
Query Processing

06 | Query Processing (2)
CSH2D3 - Database System

Query Processing

Goals of the Meeting

Students know how to
measures query costs

01
Students know various
algorithms for
selection and join
operations

02

2

Query Processing

Outline

Measures of Query Costs

Selection Algorithms

Join Algorithms

Query Processing 4

Steps of Query Processing

Query Processing

Basic Steps in Query Processing

1. Parsing and translation

2. Optimization

3. Evaluation

Query Processing

Basic Steps in Query Processing: Optimization

• A relational algebra expression may have many equivalent
expressions

• E.g., salary75000(salary(instructor)) is equivalent to

salary(salary75000(instructor))

• Each relational algebra operation can be evaluated using one of
several different algorithms

• Correspondingly, a relational-algebra expression can be evaluated in many
ways.

• Annotated expression specifying detailed evaluation strategy is called
an evaluation-plan. E.g.,:

• Use an index on salary to find instructors with salary < 75000,

• Or perform complete relation scan and discard instructors with salary 
75000

Query Processing

Basic Steps: Optimization (Cont.)

• Query Optimization: Amongst all equivalent evaluation plans choose the
one with lowest cost.

• Cost is estimated using statistical information from the
database catalog

• e.g.. number of tuples in each relation, size of tuples, etc.

• In this chapter we study

• How to measure query costs

• Algorithms for evaluating relational algebra operations

• How to combine algorithms for individual operations in order to
evaluate a complete expression

Query Processing

Measures of Query Cost

• Many factors contribute to time cost

• disk access, CPU, and network communication

• Cost can be measured based on

• response time, i.e. total elapsed time for answering query, or

• total resource consumption

• We use total resource consumption as cost metric

• Response time harder to estimate, and minimizing resource
consumption is a good idea in a shared database

• We ignore CPU costs for simplicity

• Real systems do take CPU cost into account

• Network costs must be considered for parallel systems

• We describe how estimate the cost of each operation

• We do not include cost to writing output to disk

Query Processing

Measures of Query Cost

• Disk cost can be estimated as:

• Number of seeks * average-seek-cost

• Number of blocks read * average-block-read-cost

• Number of blocks written * average-block-write-cost

• For simplicity we just use the number of block transfers from disk and the
number of seeks as the cost measures

• tT – time to transfer one block

• Assuming for simplicity that write cost is same as read cost

• tS – time for one seek

• Cost for b block transfers plus S seeks
b * tT + S * tS

• tS and tT depend on where data is stored; with 4 KB blocks:

• High end magnetic disk: tS = 4 msec and tT =0.1 msec

• SSD: tS = 20-90 microsec and tT = 2-10 microsec for 4KB

Query Processing

Measures of Query Cost (Cont.)

• Required data may be buffer resident already, avoiding disk I/O

• But hard to take into account for cost estimation

• Several algorithms can reduce disk IO by using extra buffer space

• Amount of real memory available to buffer depends on other
concurrent queries and OS processes, known only during execution

• Worst case estimates assume that no data is initially in buffer and only
the minimum amount of memory needed for the operation is available

• But more optimistic estimates are used in practice

Query Processing

Selection Operation

• File scan

• Algorithm A1 (linear search). Scan each file block and test all records to see
whether they satisfy the selection condition.

• Cost estimate = br block transfers + 1 seek

• br denotes number of blocks containing records from relation r

• If selection is on a key attribute, can stop on finding record

• cost = (br /2) block transfers + 1 seek

• Linear search can be applied regardless of

• selection condition or

• ordering of records in the file, or

• availability of indices

• Note: binary search generally does not make sense since data is not stored
consecutively

• except when there is an index available,

• and binary search requires more seeks than index search

Query Processing

Selections Using Indices

• Index scan – search algorithms that use an index

• selection condition must be on search-key of index.

• A2 (clustering index, equality on key). Retrieve a single record that satisfies the
corresponding equality condition

• Cost = (hi + 1) * (tT + tS)

• A3 (clustering index, equality on nonkey) Retrieve multiple records.

• Records will be on consecutive blocks

• Let b = number of blocks containing matching records

• Cost = hi * (tT + tS) + tS + tT * b

Query Processing

Selections Using Indices

• A4 (secondary index, equality on key/non-key).

• Retrieve a single record if the search-key is a candidate key

• Cost = (hi + 1) * (tT + tS)

• Retrieve multiple records if search-key is not a candidate key

• each of n matching records may be on a different block

• Cost = (hi + n) * (tT + tS)

• Can be very expensive!

Query Processing

Selections Involving Comparisons

• Can implement selections of the form AV (r) or A  V(r) by using

• a linear file scan,

• or by using indices in the following ways:

• A5 (clustering index, comparison). (Relation is sorted on A)

• For A  V(r) use index to find first tuple  v and scan relation sequentially
from there

• For AV (r) just scan relation sequentially till first tuple > v; do not use
index

• A6 (secondary index, comparison).

• For A  V(r) use index to find first index entry  v and scan index
sequentially from there, to find pointers to records.

• For AV (r) just scan leaf pages of index finding pointers to records, till
first entry > v

• In either case, retrieve records that are pointed to

• requires an I/O per record; Linear file scan may be cheaper!

Query Processing

Implementation of Complex Selections

• Conjunction: 1 2. . . n(r)

• A7 (conjunctive selection using one index).

• Select a combination of i and algorithms A1 through A7 that results in the
least cost for i (r).

• Test other conditions on tuple after fetching it into memory buffer.

• A8 (conjunctive selection using composite index).

• Use appropriate composite (multiple-key) index if available.

• A9 (conjunctive selection by intersection of identifiers).

• Requires indices with record pointers.

• Use corresponding index for each condition, and take intersection of all the
obtained sets of record pointers.

• Then fetch records from file

• If some conditions do not have appropriate indices, apply test in memory.

Query Processing

Algorithms for Complex Selections

• Disjunction:1 2 . . . n (r).

• A10 (disjunctive selection by union of identifiers).

• Applicable if all conditions have available indices.

• Otherwise use linear scan.

• Use corresponding index for each condition, and take union of all the
obtained sets of record pointers.

• Then fetch records from file

• Negation: (r)

• Use linear scan on file

• If very few records satisfy , and an index is applicable to 

• Find satisfying records using index and fetch from file

Query Processing

Join Operation

• Several different algorithms to implement joins

• Nested-loop join

• Block nested-loop join

• Indexed nested-loop join

• Merge-join

• Hash-join

• Choice based on cost estimate

• Examples use the following information

• Number of records of student: 5,000 takes: 10,000

• Number of blocks of student: 100 takes: 400

Query Processing

Nested-Loop Join

• To compute the theta join r⨝  s
for each tuple tr in r do begin

for each tuple ts in s do begin
test pair (tr,ts) to see if they satisfy the join condition 
if they do, add tr • ts to the result.

end
end

• r is called the outer relation and s the inner relation of the join.

• Requires no indices and can be used with any kind of join condition.

• Expensive since it examines every pair of tuples in the two relations.

Query Processing

Nested-Loop Join (Cont.)

• In the worst case, if there is enough memory only to hold one block of each
relation, the estimated cost is

nr  bs + br block transfers, plus nr + br seeks

• If the smaller relation fits entirely in memory, use that as the inner relation.

• Reduces cost to br + bs block transfers and 2 seeks

• Assuming worst case memory availability cost estimate is

• with student as outer relation:

• 5000  400 + 100 = 2,000,100 block transfers,

• 5000 + 100 = 5100 seeks

• with takes as the outer relation

• 10000  100 + 400 = 1,000,400 block transfers and 10,400 seeks

• If smaller relation (student) fits entirely in memory, the cost estimate will be 500
block transfers.

• Block nested-loops algorithm (next slide) is preferable.

Query Processing

Block Nested-Loop Join

• Variant of nested-loop join in which every block of inner relation is
paired with every block of outer relation.

for each block Br of r do begin
for each block Bs of s do begin

for each tuple tr in Br do begin
for each tuple ts in Bs do begin

Check if (tr,ts) satisfy the join condition
if they do, add tr • ts to the result.

end
end

end
end

Query Processing

Block Nested-Loop Join (Cont.)

• Worst case estimate: br  bs + br block transfers + 2 * br seeks

• Each block in the inner relation s is read once for each block in the outer
relation

• Best case: br + bs block transfers + 2 seeks.

• Improvements to nested loop and block nested loop algorithms:

• In block nested-loop, use M — 2 disk blocks as blocking unit for outer
relations, where M = memory size in blocks; use remaining two blocks to
buffer inner relation and output

• Cost = br / (M-2)  bs + br block transfers +
2 br / (M-2) seeks

• If equi-join attribute forms a key or inner relation, stop inner loop on first
match

• Scan inner loop forward and backward alternately, to make use of the blocks
remaining in buffer (with LRU replacement)

• Use index on inner relation if available

Query Processing

Evaluation of Expressions

• So far: we have seen algorithms for individual operations

• Alternatives for evaluating an entire expression tree

• Materialization: generate results of an expression whose inputs are
relations or are already computed, materialize (store) it on disk.
Repeat.

• Pipelining: pass on tuples to parent operations even as an operation
is being executed

Query Processing

Materialization

• Materialized evaluation: evaluate one operation at a time, starting at
the lowest-level. Use intermediate results materialized into temporary
relations to evaluate next-level operations.

• E.g., in figure below, compute and store

then compute the store its join with instructor, and finally compute the
projection on name.

)("Watson" departmentbuilding=

Query Processing

Materialization (Cont.)

• Materialized evaluation is always applicable

• Cost of writing results to disk and reading them back can be quite high

• Our cost formulas for operations ignore cost of writing results to disk, so

• Overall cost = Sum of costs of individual operations +
cost of writing intermediate results to disk

• Double buffering: use two output buffers for each operation, when one is full
write it to disk while the other is getting filled

• Allows overlap of disk writes with computation and reduces execution time

Query Processing

Pipelining

• Pipelined evaluation: evaluate several operations simultaneously, passing the
results of one operation on to the next.

• E.g., in previous expression tree, don’t store result of

• instead, pass tuples directly to the join.. Similarly, don’t store result of join,
pass tuples directly to projection.

• Much cheaper than materialization: no need to store a temporary relation to
disk.

• Pipelining may not always be possible – e.g., sort, hash-join.

• For pipelining to be effective, use evaluation algorithms that generate output
tuples even as tuples are received for inputs to the operation.

• Pipelines can be executed in two ways: demand driven and producer driven

)("Watson" departmentbuilding=

Query Processing

Pipelining (Cont.)

• In demand driven or lazy evaluation

• system repeatedly requests next tuple from top level operation

• Each operation requests next tuple from children operations as required, in
order to output its next tuple

• In between calls, operation has to maintain “state” so it knows what to
return next

• In producer-driven or eager pipelining

• Operators produce tuples eagerly and pass them up to their parents

• Buffer maintained between operators, child puts tuples in buffer, parent
removes tuples from buffer

• if buffer is full, child waits till there is space in the buffer, and then
generates more tuples

• System schedules operations that have space in output buffer and can
process more input tuples

• Alternative name: pull and push models of pipelining

Query Processing

Exercise

Bank Database

branch(branch_name, branch_city, assets)

customer (customer_number, customer_name, customer_street, customer_city)

loan (loan_number, branch_name, amount)

borrower (customer_number, loan_number)

account (account_number, branch_name, balance)

depositor (customer_number, account_number)

27

Query Processing

Consider the bank database, where the primary keys are underlined, and the
following SQL query:

select T.branch name

from branch T, branch S

where T.assets > S.assets and S.branch city = “Brooklyn”

Write an efficient relational-algebra expression that is equivalent to this query and
list the algorithms available for the operations . Justify your choice.

28

Query Processing

Let relations r1(A, B, C) and r2(C, D, E) have the following properties: r1 has 20,000
tuples, r2 has 45,000 tuples, 25 tuples of r1 fit on one block, and 30 tuples of r2 fit
on one block. Estimate the number of block transfers and seeks required using
each of the following join strategies for r1 ⋈ r2:

a. Nested-loop join.

b. Block nested-loop join.

29

Query Processing

References

Silberschatz, Korth, and Sudarshan. Database System Concepts – 7th

Edition. McGraw-Hill. 2019.

Slides adapted from Database System Concepts Slide.

Source: https://www.db-book.com/db7/slides-dir/index.html

30

https://www.db-book.com/db7/slides-dir/index.html

Query Processing 31

