
PYTHON LANGUAGE

1

Web sites

 A Byte of Python

 https://python.swaroopch.com/

 Python 3 Tutorial

 http://www.python‐course.eu/python3_course.php

 The Python Tutorial

 https://docs.python.org/3.5/tutorial/index.html

2

Outline

 Basics

 Operators, Expressions, and Control Flow

 Functions

 Data Structures

 Modules

 Object Oriented Programming

 Input Output

 Exceptions

 Standard Library

 More

3

Basics: comments, literals

 Comments

 Comments are any text to the right of the # symbol

 Literal Constants

 A literal constant is a number like 5, 1.23, or a string like ’This is a string’ or "It’s
a string!".

 Quoting String with Single Quotes or double quotes

◼字串用單引號，或雙引號都可以

print('Hello World') # Note that print is a function
or:
Note that print is a function

print('Hello World')

4

Basics: numbers

 Numbers

 Numbers are mainly of two types ‐ integers and floats.

 An examples of an integer is 2 which is just a whole number. Examples of
floating point numbers (or floats for short) are 3.23 and 52.3E‐4.

◼ The E notation indicates powers of 10. In this case, 52.3E‐4 means 52.3 * 10ˆ‐4ˆ.

 There is no separate long type. The int type can be an integer of any size.

5

print function

 print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

 Print objects to the text stream file, separated by sep and followed by end.

 All non‐keyword arguments are converted to strings like str() does and
written to the stream, separated by sep and followed by end.

 Both sep and end must be strings; they can also be None, which means to use
the default values.

6

>>> x = 'spam'

>>> y = 99
>>> z = ['eggs']

>>> print(x, y, z) # Print three objects per defaults
spam 99 ['eggs']
>>> print(x, y, z, sep='') # Suppress separator

spam99['eggs']
>>> print(x, y, z, sep=', ') # Custom separator
spam, 99, ['eggs']

input function

 Input from Keyboard

 If the input function is called, the program will be stopped until the user has
given an input and has ended the input with the return key.

 input returns user input as a string.

7

while True:

value = input("Integer, please [q to quit]: ")
if value == 'q': # quit

break
number = int(value)
if number % 2 == 0: # an even number

continue
print(number, "squared is", number*number)

Integer, please
Integer, please

3 squared is 9
Integer, please

[q

[q

[q

to
to

to

quit]:

quit]:

quit]:

2

3

q

Basics: strings

 Strings

 Quoting String with Single Quotes or double quotes

◼字串用單引號’，或雙引號”都可以

 Triple Quotes

◼ specify multi‐line strings using triple quotes ‐ (""" or ”’).

◼ You can use single quotes and double quotes freely within the triple quotes.

'''This is a multi‐line string. This is the first line.
This is the second line.
"What's your name?," I asked.
He said "Bond, James Bond."
'''

8

Basics: strings

 Strings Are Immutable (不可變的)

 Once you have created a string, you cannot change it.

 The format method

 https://docs.python.org/3/library/string.html#formatstrings

 Sometimes we may want to construct strings from other information. This is where the
format() method is useful.

 Output:

age = 20

name = ‘Mike'
print('{0} was {1} years old when he wrote this
book'.format(name, age))
print('Why is {0} playing with that python?'.format(name))

9

Mike was 20 years old when he wrote this book
Why is Mike playing with that python?

Basics: strings

 { }: the numbers are optional

age = 20
name = ‘Mike'
print('{} was {} years old when he wrote this book'.format(name, age))
print('Why is {} playing with that python?'.format(name))

which will give the same exact output as the previous program.

 print() always ends with an invisible “new line” character (\n)

 To prevent this newline character from being printed, you can override the end parameter to
print:

print("a", end="")
print("b", end="")

ab

10

Output

Basics: strings

 Escape Sequences

 Suppose, you want to have a string which contains a single quote (’)

 For example, the string is What’s your name?.

 This can be done with the help of what is called an escape sequence.

 You specify the single quote as \’ – notice the backslash.

 you can specify the string as ’What\’s your name?’.

 Another way of specifying this specific string would be "What’s your
name?“ i.e. using double quotes.

11

Basics: strings

 What if you wanted to specify a two‐line string?

 use a triple quoted string

 or a newline character ‐ \n

◼ “This is the first line\nThis is the second line.”

 A single backslash at the end of the line indicates that the string is
continued in the next line, but no newline is added.

is equivalent to

"This is the first sentence. \
This is the second sentence."

"This is the first sentence. This is the second sentence."

12

Basics: strings

 Raw String

 If you need to specify some strings where no special processing such as
escape sequences are handled, then what you need is to specify a raw string
by prefixing r or R to the string.

r"Newlines are indicated by \n"

13

Strings as a sequence
14

 The Index

 Because the elements of a string are a sequence, we can associate each element
with an index, a location in the sequence:

 positive values count up from the left, beginning with index 0

 negative values count down from the right, starting with ‐1

Accessing an element
15

 A particular element of the string is accessed by the index of
the element surrounded by square brackets []

hello_str = 'Hello World'

print(hello_str[1]) => prints e

print(hello_str[-1]) => prints d

print(hello_str[11]) => ERROR

Slicing
16

 slicing is the ability to select a subsequence of the overall
sequence

 uses the syntax [start : finish], where:
 start is the index of where we start the subsequence

finish is the index of one after where we end the subsequence

 if either start or finish are not provided, it defaults to
the beginning of the sequence for start and the end of
the sequence for finish

half open range for slices
17

 slicing uses what is called a half‐open range

 the first index is included in the sequence

 the last index is one after what is included

Exercise
20

 Assume the variable date has been set to a string value of
the form mm/dd/yyyy, for example 09/08/2010. (Actual
numbers would appear in the string.)

 Write a program to assign to a variable named dayStr the
characters in date that contain the day. Then set
a variable day to the integer value corresponding to the
two digits in dayStr. Finally, output day.

 That is, input “09/08/2010”, output 08

Extended Slicing
21

 also takes three arguments:

[start:finish:step]

 defaults are:

start is beginning,finish is end, step is 1

my_str = 'hello world'

my_str[0:11:2]  'hlowrd'

 every other letter

Slicing with a step
22

In [6]: hello_str = "Hello World"

In [7]: hello_str[::2]

Out[7]: 'HloWrd'

In [8]: hello_str[::3]

Out[8]: 'HlWl'

In [9]: hello_str[::-1]

Out[9]: 'dlroW olleH'

In [10]: hello_str[::-2]

Out[10]: 'drWolH'

Exercise
23

 Given the strings s1 and s2, not necessarily of the same length, create a
new string consisting of alternating characters of s1 and s2

 that is, the first character of s1 followed by the first character of s2, followed
by the second character of s1, followed by the second character of s2, and so
on.

 Once the end of either string is reached, the remainder of the longer
string is added to the end of the new string.

 For example, if s1 contained "abc" and s2 contained "uvwxyz", then the
new string should contain "aubvcwxyz". Associate the new string with
the variable s3.

Identifier Naming

 Variables are examples of identifiers.

 The first character of the identifier must be a letter of the alphabet
(uppercase ASCII or lowercase ASCII or Unicode character) or an
underscore (‘_’).

 The rest of the identifier name can consist of letters (uppercase
ASCII or lowercase ASCII or Unicode character), underscores (‘_’)
or digits (0‐9).

 Identifier names are case‐sensitive.

24

Data Types

 The basic types are numbers and strings

 Create our own types using classes

 Object

 Python refers to anything used in a program as an object

 Instead of saying ‘the something’, we say ‘the object’.

 Python is strongly object‐oriented in the sense that everything is an object
including numbers, strings and functions.

 None
 None is a special type in Python that represents nothingness.

 For example, it is used to indicate that a variable has no value if it has a value
of None.

25

OPERATORS, EXPRESSIONS
AND CONTROL FLOW

26

Operators

 / (divide)

 13 / 3 gives 4.333333333333333

 // (floor division)

 13 // 3 gives 4.

 % (modulo)

 13 % 3 gives 1. ‐25.5 % 2.25 gives
1.5.

27

 + (plus)

 3 + 5 gives 8. ’a’ + ’b’ gives ’ab’

 ‐ (minus)

 ‐5.2 gives a negative number and
50 ‐ 24 gives 26

 * (multiply)

 2 * 3 gives 6. ’la’ * 3 gives ’lalala’.

 ** (power)

 3 ** 4 gives 81 (i.e. 3 * 3 * 3 * 3)

Operators

 << (left shift)

 2 << 2 gives 8 (i.e. 10→1000)

 >> (right shift)

 11 >> 1 gives 5.

 &, |, ^, ~ (bit‐wise AND, OR, XOR, invert)

 <, >, <=, >=, ==, !=

 not, and, or (Boolean NOT, AND, OR)

28

Operator precedence
Operator Description

lambda Lambda expression

if – else Conditional expression

or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in, is, is not, <, <=, >, >=, !=,
==

Comparisons, including membership tests and identity tests

| Bitwise OR

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, ‐ Addition and subtraction

*, @, /, //, % Multiplication, matrix multiplication division, remainder [5]

+x, ‐x, ~x Positive, negative, bitwise NOT

** Exponentiation [6]

await x Await expression

x[index], x[index:index],
x(arguments...), x.attribute

Subscription, slicing, call, attribute reference

(expressions...), [expressions...],
{key: value...}, {expressions...}

Binding or tuple display, list display, dictionary display, set display

Control Flow

 The if statement

30

number = 23
guess = int(input('Enter an integer : '))
if guess == number:

print('Congratulations, you guessed it.') # New block starts here
print('(but you do not win any prizes!)') # New block ends here

elif guess < number:
print('No, it is a little higher than that') # Another block
You can do whatever you want in a block ...

else:
print('No, it is a little lower than that')
you must have guessed > number to reach here

print('Done')

• elif and else parts are optional.
• colon : is to declare the start of an indented block.

• if, elif, else, while, for, def, class should be followed by an indented block.

input returns
user input as a
string.

Control Flow

 The while Statement

 A while statement can have an optional else clause.

31

number = 23
running = True
while running:

guess = int(input('Enter an integer : '))
if guess == number:

print('Congratulations, you guessed it.')
running = False # this causes the while loop to stop

elif guess < number:

print('No, it is a little higher than that.')
else:

print('No, it is a little lower than that.')

else:
print('The while loop is over.')
Do anything else you want to do here

print('Done')

True and False are
boolean constants

Control Flow

 The for loop

 range(100)➔ [0, 1, 2, …, 99]

 range(start, stop, step)
◼ range(1, 5, 2) gives [1, 3]. (step =2)

 If you omit start, the range begins at 0. The only required value is stop.
◼ range(5) = range(0, 5) gives the sequence [0, 1, 2, 3, 4]

32

/* C code */
int result = 0;
for(int i=0; i<100;
i++){

result += i;
}

Python code
result = 0
for i in range(100):

result += i

In [4]: print(list(range(5)))
[0, 1, 2, 3, 4]

Control Flow

 The for loop

 The for .. in statement is another looping statement which iterates over a
sequence of objects i.e. go through each item in a sequence.

 range(1, 5) gives the sequence [1, 2, 3, 4].

33

for i in range(1, 5): Output:

print(i) 1
else: 2

print('The for loop is over') 3
4
The for loop is over

Control Flow

 The for loop

 Note that range() generates a sequence of numbers, but it will generate only
one number at a time, when the for loop requests for the next item.
◼ If you want to see the full sequence of numbers immediately, use list(range()).

 for i in range(1,5) is equivalent to

for i in [1, 2, 3, 4]

 The else part is optional.

34

Control Flow

 The break Statement

 The break statement is used to break out of a loop statement

35

while True:
s = input('Enter something : ')
if s == 'quit':

break
print('Length of the string is', len(s))

print('Done')

Output:
Enter something : When the work is done
Length of the string is 21

Enter something : use Python!

Length of the string is 12

Enter something : quit
Done

Control Flow

 The continue Statement

 The continue statement is used to tell Python to skip the rest of the
statements in the current loop block and to continue to the next iteration of
the loop.

36

while True:
s = input('Enter something : ')
if s == 'quit':

break
if len(s) < 3:

print('Too small')
continue

print('Input is of sufficient length')

Output:
Enter something : a
Too small
Enter something : 12
Too small

Enter something : abc
Input is of sufficient length
Enter something : quit

Files

 You can open and use files for reading or writing by creating an object of
the file class

 When you are finished with the file, you call the close method to tell
Python that we are done using the file.

 File modes

37

38

Example (save as using_file.py):

poem = ‘’’\
Programming is fun
When the work is done

if you wanna make your work also fun:
use Python!

’’’
f = open(‘poem.txt’, ‘w’) # open for writing
f.write(poem) # write text to file
f.close() # close the file

f = open(‘poem.txt’)
if no mode is specified, read mode is assumed by default

while True:

line = f.readline()

if len(line) == 0: # Zero length indicates EOF
break

print(line, end=‘’)
f.close() # close the file

Output:
$ python3 using_file.py
Programming is fun
When the work is done

if you wanna make your work also fun:
use Python!

Example: Reverse file lines
39

40

https://docs.python.org/3/library/stdtypes.html#string‐methods Python string methods

String strip() method
41

 str.strip([chars]); (剝掉特定字元)

 Parameters
 chars − The characters to be removed from beginning or end of the

string.
 The method strip() returns a copy of the string in which all chars have

been stripped from the beginning and the end of the string (default
whitespace characters).

 Example
 str = "0000000this is string example....wow!!!0000000"
 print str.strip('0')
 Output: this is string example....wow!!!

String split() method
42

 str.split(sep=None, maxsplit=‐1)
 Return a list of the words in the string, using sep as the delimiter string.

 If maxsplit is given, at most maxsplit splits are done (thus, the list will have at
most maxsplit+1 elements).

 If maxsplit is not specified or ‐1, then there is no limit on the number of splits
(all possible splits are made).

 by default, if no argument is provided, split is on any whitespace character
(tab, blank, etc.)

>>> '1,2,3'.split(',')
['1', '2', '3']
>>> '1,2,3'.split(',', maxsplit=1)

['1', '2,3']
>>> '1,2,,3,'.split(',')
['1', '2', '', '3', '']

>>> '1 2 3'.split()
['1', '2', '3']
>>> '1 2 3'.split(maxsplit=1)

['1', '2 3']
>>> ' 1 2 3 '.split()
['1', '2', '3']

Files: with keyword

 It is good practice to use the with keyword when dealing with file objects.

 This has the advantage that the file is properly closed after its block
finishes, even if an exception is raised on the way.

43

>>> with open('workfile', 'r') as f:
... read_data = f.read()
>>> f.closed
True

FUNCTIONS

44

Functions

 Functions are defined using the def keyword.

45

def say_hello():
print('Hello World!')

End of function

say_hello() # call the function
say_hello() # call the function again

Output:
Hello World!
Hello World!

Naming
module_name, package_name, ClassName,
method_name, ExceptionName, function_name,
GLOBAL_CONSTANT_NAME, global_var_name,

instance_var_name, function_parameter_name,
local_var_name.

Function Parameters

 Parameters: the names given in the function definition

 Arguments: the values you supply in the function call

46

def print_max(a, b):
if a > b:

print(a, 'is maximum')
elif a == b:

print(a, 'is equal to', b)
else:

print(b, 'is maximum')

print_max(3, 4) # directly give literal values
x = 5
y = 7
print_max(x, y) # give variables as arguments

Output:
4 is maximum
7 is maximum

Local Variables

 When you declare variables inside a function definition, they are not
related in any way to other variables with the same names used
outside the function

 i.e. variable names are local to the function.

47

x = 50
def func(x):

print('x is', x)
x = 2
print('Changed local x to', x)

func(x)
print('x is still', x)

Output:
x is 50
Changed local x to 2
x is still 50

Using The global Statement

 If you want to assign a value to a name defined at the top level of the
program (i.e. not inside any kind of scope such as functions or
classes), then you have to tell Python that the name is not local, but
it is global.

48

x = 50
def func():

global x
print('x is', x)
x = 2
print('Changed global x to', x)

func()
print('Value of x is', x)

Output:
x is 50
Changed local x to 2
Value of x is 2

Default Argument Values
49

def say(message, times = 1):
print(message * times)

say('Hello')
say('World', 5)

Output:
Hello
WorldWorldWorldWorldWorld

Keyword Arguments

 You can give values for such parameters by naming them

 this is called keyword arguments ‐ we use the name (keyword) instead of the position

 we do not need to worry about the order of the arguments.

50

def func(a, b=5, c=10):

print('a is', a, 'and b is', b, 'and c is', c)

func(3, 7)
func(25, c=24)
func(c=50, a=100)

Output:
a is 3 and b is 7 and c is 10
a is 25 and b is 5 and c is 24

a is 100 and b is 5 and c is 50

VarArgs parameters

 Take any number of parameters, this can be achieved by using the stars

51

def total(initial=5, *numbers, **keywords):
count = initial
print(numbers)
print(keywords)
for number in numbers:

count += number
for key in keywords:

count += keywords[key]
return count

print(total(10, 1, 2, 3, vegetables=50, fruits=100))

 A starred parameter (*param): all the positional arguments from that point till the end are
collected as a tuple called ‘param’.

 A double‐starred parameter (**param): all the keyword arguments from that point till the end are
collected as a dictionary called ‘param’.

Output:
(1, 2, 3)
{'vegetables': 50, 'fruits': 100}
166

The lambda() Function

 In Python, a lambda function is an anonymous function expressed as a single
statement.

 Let’s first make an example that uses normal functions. We’ll define the function
edit_story() with arguments

 words—a list of words

 func—a function to apply to each word in words

52

>>> def edit_story(words, func):

... for word in words:

... print(func(word))

>>> stairs = ['thud', 'meow', 'thud', 'hiss']
>>> def enliven(word):

... return word.capitalize() + '!‘

>>> edit_story(stairs, enliven)

Out:
Thud!
Meow!
Thud!
Hiss!

The lambda() Function

 The enliven() function was so brief that we could replace it with a lambda:

 The lambda takes one argument, which we call word here.

 Everything between the colon and the terminating parenthesis is the
definition of the function.

53

>>> edit_story(stairs, lambda word: word.capitalize() + '!')
Thud!
Meow!
Thud!
Hiss!

Tuples

 A tuple is a sequence of immutable Python objects.

 Tuples are sequences, just like lists.

 The differences between tuples and lists are, the tuples cannot be changed unlike lists.

 Tuples use parentheses (), whereas lists use square brackets [].

 The empty tuple is written as two parentheses containing nothing

 To write a tuple containing a single value you have to include a comma, even though there is only
one value −

54

tup1 = ('physics', 'chemistry', 1997, 2000);

tup2 = (1, 2, 3, 4, 5);
tup3 = "a", "b", "c", "d";

tup1 = ();

tup1 = (50,);

Keyword‐only Parameters
55

total(10, 1, 2, 3, extra_number=50)

total(10, 1, 2, 3)
Raises error because we have not supplied a
default argument value for 'extra_number'

 Specify certain keyword parameters to be available as keyword‐only and not as
positional arguments, declared after a starred parameter

def total(initial=5, *numbers, extra_number):
count = initial
for number in numbers:

count += number
count += extra_number Output:
print(count) 66

Traceback (most recent call last):

File "keyword_only.py", line 12, in <module>
total(10, 1, 2, 3)
TypeError: total() needs keyword‐only
argument extra_number

return Statement

 The return statement is used to return from a function i.e. break out of the
function.

 We can optionally return a value from the function as well.

56

def maximum(x, y):

if x > y:
return x

elif x == y:

return 'The numbers are equal'
else:

return y

print(maximum(2, 3))

Output:
3

DocStrings
57

 DocStrings are an important tool that you should make use of since it helps to
document the program better and makes it easier to understand.

def printMax(x, y):

'''Prints the maximum of two numbers.

The two values must be integers.'''
x = int(x) # convert to integers, if possible
y = int(y)

if x > y:
print(x, 'is maximum')

else:
print(y, 'is maximum')

printMax(3, 5)
print(printMax. doc)

Output:
5 is maximum
Prints the maximum of two numbers.

The two values must be integers.

DATA STRUCTURES

58

Classes and objects

 Python is strongly object‐oriented in the sense that everything is an object
including numbers, strings and functions.

 A class creates a new type. (class用來定義資料型態)

 Objects are instances of the class. (object類似變數)

 Fields: Variables that belong to an object or class.

 Fields are of two types

◼ instance variables: belong to each instance/object of the class

◼ class variables: belong to the class itself

 Methods: functions defined for use with respect to that class/object only.

 Attributes: the fields and methods of that class.

59

List

 Holds an ordered collection of items

 you can store a sequence of items in a list.

 put commas (,) in between them.

 The list of items should be enclosed in square brackets []

 Once you have created a list, you can add, remove or search for items in the
list.

◼ Since we can add and remove items, we say that a list is a mutable data type i.e.
this type can be altered.

60

Similarities with strings
61

 Concatenate: + (but only of lists)

 Repeat: *

 indexing (the [] operator)

 slicing ([:])

 membership (the in operator)

 len (the length operator)

 Create an empty list: a = []

 len(a) ➔ 0

 check if a list is empty? if not a:
print("List is empty")

Example (save as using_list.py)
62

This is my shopping list
shoplist = ['apple', 'mango', 'carrot', 'banana']
print(‘I have’, len(shoplist), ‘items to purchase.’)

print(‘These items are:’, end=‘ ‘)
for item in shoplist:

print(item, end=‘ ‘)

print(‘\nI also have to buy rice.’)
shoplist.append(‘rice’)
print(‘My shopping list is now’, shoplist)

print(‘I will sort my list now’)
shoplist.sort()
print(‘Sorted shopping list is’, shoplist)

print(‘The first item I will buy is’, shoplist[0])
olditem = shoplist[0]
del shoplist[0]
print(‘I bought the’, olditem)
print(‘My shopping list is now’, shoplist)

append() and sort()
are methods of list

Output:

$ python3 using_list.py
I have 4 items to purchase.
These items are: apple mango carrot banana
I also have to buy rice.
My shopping list is now [‘apple’, ‘mango’, ‘carrot’, ‘banana’, ‘rice’]
I will sort my list now
Sorted shopping list is [‘apple’, ‘banana’, ‘carrot’, ‘mango’, ‘rice’]
The first item I will buy is apple
I bought the apple
My shopping list is now [‘banana’, ‘carrot’, ‘mango’, ‘rice’]

Operators
63

[1, 2, 3] + [4]  [1, 2, 3, 4]

[1, 2, 3] * 2  [1, 2, 3, 1, 2, 3]

1 in [1, 2, 3]  True

1 not in [1, 2, 3]  False

[1, 2, 3] < [1, 2, 4]  True

compare index to index, first difference determines the result

Iteration
64

 You can iterate through the elements of a list like you
did with a string:

List Comprehension

 List comprehensions are used to derive a new list from an existing list.

 For example, derive a new list by specifying the manipulation to be done (2*i) when some
condition is satisfied (if i > 2).

65

Example (save as list_comprehension.py):

listone = [2, 3, 4]
listtwo = [2*i for i in listone if i > 2]
print(listtwo)

Output:
$ python3 list_comprehension.py
[6, 8]

List Comprehension

 Example

 Use the json module and its loads function invoked on each line in the sample file

66

import json
path = 'ch02/usagov_bitly_data2012‐03‐16‐1331923249.txt'
records = [json.loads(line) for line in open(path)]

In [18]: records[0]
Out[18]:
{u'a': u'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.11 (KHTML, like
Gecko) Chrome/17.0.963.78 Safari/535.11',
u'al': u'en‐US,en;q=0.8',
u'c': u'US',
u'cy': u'Danvers',
u'g': u'A6qOVH',
u'gr': u'MA',

…

enumerate
67

names = ['Alice', 'Bob', 'Cindy']

index = 0

while index < len(names):

print(‘{} {}’.format(index, names[index]))

index += 1

names = ['Alice', 'Bob', 'Cindy']

for index, element in enumerate(names):

print(’{} {}’.format(index, element))

Without
enumerate

With
enumerate

Output:

1 Alice
2 Bob

3 Cindy

Enumerate and zip

 enumerate‐ Iterate over
indices and items of a list

 zip‐ Iterate over two lists in
parallel

alist = ['a1', 'a2', 'a3']
for i, a in enumerate(alist):

print (i, a)

1 a1
2 a2
3 a3

alist = ['a1', 'a2', 'a3']
blist = ['b1', 'b2', 'b3']
for a, b in zip(alist, blist):

print (a, b)

a1 b1
a2 b2
a3 b3

Empty list

 Create an empty list

 lst = [] # faster

 lst = list() # slower

 Check if a list is empty

 Empty lists evaluate to False in boolean contexts

69

if not myList:

print "Nothing here"

if len(my_list) == 0:

print "my_list is empty"
or

exercise
70

Associate True with the variable has_dups if the list
list1 has any duplicate elements (that is if any element
appears more than once), and False otherwise.

exercise
71

 Write a function named remove_dup that has one
parameter, a list whose elements are of type int. The
function returns the list without duplicates.

Hint:

◼Create a empty list, no_dup

◼For item in lst

◼ if item not in no_dup

◼ no_dup.append(item)

Tuple

 As similar to lists, but without the extensive functionality that the list class gives you.

 They are faster in processing as compared to lists.

 One major feature of tuples is that they are immutable like strings i.e. you cannot
modify tuples.

 Tuples are defined by specifying items separated by commas within an optional pair of
parentheses.

 I prefer always having them to make it obvious that it is a tuple.

 For example, print(1,2,3) and print((1,2,3)) mean two different things.

 Tuple with 0 item

 Using an empty pair of parentheses such as myempty = ().

 Tuple with 1 item

 Using a comma following the first (and only) item, ex. singleton = (2 ,)

72

Example (save as using_tuple.py):

zoo = (‘python’, ‘elephant’ , ‘penguin’)
remember the parentheses are optional

print(‘Number of animals in the zoo is’, len(zoo))
new_zoo = ‘monkey’ , ‘camel’ , zoo
print(‘Number of cages in the new zoo is’, len(new_zoo))
print(‘All animals in new zoo are’, new_zoo)
print(‘Animals brought from old zoo are’, new_zoo[2])
print(‘Last animal brought from old zoo is’, new_zoo[2][2])

print(‘Number of animals in the new zoo is’, len(new_zoo)‐1+len(new_zoo[2]))

Output:
$ python3 using_tuple.py
Number of animals in the zoo is 3

Number of cages in the new zoo is 3

All animals in new zoo are (’monkey’, ‘camel’ , (‘python’, ‘elephant’,

‘penguin’))

Animals brought from old zoo are (‘python’, ‘elephant’, ‘penguin’)

Last animal brought from old zoo is penguin
Number of animals in the new zoo is 5

Passing tuples around

 Return two different values from a function?

 use a tuple

 The usage of a, b = <some expression> interprets the result of the expression as a tuple with
two values.

74

>>> def get_error_details():

... return (2, ‘second error details’)

...

>>> errnum, errstr = get_error_details()
>>> errnum
2
>>> errstr
‘second error details’

Passing tuples around

 If you want to interpret the results as

(a, <everything else>),

 then you just need to star it just like you would in function parameters

 This also means the fastest way to swap two variables in Python is:

75

>>> a, *b = [1, 2, 3, 4]
>>> a
1
>>> b
[2, 3, 4]

>>> a = 5; b = 8

>>> a, b = b, a
>>> a, b
(8, 5)

Dictionary

 Associate keys (name) with values (details).
 d = {key1 : value1, key2 : value2 }

 The key‐value pairs are separated by a colon

 The pairs are separated themselves by commas and all this is enclosed in a pair of
curly braces.

 Note that the key must be unique.

 You can use only immutable objects (like strings) for the keys of a dictionary but
you can use either immutable or mutable objects for the values of the
dictionary.

 Remember that key‐value pairs are not ordered

 Keyword Arguments and Dictionaries

 On a different note, if you have used keyword arguments (**param) in your
functions, you have already used dictionaries!

76

77

78

Basic Dictionary Operations
79

% python
Make a dictionary
>>> D = {'spam': 2, 'ham': 1, 'eggs': 3}

Fetch a value by key
>>> D['spam']
2
Order is "scrambled"
>>> D
{'eggs': 3, 'spam': 2, 'ham': 1}

>>> len(D) # Number of entries in dictionary
3
>>> 'ham' in D # Key membership test alternative
True
>>> list(D.keys()) # Create a new list of D's keys
['eggs', 'spam', 'ham']

The left‐to‐right order of keys in a
dictionary will almost always be
different from what you originally
typed.

Changing Dictionaries in Place
80

>>> D

{'eggs': 3, 'spam': 2, 'ham': 1}

>>> D['ham'] = ['grill', 'bake', 'fry'] # Change entry
(value=list)

>>> D
{'eggs': 3, 'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> del D['eggs'] # Delete entry
>>> D

{'spam': 2, 'ham': ['grill', 'bake', 'fry']}

>>> D['brunch'] = 'Bacon' # Add new entry
>>> D
{'brunch': 'Bacon', 'spam': 2, 'ham': ['grill', 'bake', 'fry']}

Dictionary Example
81

ab = { ‘Swaroop’ : ‘swaroop@swaroopch.com’,
‘Larry’ : ‘larry@wall.org’,
‘Matsumoto’ : ‘matz@ruby‐lang.org’,
‘Spammer’ : ‘spammer@hotmail.com’

}
print("Swaroop’s address is", ab[‘Swaroop’])
Deleting a key‐value pair
del ab[‘Spammer’]

print(‘\nThere are {0} contacts in the address‐book\n’.format(len(ab)))

for name, address in ab.items():
print(‘Contact {0} at {1}’.format(name, address))

Adding a key‐value pair
ab[‘Guido’] = ‘guido@python.org’
if ‘Guido’ in ab:

print("\nGuido’s address is", ab[‘Guido’])

Output:
Swaroop’s address is swaroop@swaroopch.com
There are 3 contacts in the address‐book
Contact Swaroop at swaroop@swaroopch.com
Contact Matsumoto at matz@ruby‐lang.org
Contact Larry at larry@wall.org

Guido’s address is guido@python.org

Building dictionaries faster
82

 zip creates pairs from two parallel lists
zip("abc",[1,2,3]) yields [('a',1),('b',2),('c',3)]

 That's good for building dictionaries. We call the dict
function which takes a list of pairs to make a dictionary
dict(zip("abc",[1,2,3])) yields
{'a': 1, 'c': 3, 'b': 2}

alist = ['a1', 'a2', 'a3']
blist = ['b1', 'b2', 'b3']
for a, b in zip(alist, blist):

print (a, b)

a1 b1
a2 b2
a3 b3

mailto:swaroop@swaroopch.com
mailto:larry@wall.org
mailto:spammer@hotmail.com
mailto:guido@python.org
mailto:swaroop@swaroopch.com
mailto:swaroop@swaroopch.com
mailto:larry@wall.org
mailto:guido@python.org

dict comprehension
83

Receiving Tuples and Dictionaries in Functions

 There is a special way of receiving parameters to a function as a tuple or a
dictionary using the * or ** prefix respectively.

84

def total(initial=5, *numbers, **keywords):
count = initial
print(numbers)
print(keywords)
for number in numbers:

count += number
for key in keywords:

count += keywords[key]
return count

print(total(10, 1, 2, 3, vegetables=50, fruits=100))

 Because we have a * prefix on the numbers variable, all extra arguments passed to the
function are stored in numbers as a tuple.

 A double‐starred parameter (**keywords): all the keyword arguments from that point
till the end are collected as a dictionary called ‘keywords’.

Output:
(1, 2, 3)
{'vegetables': 50, 'fruits': 100}
166

Sequence

 Lists, tuples and strings are examples of sequences

 The major features are membership tests, (i.e. the in and not in
expressions) and indexing operations, which allow us to fetch a particular
item in the sequence directly.

 lists, tuples and strings, also have a slicing operation which allows us to
retrieve a slice of the sequence i.e. a part of the sequence.

85

shoplist = ['apple', 'mango', 'carrot', 'banana']
name = ‘swaroop’

Indexing or ‘Subscription’ operation
print(‘Item 0 is’, shoplist[0])
Out[4]: Item 0 is apple

print(‘Item 1 is’, shoplist[1])
Out[5]: Item 1 is mango

print(‘Item 2 is’, shoplist[2])
Out[6]: Item 2 is carrot

print(‘Item 3 is’, shoplist[3])

Out[7]: Item 3 is banana

print(‘Item ‐1 is’, shoplist[‐1])
Out[8]: Item ‐1 is banana

print(‘Item ‐2 is’, shoplist[‐2])
Out[9]: Item ‐2 is carrot

print(‘Character 0 is’, name[0])
Out[10]: Character 0 is s

Slicing on a list
print(‘Item 1 to 3 is’, shoplist[1:3])
Out[11]: Item 1 to 3 is [‘mango’, ‘carrot’]

print(‘Item 2 to end is’, shoplist[2:])
Out[12]: Item 2 to end is [‘carrot’, ‘banana’]

print(‘Item 1 to ‐1 is’, shoplist[1:‐1])
Out[13]: Item 1 to ‐1 is [‘mango’, ‘carrot’]

print(‘Item start to end is’, shoplist[:])
Out[14]: Item start to end is [‘apple’, ‘mango’, ‘carrot’, ‘banana’]

print(‘First 3 items’, shoplist[:3])
Out[15]: First 3 items ['apple', 'mango', 'carrot']

shoplist = ['apple', 'mango',
'carrot', 'banana']

Slicing on a string #
print(‘characters 1 to 3 is’, name[1:3])
Out[16]: characters 1 to 3 is wa

print(‘characters 2 to end is’, name[2:])
Out[17]: characters 2 to end is aroop

print(‘characters 1 to ‐1 is’, name[1:‐1])
Out[18]: characters 1 to ‐1 is waroo

print(‘characters start to end is’, name[:])
Out[19]: characters start to end is swaroop

name = ‘swaroop’

Sequence

 Python starts counting numbers from 0.
 Hence, shoplist[0] fetches the first item

 The index can also be a negative number
◼ shoplist[‐1] refers to the last item in the sequence
◼ shoplist[‐2] fetches the second last item in the sequence.

 Slicing operation
 shoplist[1:3] returns a slice of the sequence starting at position 1, includes position 2

but stops at position 3.

 shoplist[:] returns a copy of the whole sequence.

 Negative numbers are used for positions from the end of the sequence.
◼ For example, shoplist[:‐1] will return a slice of the sequence which excludes the last item of the

sequence but contains everything else.

 A third argument for the slice, which is the step for the slicing (by default, the step
size is 1)
◼ shoplist[::2], get the items with position 0, 2, . . .

89

Set

 Sets are unordered collections of simple objects.

 In a set, no two elements are identical. That is, a set consists of elements each of which
is unique compared to the other elements

 Using sets, you can test for membership, whether it is a subset of another set, find the
intersection between two sets, and so on.

90

>>> bri = set([‘brazil’, ‘russia’, ‘india’])
>>> ‘india’ in bri
True
>>> ‘usa’ in bri
False

>>> bric = bri.copy()

>>> bric.add(‘china’)
>>> bric.issuperset(bri)
True
>>> bri.remove(‘russia’)

>>> bri & bric # OR bri.intersection(bric)

{‘brazil’, ‘india’}

Creating a set
91

 Set can be created in one of two ways:
 constructor:set(iterable) where the argument is iterable

my_set = set('abc')

my_set → {'a', 'b', 'c'}

 shortcut: {}, braces where the elements have no colons (to
distinguish them from dicts)
my_set = {'a','b','c’}

 A set can consist of a mixture of different types of elements
my_set = {'a',1,3.14159,True}

no duplicates
92

 Duplicates are automatically removed
my_set = set("aabbccdd")

print(my_set)

→ {'a', 'c', 'b', 'd'}

example

exercise
94

Write a function named remove_dup that has one
parameter, a list whose elements are of type int. The
function returns the list without duplicates.

Hint: convert the list to a set, and then convert to list

common set operators
95

 Most data structures respond to these:
len(my_set)

◼ the number of elements in a set

element in my_set

◼ boolean indicating whether element is in the set

for element in my_set:

◼ iterate through the elements in my_set

 set comprehension

e f

96

method: intersection, op: &

a_set=set("abcd") b_set=set("cdef")

a b c d

a_set & b_set → {'c', 'd'}
b_set.intersection(a_set) → {'c', 'd'}

e f

method: difference op: ‐
97

a b c d

b_set.difference(a_set)→ {'e', 'f'}a_set – b_set→ {'a', 'b'}

a_set=set("abcd") b_set=set("cdef")

method: union, op: |
98

a b c d e f

a_set=set("abcd") b_set=set("cdef")

a_set | b_set→ {'a', 'b', 'c', 'd', 'e', 'f'}
b_set.union(a_set)→ {'a', 'b', 'c', 'd', 'e', 'f'}

e f

method: symmetric_difference, op: ^
99

a b c d

a_set=set("abcd") b_set=set("cdef")

a_set ^ b_set→ {'a', 'b', 'e', 'f'}
b_set.symmetric_difference(a_set) → {'a', 'b', 'e', 'f'}

d e f

method: issubset, op: <=
method: issuperset, op: >=

100

a b c

small_set=set("abc")

small_set <= big_set → True

big_set >= small_set → True

big_set=set("abcdef")

Other Set Ops
101

 my_set.add("g")

 adds to the set, no effect if item is in set already

 my_set.clear()

 emptys the set

 my_set.remove("g") versus my_set.discard("g")
remove throws an error if "g" isn't there. discard doesn't care.

Both remove "g" from the set

 my_set.copy()

 returns a shallow copy of my_set

Copy vs. assignment
102

my_set

myRefCopy

set(['a','c'])

set(['a','b','c'])

myCopy

my_set=set {'a', 'b', 'c'}

my_copy=my_set.copy()

my_ref_copy=my_set

my_set.remove('b')

References

 When you create an object and assign it to a variable, the variable
only refers to the object and does not represent the object itself!

 That is, the variable name points to that part of your computer’s memory
where the object is stored.

 This is called binding the name to the object.

103

shoplist = [‘apple’, ‘mango’,
‘carrot’, ‘banana’]

shoplist
[‘apple’,

‘mango’,
‘carrot’,

‘banana’]

Memory

References

 Remember that if you want to make a copy of a list or such kinds of sequences or
complex objects (not simple objects such as integers)

 then you have to use the slicing operation to make a copy.

 If you just assign the variable name to another name, both of them will ‘’refer” to the same
object and this could be trouble if you are not careful.

104

shoplist = [‘apple’, ‘mango’,

‘carrot’, ‘banana’]

listA = shoplist

listB = shoplist[0:]

or shoplist[:] or copy() method

shoplist [‘apple’,

‘mango’,
‘carrot’,

‘banana’]

Memory

listA

[‘apple’,

‘mango’,
‘carrot’,

‘banana’]

Memory

listB

Example
105

print(‘Simple Assignment’)
shoplist = [‘apple’, ‘mango’, ‘carrot’, ‘banana’]
mylist = shoplist # mylist is just another name pointing to the same object!

del shoplist[0] # I purchased the first item, so I remove it from the list
print(‘shoplist is’, shoplist)
print(‘mylist is’, mylist)
notice that both shoplist and mylist both print the same list without #

the ‘apple’ confirming that they point to the same object

print(‘Copy by making a full slice’)
mylist = shoplist[:] # make a copy by doing a full slice

del mylist[0] # remove first item

print(‘shoplist is’, shoplist)
print(‘mylist is’, mylist)
notice that now the two lists are different

Output:

Simple Assignment
shoplist is [‘mango’, ‘carrot’, ‘banana’]

mylist is [‘mango’, ‘carrot’, ‘banana’]
Copy by making a full slice
shoplist is [‘mango’, ‘carrot’, ‘banana’]
mylist is [‘carrot’, ‘banana’]

Difference between `==` and `is`

 is will return True if two variables point to the same object

 == if two objects have the same value.

106

In [1]: a = [1, 2, 3]
In [2]: b = a
In [3]: b == a
Out[3]: True

In [4]: b is a
Out[4]: True

In [5]: b = a[:]
In [6]: b == a
Out[6]: True

In [7]: b is a
Out[7]: False

In [8]: 1000 is 10**3

Out[8]: False

In [9]: 1000 == 10**3
Out[9]: True

More About Strings
107

 The strings that you use in program are all objects of the class str.

 There are many useful methods of this class, see help(str)

Example:

name = ‘Swaroop’ # This is a string object
if name.startswith(‘Swa’):

print(‘Yes, the string starts with "Swa”’)

if ’a’ in name:
print(‘Yes, it contains the string "a”’)

if name.find(‘war’) != ‐1:
print(‘Yes, it contains the string "war”’)

delimiter = ‘_*_’

mylist = [‘Brazil’, ‘Russia’, ‘India’, ‘China’]
print(delimiter.join(mylist))

Output:
Yes, the string starts with "Swa"
Yes, it contains the string "a"
Yes, it contains the string "war"
Brazil_*_Russia_*_India_*_China

MODULES

108

Modules

 Module

 The highest‐level program organization unit

◼ which packages program code and data for reuse, and provides self‐contained
namespaces that minimize variable name clashes across your programs.

 Modules typically correspond to Python program files.

◼ Each file (.py) is a module, and modules import other modules to use the names
they define.

 May contain a number of functions.

 Modules might also correspond to extensions coded in external languages
such as C, Java, or C#, and even to directories in package imports.

109

Python Program Architecture

 At a base level, a Python program consists of text files, with one main top‐level
file, and zero or more supplemental files known as modules.

 The top‐level (a.k.a. script) file contains the main flow of control of your program—
this is the file you run to launch your application.

 The module files are libraries of tools used to collect components used by the top‐
level file, and possibly elsewhere.

 Top‐level files use tools defined in module files, and modules use tools de‐ fined in
other modules.

 A file imports a module to gain access to the tools it defines, which are known as its
attributes—variable names attached to objects such as functions. (object.attribute notation)

110

Python Program Architecture
111

Import statement

 The file a.py is chosen to be the top‐level file

 A Python import statement, gives the file a.py access to everything defined by top‐level code in the
file b.py.

 The code import b roughly means:

 Load the file b.py (unless it’s already loaded), and give me access to all its attributes (functions)
through the name b.

 The module name also becomes a variable (object) assigned to the loaded module.

112

import b # File a.py

b.spam('gumby') # Prints "gumby spam"

def spam(text): # File b.py
print(text, 'spam')

Import statement

 import X

 Imports the module X, and creates a reference to that module in the current
namespace.

 Then you need to define completed module path to access a particular
attribute or method from inside the module (e.g.: X.name or X.attribute)

113

Import statement example
114

 Generate pseudo‐random numbers

 Source code: Lib/random.py

 This module implements pseudo‐random number generators for various distributions.

 https://docs.python.org/3.5/library/random.html

 random.seed(a=None, version=2)

 Initialize the random number generator.

 If a is omitted or None, the current system time is used.

 random.randint(a, b)

 Return a random integer N such that a <= N <= b.

import random
random.seed()

a = random.randint(1, 1000)
print(a)

How Imports Work

 Import is different from C #include.

 Perform three distinct steps
 Find the module’s file.

 Compile it to byte code (if needed)

 Run the module’s code to build the objects it defines.

 The Module Search Path
1. The home directory of the program

2. PYTHONPATH directories (if set)

3. Standard library directories

4. The contents of any .pth files (if present)

5. The site‐packages home of third‐party extensions

 Ultimately, the concatenation of these four components becomes sys.path,

115

How Imports Work
116

Example (save as using_sys.py):
import sys
print('The command line arguments are:')
for i in sys.argv:

print(i)

print('\nThe PYTHONPATH is', sys.path, '\n')

$ python3 using_sys.py we are arguments
The command line arguments are:

using_sys.py

we

are

arguments

The PYTHONPATH is ['/home/cclee/tmp', '/usr/lib/python35.zip',
'/usr/lib/python3.5', '/usr/lib/python3.5/plat‐x86_64‐linux‐gnu',
'/usr/lib/python3.5/lib‐dynload', '/usr/local/lib/python3.5/dist‐
packages', '/usr/lib/python3/dist‐packages']

Byte‐compiled .pyc files

 Importing a module is a relatively costly affair, so Python does some tricks
to make it faster.

 One way is to create byte‐compiled files with the extension .pyc.

 These byte‐compiled files are platform‐independent.

 These .pyc files are usually created in the same directory as the
corresponding .py files.

117

from . . . import …

 Imports names (attributes) from a module directly into the importing module’s
symbol table.

 In general, you should avoid using this statement and use the import statement
instead since your program will avoid name clashes and will be more readable.

儘量少用from…import …寫法，以避免名稱衝突

 To avoid the conflict, you can use import...as

118

from math import sqrt
print("Square root of 16 is", sqrt(16))

import … as …

 為匯入的模組取別名，可以使用import as

 This means that when you see np.arange, this is a reference to the arange
function in NumPy.

119

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

Give an alias

from X import *

 Imports the module X, and creates references to all public objects defined
by that module in the current namespace.

 That is, this imports all names except those beginning with an underscore (_).
(private)

 In other words, after you've run this statement, you can simply use a plain
name to refer to things defined in module X.

◼ But X itself is not defined, so X.name doesn't work.

 And if name was already defined, it is replaced by the new version. And if
name in X is changed to point to some other object, your module won’t notice.

120

Import examples

 Package skimage: Image Processing SciKit (Toolbox for SciPy)

 Subpackage Module: viewer

◼ Method: ImageViewer()

121

import skimage
from skimage import data
img = data.coffee()

viewer = skimage.viewer.ImageViewer(img)
viewer.show()

Err:
AttributeError: module 'skimage' has no attribute 'viewer'



You should
import a module,

not package

Import examples

from skimage.viewer import ImageViewer
from skimage import data
img = data.coffee()
viewer = ImageViewer(img)
viewer.show()

✓

from skimage import viewer
from skimage import data
img = data.coffee()
viewer = viewer.ImageViewer(img)
viewer.show()

✓

from [module]
import [attribute]

from [package]
import [module]

Import examples
123

import skimage.viewer.ImageViewer as iv
from skimage import data
img = data.coffee()
viewer = iv(img)
viewer.show()

Err:
ImportError: No module named 'skimage.viewer.ImageViewer'



import skimage.viewer as iv
from skimage import data
img = data.coffee()
viewer = iv.ImageViewer(img)
viewer.show()

✓

Module’s name

 Every Python module has its name defined.

 If this is ’ main ’, that implies that the module is being run standalone by the
user.

124

Example (save as using_name.py):

if name == ‘ main ’:
print(‘This program is being run by itself’)

else:
print(‘I am being imported from another module’)

Output:

$ python3 using_name.py
This program is being run by itself

$ python3
>>> import using_name
I am being imported from another module

>>>

Making Your Own Modules

 Every Python program is also a module.

 The module should be placed either in the same directory as the program from which
we import it, or in one of the directories listed in sys.path.

125

Example (save as mymodule.py):

def sayhi():
print(‘Hi, this is mymodule speaking.’)

version = ‘0.1’

Another module (save as
mymodule_demo.py):

import mymodule

mymodule.sayhi()
print (‘Version’, mymodule. version)

Output:
$ python3 mymodule_demo.py

Hi, this is mymodule speaking.
Version 0.1

Making Your Own Modules

 Here is a version utilizing the from..import syntax

 The output is same as the output of mymodule_demo.py.

 Notice that if there was already a version name declared in the module that imports
mymodule, there would be a clash.

 Hence, it is always recommended to prefer the import statement even though it might make
your program a little longer.

 You could also use:

126

from mymodule import sayhi, version

sayhi()
print(‘Version’, version)

from mymodule import *

◼ This will import all public names such as sayhi but would not import version because it
starts with double underscores.

private to

its class

The dir function

 Use dir function to list the identifiers that an object defines.

 For example, for a module, the identifiers include the functions, classes and variables defined
in that module.

 When you supply a module name to the dir() function, it returns the list of the names defined
in that module.

 When no argument is applied to it, it returns the list of names defined in the current module.

127

cclee@Snoopy:~/tmp$ python3
>>> dir()
[' builtins ', ' doc ', ' loader ', ' name ', ' package ',

' spec ']
>>> import sys
>>> dir()
[' builtins ', ' doc ', ' loader ', ' name ', ' package ',
' spec ', 'sys']

>>>

The dir function
128

>>> import sys
>>> dir(sys)
[' displayhook ', ' doc ', ' egginsert', ' excepthook ',

' name ', ' package ', ' plen', ' stderr ', ' stdin ',

' stdout ', '_clear_type_cache', '_current_frames', '_getframe',

'_mercurial', 'api_version', 'argv', 'builtin_module_names',

'byteorder', 'call_tracing', 'callstats', 'copyright', 'displayhook',

'dont_write_bytecode', 'exc_clear', 'exc_info', 'exc_type',

'excepthook', 'exec_prefix', 'executable', 'exit', 'flags',

'float_info', 'float_repr_style', 'getcheckinterval',

'getdefaultencoding', 'getdlopenflags', 'getfilesystemencoding',

'getprofile', 'getrecursionlimit', 'getrefcount', 'getsizeof',

'gettrace', 'hexversion', 'last_traceback', 'last_type', 'last_value',

'long_info', 'maxint', 'maxsize', 'maxunicode', 'meta_path', 'modules',

'path', 'path_hooks', 'path_importer_cache', 'platform', 'prefix',

'ps1', 'ps2', 'py3kwarning', 'setcheckinterval', 'setdlopenflags',

'setprofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin',

'stdout', 'subversion', 'version', 'version_info', 'warnoptions']
>>>

>>> import builtin

>>> dir(builtin)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException', 'BufferError',
'BytesWarning', 'DeprecationWarning', 'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception',
'False', 'FloatingPointError', 'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
'LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError', 'PendingDeprecationWarning',
'ReferenceError', 'RuntimeError', 'RuntimeWarning', 'StandardError', 'StopIteration',
'SyntaxError', 'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True', 'TypeError',
'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError', 'UnicodeError',

'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning',
'ZeroDivisionError', '_', ' debug ', ' doc ', ' import ', ' name ', ' package ',
'abs', 'all', 'any', 'apply', 'basestring', 'bin', 'bool', 'buffer', 'bytearray', 'bytes', 'callable', 'chr',

'classmethod', 'cmp', 'coerce', 'compile', 'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir',
'divmod', 'enumerate', 'eval', 'execfile', 'exit', 'file', 'filter', 'float', 'format', 'frozenset',
'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int', 'intern', 'isinstance',
'issubclass', 'iter', 'len', 'license', 'list', 'locals', 'long', 'map', 'max', 'memoryview', 'min',

'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property', 'quit', 'range', 'raw_input',
'reduce', 'reload', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod',
'str', 'sum', 'super', 'tuple', 'type', 'unichr', 'unicode', 'vars', 'xrange', 'zip']

Packages

 Hierarchy of organizing your programs

 Variables usually go inside functions.

 Functions and global variables usually go inside modules.

 Packages are just a convenience to hierarchically organize modules.

 Packages are just folders of modules with a special init .py file that indicates to
Python that this folder is special because it contains Python modules.

 init .py

◼ In the simplest case, init .py can just be an empty file,

◼ but it can also execute initialization code for the package

◼ or set the all variable

130

131

Packages

 if a package’s init .py code defines a list named all

 it is taken to be the list of module names that should be imported when from
package import * is encountered.

 For example, the file sound/effects/ init .py could contain the following code:

◼ all = ["echo", "surround", "reverse"]

◼ This would mean that from sound.effects import * would import the three named
submodules of the sound package.

 If all is not defined,

 the statement from sound.effects import * does not import all submodules from the
package sound.effects into the current namespace;

 it only ensures that the package sound.effects has been imported.

132

logging module

 Used to save some debugging or important messages

133

Save as use_logging.py:

import os, platform, logging
if platform.platform().startswith(‘Windows’):

logging_file = os.path.join(os.getenv(‘HOMEDRIVE’),
os.getenv(‘HOMEPATH’), ‘test.log’)

else:
Logging_file = os.path.join(os.getenv(‘HOME’), ‘test.log’)

print("Logging to", logging_file)
logging.basicConfig(

level=logging.DEBUG,
format=‘%(asctime)s : %(levelname)s : %(message)s’,
filename = logging_file,
filemode = ‘w’,

)
logging.debug("Start of the program")
logging.info("Doing something")
logging.warning("Dying now")

logging module
134

Output:

$ python3 use_logging.py
Logging to C:\Users\swaroop\test.log

If we check the contents of test.log, it will look something like this:

2012‐10‐26 16:52:41,339 : DEBUG : Start of the program

2012‐10‐26 16:52:41,339 : INFO : Doing something
2012‐10‐26 16:52:41,339 : WARNING : Dying now

pathlib module

 High‐level path objects

 https://docs.python.org/3.5/library/pathlib.html

 This module offers classes representing filesystem paths with semantics
appropriate for different operating systems.

 Path classes are divided between pure paths, which provide purely
computational operations without I/O, and concrete paths, which inherit from
pure paths but also provide I/O operations.

135

pathlib module
136

os.path module

 Low‐level path manipulations

 https://docs.python.org/3.5/library/os.path.html#module‐os.path

 All of these functions accept either only bytes or only string objects as their
parameters.

 The result is an object of the same type, if a path or file name is returned.

137

