  E3    ≡   E1  (E2  E3)

11.  The selection operation distributes over ,  and –. 

a.   (E1  E2)    ≡    (E1)  (E2)

b.   (E1  E2)    ≡  (E1)  (E2)

c.    (E1 – E2)    ≡    (E1) – (E2)

d.    (E1  E2)   ≡ (E1)  E2

e.    (E1 – E2)    ≡ (E1) – E2

preceding equivalence does not hold for 

12.  The projection operation distributes over union

L(E1  E2)     ≡ (L(E1))  (L(E2)) 



Query Processing

Transformation Example: Pushing Selections

• Query:  Find the names of all instructors in the Music department, along 
with the titles of the courses that they teach

• name, title(dept_name= ‘Music’

(instructor ⨝ (teaches ⨝course_id, title (course))))

• Transformation using rule 7a.

• name, title((dept_name= ‘Music’(instructor))⨝
(teaches ⨝course_id, title (course)))

• Performing the selection as early as possible reduces the size of the 
relation to be joined. 



Query Processing

Multiple Transformations



Query Processing

Join Ordering Example

• For all relations r1, r2, and r3,

(r1⨝ r2) ⨝ r3  = r1⨝ (r2⨝ r3 )

(Join Associativity)⨝

• If r2⨝ r3 is quite large and r1⨝ r2 is small, we choose

(r1⨝ r2) ⨝ r3

so that we compute and store a smaller temporary relation.



Query Processing

Join Ordering Example (Cont.)

• Consider the expression

name, title(dept_name= “Music” (instructor)⨝ teaches) ⨝ course_id, title (course))))

• Could compute   teaches ⨝course_id, title (course) first, and join result with 

dept_name= “Music” (instructor)

• but  the result of the first join is likely to be a large relation.

• Only a small fraction of the university’s instructors are likely to be from the 
Music department

• it is better to compute

dept_name= “Music” (instructor) ⨝ teaches 

first.



Query Processing

Cost Estimation

• Cost of each operator computer 

• Need statistics of input relations

• E.g., number of tuples, sizes of tuples

• Inputs can be results of sub-expressions

• Need to estimate statistics of expression results

• To do so, we require additional statistics

• E.g., number of distinct values for an attribute



Query Processing

Choice of Evaluation Plans

• Must consider the interaction of evaluation techniques when choosing 
evaluation plans

• choosing the cheapest algorithm for each operation independently may not 
yield best overall algorithm.  E.g.

• merge-join may be costlier than hash-join, but may provide a sorted 
output which reduces the cost for an outer level aggregation.

• nested-loop join may provide opportunity for pipelining

• Practical query optimizers incorporate elements of the following two broad 
approaches:

1. Search all the plans and choose the best plan in a cost-based fashion.

2. Uses heuristics to choose a plan.



Query Processing

Cost Based Optimization with Equivalence Rules

• Physical equivalence rules allow logical query plan to be converted to physical 
query plan specifying what algorithms are used for each operation.

• Efficient optimizer based on equivalent rules depends on

• A space efficient representation of expressions which avoids making multiple 
copies of subexpressions

• Efficient techniques for detecting duplicate derivations of expressions

• A form of dynamic programming based on memoization, which stores the 
best plan for a subexpression the first time it is optimized, and reuses in on 
repeated optimization calls on same subexpression

• Cost-based pruning techniques that avoid generating all plans

• Pioneered by the Volcano project and implemented in the SQL Server optimizer



Query Processing

Heuristic Optimization

• Cost-based optimization is expensive, even with dynamic programming.

• Systems may use heuristics to reduce the number of choices that must be made 
in a cost-based fashion.

• Heuristic optimization transforms the query-tree by using a set of rules that 
typically (but not in all cases) improve execution performance:

• Perform selection early (reduces the number of tuples)

• Perform projection early (reduces the number of attributes)

• Perform most restrictive selection and join operations (i.e., with smallest 
result size) before other similar operations.

• Some systems use only heuristics, others combine heuristics with partial 
cost-based optimization.



Query Processing

Viewing Query Evaluation Plans

• Most database support  explain <query>

• Displays plan chosen by query optimizer, along with cost estimates

• Some syntax variations between databases

• Oracle:  explain plan for <query> followed by select * from table 
(dbms_xplan.display)

• SQL Server:  set showplan_text on

• Some databases (e.g. PostgreSQL) support explain analyse <query>

• Shows actual runtime statistics found by running the query, in
addition to showing the plan

• Some databases (e.g. PostgreSQL) show cost as   f..l

• f is the cost of delivering first tuple and l is cost of delivering all 
results 



Query Processing

Exercise

Given the employee database as follow:

employee (empID, person_name, street, city)

works (empID, compID, salary)

company (compID, company_name, city)

Give 2 equivalent expressions from the relational algebra produced from the following queries:

1. Find the name and city of each employee who does not lives in “Miami”

2. Find the name of each employee whose salary is greater than equal to  $100000.

3. Find the name and salary of each employee whose salary is between $50000  and  
$100000.

4. Find the name of each employee who lives in “Miami” or whose salary is lower than 
$100000.

5. Find the company name and name of each employee who does not work for “BigBank”.

6. Find the company name, city, and name of each employee who lives in the same city as the 
company for which she or he works.

26



Query Processing

References

Silberschatz, Korth, and Sudarshan. Database System Concepts – 7th

Edition. McGraw-Hill. 2019. 

Slides adapted from Database System Concepts Slide.

Source: https://www.db-book.com/db7/slides-dir/index.html

27

https://www.db-book.com/db7/slides-dir/index.html


Query Processing 28


